Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG-RAN WG2 #99	Tdoc R2-1708469
Berlin, Germany, 21st – 25th August 2017	Revision of R2-1707188

Agenda Item:	10.4.1.2
Source:	Ericsson
Title:	RRC methodology
Document for:	Discussion, Decision

Introduction
The purpose of this contribution is to discuss how apply the methodology regarding Abstract Syntax Notation One (ASN.1).
[bookmark: _Ref178064866]Discussion
Logical channels and message classes
RRC definitions modules normally include logical channels and message classes. It is proposed to reuse the same structure for TS 38.331 including logical channel names, message class and message names from TS 36.331 whenever possible.
[bookmark: _Toc484100619][bookmark: _Toc484100643][bookmark: _Toc484100688][bookmark: _Toc484105844][bookmark: _Toc484105947][bookmark: _Toc485030307][bookmark: _Toc485031426][bookmark: _Toc485032483][bookmark: _Toc485114113][bookmark: _Toc485373515][bookmark: _Toc485376000][bookmark: _Toc485390111][bookmark: _Toc485390399][bookmark: _Toc485392263][bookmark: _Toc485392296][bookmark: _Toc485399800][bookmark: _Toc485408660][bookmark: _Toc485411733][bookmark: _Toc485412789][bookmark: _Toc485412875][bookmark: _Toc485412913][bookmark: _Toc485414291][bookmark: _Toc485417788][bookmark: _Toc485418072][bookmark: _Toc485420389][bookmark: _Toc485420725][bookmark: _Toc485424888][bookmark: _Toc485424948][bookmark: _Toc485425454][bookmark: _Toc485427241][bookmark: _Toc490133395][bookmark: _Toc490133464][bookmark: _Toc490139357]Reuse logical channel names, message class and message names from 36.331.
Usually message classes are extensible except for BCCH-BCH logical channel where only one message (Master Information Block) is allowed. Due to the introduction of side-link, NB-IoT feature and MBMS features several new versions of the message class have been introduced. As of today, there are four different versions of the BCCH-BCH logical channel and accordingly also four different variants of the message in Release 14.
[bookmark: _Toc485375993][bookmark: _Toc485390121][bookmark: _Toc485390392][bookmark: _Toc485392289][bookmark: _Toc485399809][bookmark: _Toc485408653][bookmark: _Toc485412759][bookmark: _Toc485412782][bookmark: _Toc485412906][bookmark: _Toc485414284][bookmark: _Toc485417762][bookmark: _Toc485417782][bookmark: _Toc485420685][bookmark: _Toc485420717][bookmark: _Toc485424676][bookmark: _Toc485425466][bookmark: _Toc485427253][bookmark: _Toc490133390][bookmark: _Toc490133476]The number of logical channels in 36.331 has increased recently because they have been used as an extension mechanism, e.g. there are several different BCCH-BCH logical channels and several corresponding message classes.
An easier and more straightforward way to introduce e.g. four different Master Information Blocks is to define the BCCH-BCH message class in an extensible manner. The outcome would be nearly the same but without new logical channels and message classes. It is therefore proposed to define all message classes in an extensible manner and thereby avoid excessive increase of logical channels and message classes.
[bookmark: _Toc484099286][bookmark: _Toc484100624][bookmark: _Toc484100648][bookmark: _Toc484100693][bookmark: _Toc484105849][bookmark: _Toc484105952][bookmark: _Toc485030308][bookmark: _Toc485031427][bookmark: _Toc485032484][bookmark: _Toc485114114][bookmark: _Toc485373516][bookmark: _Toc485376001][bookmark: _Toc485390112][bookmark: _Toc485390400][bookmark: _Toc485392264][bookmark: _Toc485392297][bookmark: _Toc485399801][bookmark: _Toc485408661][bookmark: _Toc485411734][bookmark: _Toc485412790][bookmark: _Toc485412876][bookmark: _Toc485412914][bookmark: _Toc485414292][bookmark: _Toc485417789][bookmark: _Toc485418073][bookmark: _Toc485420390][bookmark: _Toc485420726][bookmark: _Toc485424889][bookmark: _Toc485424949][bookmark: _Toc485425455][bookmark: _Toc485427242][bookmark: _Toc490133396][bookmark: _Toc490133465][bookmark: _Toc490139358]Specify all message classes in an extensible manner by using e.g. empty sequence in a choice entry to avoid excessive amount of new logical channels.
[bookmark: _Toc485411735]An example is shown below for BCCH-BCH message class.
-- ASN1START

BCCH-BCH-Message ::= SEQUENCE {
	message					BCCH-BCH-MessageType
}

BCCH-BCH-MessageType ::= CHOICE {
	c1						CHOICE {
		masterInformationBlock						MasterInformationBlock
	},
	messageClassExtension	SEQUENCE {}
}

-- ASN1STOP

Critical extensions
Even though message classes are normally extensible, for dedicated signalling messages are typically defined such that they can be branched into new versions or extended in a critical manner. TS 25.331 makes use of critical extensions very often to optimize downlink message sizes due to R99 limitations caused by dedicated low date rate channels. A similar kind of limitation does not exist in EUTRA and so far, TS 36.331 has only one critically extended message
[bookmark: _Toc485030304][bookmark: _Toc485031431][bookmark: _Toc485032480][bookmark: _Toc485114109][bookmark: _Toc485373523][bookmark: _Toc485375994][bookmark: _Toc485390122][bookmark: _Toc485390393][bookmark: _Toc485392290][bookmark: _Toc485399810][bookmark: _Toc485408654][bookmark: _Toc485412760][bookmark: _Toc485412783][bookmark: _Toc485412907][bookmark: _Toc485414285][bookmark: _Toc485417763][bookmark: _Toc485417783][bookmark: _Toc485420686][bookmark: _Toc485420718][bookmark: _Toc485424677][bookmark: _Toc485425467][bookmark: _Toc485427254][bookmark: _Toc490133391][bookmark: _Toc490133477]Critical extensions of messages are not frequently used anymore.
[bookmark: _Toc485412761]It seems unmotivated to define nearly all messages with a choice structure that defines multiple spare values for extension entries. The specification guideline defines simplified version for critical extensions where the spare values for extension entries are removed. It is proposed to adopt the approach to all messages that could be critically extended.
[bookmark: _Toc485030309][bookmark: _Toc485031428][bookmark: _Toc485032485][bookmark: _Toc485114115][bookmark: _Toc485373517][bookmark: _Toc485376002][bookmark: _Toc485390113][bookmark: _Toc485390401][bookmark: _Toc485392265][bookmark: _Toc485392298][bookmark: _Toc485399802][bookmark: _Toc485408662][bookmark: _Toc485411736][bookmark: _Toc485412791][bookmark: _Toc485412877][bookmark: _Toc485412915][bookmark: _Toc485414293][bookmark: _Toc485417790][bookmark: _Toc485418074][bookmark: _Toc485420391][bookmark: _Toc485420727][bookmark: _Toc485424890][bookmark: _Toc485424950][bookmark: _Toc485425456][bookmark: _Toc485427243][bookmark: _Toc490133397][bookmark: _Toc490133466][bookmark: _Toc490139359]Simplify critical extensions by removing spare values for extension entries.
An example of critical extension mechanism is shown below.
-- ASN1START

RRCConnectionReconfiguration ::=	SEQUENCE {
	rrc-TransactionIdentifier			RRC-TransactionIdentifier,
	criticalExtensions					CHOICE {
		rrcConnectionReconfiguration-r15		RRCConnectionReconfiguration-r15-IEs,
		criticalExtensions						SEQUENCE {}
	}
}

It is also possible to extend fields in a critical manner by integrating earlier versions (of the referenced data type) into a new version. It normally happens when messages are critically extended but it could also be done without creating a new branch of the whole message. A well-known issue with critically extended fields is that there may be a need to switch from one version to another. TS 36.331 allows switching to a critically extended version using any reconfiguration message whereas switching to the other direction is only possible using the handover or re-establishment procedure with the full configuration option. It is proposed to use the same approach for TS 38.331 unless reasons (and concrete proposals) are found to proceed in another way.
[bookmark: _Toc485414294][bookmark: _Toc485417791][bookmark: _Toc485418075][bookmark: _Toc485420392][bookmark: _Toc485420728][bookmark: _Toc485424891][bookmark: _Toc485424951][bookmark: _Toc485425457][bookmark: _Toc485427244][bookmark: _Toc490133398][bookmark: _Toc490133467][bookmark: _Toc490139360]Allow switching to a critically extended version using any reconfiguration message whereas switching to the other direction using the full configuration option.
Non-critical extensions
The most widely-used extension mechanism is to add new content in the end of a message. Since messages are usually defined as sequence type, the extension mechanism is based on an empty sequence placed in the end of the message. All non-critical extension in TS 25.331 are based on this mechanism [3] whereas TS 36.331 defines also non-critical extension by using extension markers. The non-critical extension mechanism based on empty sequences is very simple to use in usual cases but unusual situations, such as including an extended message into another message or concatenating extensible messages, become often complicated. They usually require good command of packed encoding rules and how (and when) they add length indicators in the transfer syntax.
The issue can be exemplified e.g. with TS 36.331 AS-Config information element where the intention has been to include the whole SystemInformationBlockType1 (SIB1) message by making a type reference to SIB1. But as the SIB1 message is non-critically extended, as shown below, it ends with an empty sequence which creates problems,
	nonCriticalExtension				SEQUENCE {}					OPTIONAL
}

A problem arises, since packed encoding rules do not add any length indicator to the encoding because packed encoding rules are schema-based which means that both the encoder and decoder infer the encoding size from the ASN.1 schema. Accordingly, the receiver decodes as much as it comprehends and consider the rest of the bit stream as padding bits (regardless how many bits there are).
One possible way to reference SIB1 is to omit the empty sequence using the key word WITH COMPONENTS and explicitly indicate that the non-critical extension must be absent as shown below
	sourceSystemInformationBlockType1	SystemInformationBlockType1(WITH COMPONENTS
											{..., nonCriticalExtension ABSENT}),

The downside is that all (non-critical) extensions are omitted which may turn out to be problematic. This is probably the reason the missing extensions are added to AS-Config information element as an octet string which, per-definition, has a length indicator and alignment to full octets. The extension is shown below,
	[[sourceSystemInformationBlockType1Ext	OCTET STRING (CONTAINING
												SystemInformationBlockType1-v890-IEs)	OPTIONAL,

Another possible way to include non-critically extended messages is to contain the whole message as an octet-string as shown below,
RRCConnectionReconfiguration-v1130-IEs ::= SEQUENCE {
	systemInformationBlockType1Dedicated-r11	OCTET STRING (CONTAINING SystemInformationBlockType1)																			OPTIONAL,	-- Need ON
	nonCriticalExtension				RRCConnectionReconfiguration-v1250-IEs	OPTIONAL
}

A similar kind of situation occurs with TS 36.331 System Information Blocks (SIB) other than SIB1 because they are all defined as information elements and conveyed by System Information (SI) message. The non-critical extensibility of SIBs is therefore based on extension markers because empty sequences would not allow multiple non-critically extended blocks to be included in the SI message. The SI message itself is non-critically extensible with an empty sequence but the extension mechanism has never been used. In contrast, TS 25.331 does not have any extension markers and all extensions to SIBs are included in the end of the SI message in a non-critical manner using one common empty sequence for all SIB extensions.
It is possible to motivate with several examples that the usage of empty sequences as non-critical extension mechanism may create complicated issues due to the absence of length indicator. It may sometimes make the specification and ASN.1 drafting unnecessarily complex.
[bookmark: _Toc485030305][bookmark: _Toc485031432][bookmark: _Toc485032481][bookmark: _Toc485114110][bookmark: _Toc485373524][bookmark: _Toc485375995][bookmark: _Toc485390123][bookmark: _Toc485390394][bookmark: _Toc485392291][bookmark: _Toc485399811][bookmark: _Toc485408655][bookmark: _Toc485412762][bookmark: _Toc485412784][bookmark: _Toc485412908][bookmark: _Toc485414286][bookmark: _Toc485417764][bookmark: _Toc485417784][bookmark: _Toc485420687][bookmark: _Toc485420719][bookmark: _Toc485424678][bookmark: _Toc485425468][bookmark: _Toc485427255][bookmark: _Toc490133392][bookmark: _Toc490133478]The absence of length indicator creates issues with non-critical extensions based on empty sequences.
One possible solution is to specify all non-critical extensions by using extension markers. The chief advantage of extension markers is their simplicity because it is possible to write abstract syntax without being bothered about transfer syntax related encoding details.
[bookmark: _Toc485030310][bookmark: _Toc485031429][bookmark: _Toc485032486][bookmark: _Toc485114116][bookmark: _Toc485373518][bookmark: _Toc485376004][bookmark: _Toc485390115][bookmark: _Toc485390403][bookmark: _Toc485392267][bookmark: _Toc485392299][bookmark: _Toc485399803][bookmark: _Toc485408663][bookmark: _Toc485411737][bookmark: _Toc485412792][bookmark: _Toc485412878][bookmark: _Toc485412916][bookmark: _Toc485414295][bookmark: _Toc485417792][bookmark: _Toc485418076][bookmark: _Toc485420393][bookmark: _Toc485420729][bookmark: _Toc485424892][bookmark: _Toc485424952][bookmark: _Toc485425458][bookmark: _Toc485427245][bookmark: _Toc490133399][bookmark: _Toc490133468][bookmark: _Toc490139361]Specify non-critical extensions by using extension markers such that addition of non-critical extensions does not require extensive knowledge about how and when packed encoding rules add length indicators.
The specification guidelines allow the following type of non-critical extension but they also state that the default mechanism should be empty sequence.
RRCConnectionReconfiguration-r15-IEs ::= SEQUENCE {
	-- Enter the fields here --
	...,
	[[-- Enter the non-critical extension fields here
]]
}

Late non-critical extensions
One important requirement for compatibility between different protocol versions is that the extensions appear in a sequential order in different versions of the specifications. A problem arises, since corrections are often added afterwards which essentially requires branching of the extensions to another sequence. In TS 25.331 such extensions are termed as variable length extension containers whereas TS 36.331 call them late non-critical extensions. Arguably, both protocols make use of the same extension mechanism because the main principle is to add late extensions sequentially in an octet string.
It should be noted that octet strings contain padding bits to ensure that the encoded outcome is a multiple of eight bits. They also contain a length indicator to inform the decoder of the number of encoded octets. The amount of auxiliary data in an octet string is roughly the same as the overhead caused by using extension markers. An important difference between extension markers and octet strings is that the encoding and decoding of contained octet string require separate encoding and decoding instance which increases the encoding and decoding latency.
[bookmark: _Toc485030306][bookmark: _Toc485031433][bookmark: _Toc485032482][bookmark: _Toc485114111][bookmark: _Toc485373525][bookmark: _Toc485375996][bookmark: _Toc485390124][bookmark: _Toc485390395][bookmark: _Toc485392292][bookmark: _Toc485399812][bookmark: _Toc485408656][bookmark: _Toc485412763][bookmark: _Toc485412785][bookmark: _Toc485412909][bookmark: _Toc485414287][bookmark: _Toc485417766][bookmark: _Toc485417785][bookmark: _Toc485420688][bookmark: _Toc485420720][bookmark: _Toc485424679][bookmark: _Toc485425469][bookmark: _Toc485427256][bookmark: _Toc490133393][bookmark: _Toc490133479]Contained octet strings have nearly as much overhead as extension addition groups but they also need separate encoder and decoder instances which increases the encoding and decoding latency.
As there does not seem to be any obvious benefits from using contained octet strings as late non-critical extensions. it is proposed to use extension markers and extension addition groups instead. In that way, the same extension mechanism is used for both ordinary and late non-critical extensions.
[bookmark: _Toc485030311][bookmark: _Toc485031430][bookmark: _Toc485032487][bookmark: _Toc485114117][bookmark: _Toc485373519][bookmark: _Toc485376005][bookmark: _Toc485390116][bookmark: _Toc485390404][bookmark: _Toc485392268][bookmark: _Toc485392300][bookmark: _Toc485399804][bookmark: _Toc485408664][bookmark: _Toc485411738][bookmark: _Toc485412793][bookmark: _Toc485412879][bookmark: _Toc485412917][bookmark: _Toc485414296][bookmark: _Toc485417794][bookmark: _Toc485418078][bookmark: _Toc485420395][bookmark: _Toc485420731][bookmark: _Toc485424894][bookmark: _Toc485424954][bookmark: _Toc485425460][bookmark: _Toc485427247][bookmark: _Toc490133401][bookmark: _Toc490133470][bookmark: _Toc490139363][bookmark: _GoBack]Specify late non-critical extensions with extensible sequences by using extension markers.
[bookmark: _Toc485420689]An example of extension marker based late non-critical extension mechanism is shown below.
RRCConnectionReconfiguration-r15-IEs ::= SEQUENCE {
	-- Enter the fields here
	lateNonCriticalExtension	SEQUENCE {
		...,
		[[-- Enter the late non-critical extension fields here
]]
	},
	...,
	[[-- Enter the non-critical extension fields here
]]
}

[bookmark: _Toc485420690]In principle the late non-critical extension field could be defined as optionally present but the extension marker itself already contains a presence bit and therefore adding a presence bit would only complicate the extension mechanism (and it would be a subject for potential errors).
Parameterised types
There are many benefits of having optional fields but an obvious downside is the handling of configurations when the fields are absent. If the fields are always released upon absence, the difference between mandatory and optional presence is subtle. If the fields are always maintained upon absence, it is complicated to release configurations. One widely-used solution in TS 36.331 is to make use of release/setup choice constructs where the release of the field is explicitly indicated with a choice entry. A problem arises, since there are multiple ways to define these constructs, e.g. define choices as separate named types, define setup entries as a sequence wrapper etc.
A possible solution to ensure that the same approach is always used throughout the specification is to take advantage of parameterised types. The following solution proposal is based on an example shown in ITU Recommendation X.683. The parameterised type allows an element type parameter which could be any ASN.1 type e.g. simple build-in type, structured type based on choice or sequence or an object. The element type parameter is used as the referenced data type for the setup entry.

DeltaConfig { ElementTypeParam } ::= CHOICE {
	release			NULL,
	setup			ElementTypeParam
}

The usage of the parameterised type is like a function call in programming languages. As ASN.1 is not a programming language (it is only a notation), the parameterised type effectively only implies a textual change where the compiler, in this case, replaces all references to the parameterised type with the release/setup choice. An example of the usage is shown for build-in type Boolean.
RRCMessage-r15-IEs ::= SEQUENCE {
	indicator		DeltaConfig { BOOLEAN }				OPTIONAL,	--	Maintain
	lateNonCriticalExtension	SEQUENCE {...},
	...
}

The usage of the parameterised type is also possible for structured types e.g. sequences may be used as shown below.
RRCMessage-r15-IEs ::= SEQUENCE {
	myConfig		DeltaConfig { SEQUENCE{
			indicator		BOOLEAN,
			id				INTEGER	(0..7)				OPTIONAL	-- Release
		}
 }													OPTIONAL,	-- Maintain
	lateNonCriticalExtension	SEQUENCE {...},
	...
}

Also named types may be passed as a parameter.
RRCMessage-r15-IEs ::= SEQUENCE {
	myConfig		DeltaConfig { MyConfig }			OPTIONAL,	-- Maintain	
	lateNonCriticalExtension	SEQUENCE {...}
	...
}

MyConfig ::= SEQUENCE {
	indicator				BOOLEAN,
	id						INTEGER	(0..7)				OPTIONAL	-- Release
}

It is proposed to discuss the possibility to use parameterised types to simplify release/setup constructs. The main advantage of the proposal is to simplify the ASN.1 code and get rid of an excessive amount of choice types and deep nesting within extension addition groups. Otherwise there is no impact on the transfer syntax and from the compiler point of view the outcome looks the same as before.
[bookmark: _Toc485420396][bookmark: _Toc485420732][bookmark: _Toc485424895][bookmark: _Toc485424955][bookmark: _Toc485425461][bookmark: _Toc485427248][bookmark: _Toc490133402][bookmark: _Toc490133471][bookmark: _Toc490139364]Simplify release/setup constructs with parameterised data types.
Value-references and type-references in procedure text
The distinction between fields and information elements is not always very clear and the meaning of these concepts is, unfortunately, dissimilar between different RRC specifications and between working groups. TS 25.331 defines (or at least it is supposed to define [3]) all parameters as separate information elements. As all information element definitions are unique there is no need (or added-value) to make distinctions between value references and type references because there are no ambiguities. TS 36.331 introduces information elements (or data types) only when the data type is referenced at least twice and semantics is always defined for the value-references, i.e. fields.
It is proposed to reuse the TS 36.331 approach in TS 38.331 and further use only field or value-references in the procedural text. It is difficult to imagine any UE behaviour that is dependent on the data type definition instead of the assigned value for the field.
[bookmark: _Toc485420398][bookmark: _Toc485420734][bookmark: _Toc485424897][bookmark: _Toc485424957][bookmark: _Toc485425463][bookmark: _Toc485427250][bookmark: _Toc490133404][bookmark: _Toc490133473][bookmark: _Toc490139366]Use value references in the procedure text unless it is imperative (from some reason) to reference a type definition.
Conclusion
In section 2 we made the following observations:
Observation 1	The number of logical channels in 36.331 has increased recently because they have been used as an extension mechanism, e.g. there are several different BCCH-BCH logical channels and several corresponding message classes.
Observation 2	Critical extensions of messages are not frequently used anymore.
Observation 3	The absence of length indicator creates issues with non-critical extensions based on empty sequences.
Observation 4	Contained octet strings have nearly as much overhead as extension addition groups but they also need separate encoder and decoder instances which increases the encoding and decoding latency.

Based on the discussion in section 2 we propose the following:
Proposal 1	Reuse logical channel names, message class and message names from 36.331.
Proposal 2	Specify all message classes in an extensible manner by using e.g. empty sequence in a choice entry to avoid excessive amount of new logical channels.
Proposal 3	Simplify critical extensions by removing spare values for extension entries.
Proposal 4	Allow switching to a critically extended version using any reconfiguration message whereas switching to the other direction using the full configuration option.
Proposal 5	Specify non-critical extensions by using extension markers such that addition of non-critical extensions does not require extensive knowledge about how and when packed encoding rules add length indicators.
Proposal 6	Specify late non-critical extensions with extensible sequences by using extension markers.
Proposal 7	Simplify release/setup constructs with parameterised data types.
Proposal 8	Use value references in the procedure text unless it is imperative (from some reason) to reference a type definition.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref485418271][bookmark: _Ref174151459][bookmark: _Ref189809556]TS 36.331 Radio Resource Control Specification
[bookmark: _Ref485418287]TS 25.331 Radio Resource Control Specification
[bookmark: _Ref485418319]TR 25.921 Guidelines and principles for protocol description and error handling
	6/6	
