Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 Meeting #103
R2-1811822
Gothenburg, Sweden, 20th – 24th August 2018
Agenda Item:
9.14.2
Source:

Huawei, HiSilicon
Title:

Discussion on remaining issues of EDT in 36.331
Document for:
Discussion and decision
1 Introduction
In RAN2#102 meeting, EDT was completed and the 36.331 CR in R2-1809256 [1] was endorsed.
In this paper, we discuss the following remaining issues:

1. Differentiation of connection resumption and UP-EDT;
2. Clarification of the security issues related to old/new keys;
3. EDT impacts on section 5.3.1.4 Connection control in NB-IoT in (RIL #H100);

4. EDT impacts upon reception of RRC connection release in section 5.3.12;
5. EDT impacts on timer handling in Section 7.3;
6. EDT impacts on processing delay in section 11.2;

7. EDT impacts on protection of RRC messages in section A.6.

2 Discussion
2.1 Differentiation of connection resumption and UP-EDT
In legacy RRC connection establishment procedure, the UE enters RRC_CONNECTED mode when receiving RRCConnectionSetup message or RRCConnectionResume message as shown below.
	5.3.3.4
Reception of the RRCConnectionSetup by the UE

NOTE 1:
Prior to this, lower layer signalling is used to allocate a C-RNTI. For further details see TS 36.321 [6];

The UE shall:

1>
if the RRCConnectionSetup is received in response to an RRCConnectionResumeRequest:
2>
discard the stored UE AS context and resumeIdentity;

2>
indicate to upper layers that the RRC connection resume has been fallbacked;

1>
perform the radio resource configuration procedure in accordance with the received radioResourceConfigDedicated and as specified in 5.3.10;

<Omitted>

1>
stop timer T300;

<Omitted>

1>
enter RRC_CONNECTED;
<Omitted>
5.3.3.4a
Reception of the RRCConnectionResume by the UE

The UE shall:

1>
stop timer T300;

1>
restore the PDCP state and re-establish PDCP entities for SRB2, if configured with E-UTRA PDCP, and for all DRBs that are configured with E-UTRA PDCP;

<Omitted>
1>
resume SRB2 and all DRBs, if any, including RBs configured with NR PDCP;

<Omitted>
1>
enter RRC_CONNECTED;
<Omitted>

There are clear descriptions of when the UE transits to RRC_CONNECTED from RRC_IDLE. However, for UP-EDT, since the legacy RRCConnectionResumeRequest is used, it is unclear what the UE RRC state is, i.e. if the UE enters RRC_CONNECTED or stays in RRC_IDLE.

According to following agreements in RAN2#99bis and #100 meetings, it is clear that EDT procedure (excluding fallback cases) is performed in RRC_IDLE mode.
	Agreement in RAN2#99bis
- Msg4 decides whether the UE goes to RRC connected mode or RRC idle mode.

Agreements in RAN2#100

CP solution:

- UE is in RRC_IDLE when transmitting Msg3 for EDT, same as legacy.
- UE is in RRC_IDLE when receiving the new Msg4 and it does not transit to RRC_CONNECTED.

- Legacy RRCConnectionSetup message is used when the network wants the UE to move to RRC_CONNECTED.

UP solution:
- UE is in RRC_IDLE when transmitting Msg3 for EDT, same as legacy.

- Legacy RRCConnectionRelease message with suspend is extended to include NCC in Msg4 when the network wants the UE to move to RRC_IDLE.

Then there is no concept of connection resumption in AS level for UP-EDT. Besides, UE resumes all SRBs and DRBs before Msg3 transmission for UP-EDT; and in the legacy connection resumption, this is performed when receiving RRCConnectionResume message. Moreover, we have differentiated the two concepts in other places of the current endorsed CR as shown below.

	–
RRCConnectionRelease
The RRCConnectionRelease message is used to command the release of an RRC connection, or to complete an EDT procedure.
–
RRCConnectionResumeRequest
The RRCConnectionResumeRequest message is used to request the resumption of a suspended RRC connection or to perform UP-EDT.

Then we can conclude that the connection resumption and UP-EDT are different concepts. We should differentiate the concepts clearly in other related places of the specification.
Observation 1: Legacy connection resumption and Rel-15 UP-EDT are different concepts even though they use the same RRCConnectionResumeRequest message.

Proposal 1: Differentiate the concepts of connection resumption and UP-EDT in the specification.

2.2 Security issues
There are the following Editor’s Notes in the endorsed CR related to the security aspect. We discuss them one by one in this section.
	5.3.3.3a
Issue 1. Editor’s Note: FFS how to distinguish the “new” KRRCint, KRRCenc and KUPenc, i.e. whether they are stored as a “new” security context.

Issue 2. Editor’s Note: FFS how to clarify KRRCint key here is “old” key for EDT.
5.3.3.3c

Issue 3. Editor’s Note: FFS how to refer to “new” security context and better rewording.

5.3.3.8

Issue 4. Editor’s Note: FFS how to refer to “new” security context and better rewording.
5.3.3.4a

Issue 5. Issue on reception of the RRCConnectionResume by the UE in EDT

Figure 1 shows the initiation of UE AS security context:

[image: image1.emf]UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

RRC-IDLE (not

suspended)

Security mode

Command

RRC-IDLE (Suspended)

RRC Connection

Release (Suspend

indication, NCC)

Create

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC, next

Figure 1 Initiation of UE AS security context
Initially, Security mode Command is used to create the UE AS security context and the UE stores the security context in RRC_CONNECTED mode. When the UE receives RRCConnectionRelease message, the UE stores the security context in RRC_IDLE after processing the RRCConnectionRelease message according to the suspend indication. For UP-EDT, the RRCConnectionRelease message includes a new nextHopChainingCount (NCC) for next UL data transmission via UP-EDT. The UE already has a “stored” nextHopChainingCount associated to the current NH and KeNB before receiving the RRCConnectionRelease message carrying the new NCC. Thus, we propose to rename the nextHopChainingCount provided in the RRCConnectionRelease message to nextHopChainingCountNext.

Proposal 2: Consider renaming nextHopChainingCount to nextHopChainingCountNext in RRCConnectionRelease message.
Issue 1. How to distinguish the “new” keys in section 5.3.3a
In order to transmit ciphered UL data along with RRCConnectionResumeRequest message via UP-EDT procedure, the UE shall derive a set of keys by using the nextHopChainingCount (i.e. nextHopChainingCountNext) provided in the last RRCConnectionRelease message. We called this set of keys as “new” keys during the discussions. However, in the specification, we should use precise/exact words, not “old” or “new” which are relative terms. Additionally, in some cases, the UE may fall back to the legacy resume procedure, then the UE will use the “old” keys. Therefore, the UE should store the two sets of keys, at least temporarily, when performing UP-EDT instead of replacing the “old” keys. Considering that the names KeNB*, KRRCint, KRRCenc, KUPenc are used in legacy procedure and the new keys will be the next ones in use, we can name them, for example, KeNB*,Next, KRRCint,Next, KRRCenc,Next, KUPenc,Next. The security handling for UP-EDT procedure is shown in Figure 2 below.

[image: image2.emf]UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next

- NH,Next

- KeNB,Next

- K

RRCEnc,

Next

,

K

RRCInt,

Next

,

K

UPEnc,

Next

RRC-IDLE

(suspended)

RRCConnectionResumeReq

uest (EDT)

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH (derived)

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next

Derive new keys

RRC-IDLE (Suspended)

RRC Connection

Release (Suspend

indication, NCC)

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC, next

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH



 NH, Next

- NCC (associated to NH)



 NCC, Next

- KeNB (derived)



 KeNB, Next

- K

RRCEnc,

K

RRCInt,

K

UPEnc



 K

RRCEnc,

Next

,

K

RRCInt,

Next

,

K

UPEnc,

Next

- NCC-Next

- NH-Next

- KeNB-Next

- K

RRCEnc-Next,

K

RRCInt-Next,

K

UPEnc-Next

Figure 2 Security handling in successful UP-EDT procedure
When the UE intends to perform UP-EDT, the UE derives new key parameters NH,Next, KeNB,Next, KRRCEnc,Next, KRRCInt,Next, KUPEnc,Next based on the stored NCC,Next i.e. nextHopChainingCountNext. Meanwhile, the UE does not delete the stored key parameters NH, KeNB , KRRCEnc , KRRCInt , KUPEnc derived based on the NCC associated to current NH as the UE may fall back to legacy procedure using the stored key parameters NH, KeNB , KRRCEnc , KRRCInt , KUPEnc.
Proposal 3: Consider using the names KeNB*,Next, KRRCint,Next, KRRCenc,Next, KUPenc,Next for the new set of key parameters.
Based on the discussions, it is clear the UE shall have at least temporarily two sets of keys and associated parameters. This is illustrated in Figure 3.

[image: image3.emf]UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next Optional

- NH,Next Optional Cond NCC,Next

- KeNB,Next Optional Cond NCC,Next

- K

RRCEn

,Next,

K

RRCInt

,Next

,

K

UPEnc

,Next

Optional Cond NCC,Next

Legacy Security context

EDT capable UE - Security context

Figure 3: UE AS Security Context Content
With:
-
NH, NCC, KeNB, KRRCEnc, KRRCInt, KUPEnc represent the set of keys ‘in use’ between the UE and the eNB.
-
NH,Next, KeNB,Next, KRRCEnc,Next, KRRCInt,Next, KUPEnc,Next represent the set of keys to use ‘next’ between the UE and the eNB.

Thus an issue is whether we need to define a “new” security context. In our view, either the EDT procedure is successful and the “new” keys replace the “old” keys or the EDT procedure is not successful and the “new” keys may become invalid. Then it is simpler to delete the “new” keys when the EDT procedure completes as illustrated in Figure 4 below. Next time, when the UE re-tries the EDT procedure, the UE can derive the keys again. Therefore, we propose not to introduce a “new” security context and specify that the UE deletes the “new” keys after the usage. Note that this does not prevent an implementation to keep them.
Proposal 4: There is no need to introduce a “new” security context in the specification.
Proposal 5: The UE deletes the “new” keys after the keys have been used.

[image: image4.emf]UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next

- NH, Next

- KeNB, Next

- K

RRCEnc-

Next

,

K

RRCInt-

Next

,

K

UPEnc-

Next

RRC-IDLE

(suspended)

RRCConnectionReject

(suspend

indication)

RRCConnectionResumeReq

uest (EDT)

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next Optional

Derive new keys

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next

- NH, Next

- KeNB, Next

- K

RRCEnc-

Next

,

K

RRCInt-

Next

,

K

UPEnc-

Next

Figure 4 Security handling in unsuccessful UP-EDT procedure
An example of change for Issue1 is shown below.
	5.3.3.3a
Actions related to transmission of RRCConnectionResumeRequest message

<Omitted>

1>
if the UE is initiating UP-EDT in accordance with conditions in 5.3.3.1b except when this procedure is initiated from 5.3.3.3c after fallback indication is received from lower layers:

<Omitted>
2>
resume all SRBs and all DRBs;

2>
derive the KeNB,Next key based on the KASME key to which the current KeNB is associated, using the stored value of nextHopChainingCountNext, as specified in TS 33.401 [32];

2>
derive the KRRCint,Next key associated with the previously configured integrity algorithm, as specified in TS 33.401 [32];

2>
derive the KRRCenc,Next key and the KUPenc,Next key associated with the previously configured ciphering algorithm, as specified in TS 33.401 [32];

Editor’s note: FFS how to distinguish the “new” KRRCint, KRRCenc and KUPenc, i.e., whether they are stored as a “new” security context.

2>
configure lower layers to resume integrity protection using the previously configured algorithm and the KRRCint,Next key to all subsequent messages received and sent by the UE;

2>
configure lower layers to resume ciphering and to apply the ciphering algorithm and the KRRCenc,Next key to all subsequent messages received and sent by the UE;

2>
configure lower layers to resume ciphering and to apply the ciphering algorithm and the KUPenc,Next key immediately to the user data sent and received by the UE;

2>
configure the lower layers to use EDT;
<Omitted>

Issue 2. How to clarify that shortResumeMAC-I is derived with the old “key” in section 5.3.3.3a
When UE sets the contents of RRCConnectionResumeRequest message, the UE shall calculate the shortResumeMAC-I for integrity protection, using the KRRCInt ‘in use’ during the last successful RRC connection or EDT procedure. This is identical to the legacy case thus we think no clarification is needed and we propose to remove the first Editor’s Note from section 5.3.3.3a.
Proposal 6: Remove the first Editor’s Note from section 5.3.3.3a and no clarification is needed.
The change is shown below.
	5.3.3.3a
Actions related to transmission of RRCConnectionResumeRequest message
<Omitted>

1>
set the shortResumeMAC-I to the 16 least significant bits of the MAC-I calculated:

2>
over the ASN.1 encoded as per section 8 (i.e., a multiple of 8 bits) VarShortResumeMAC-Input (or VarShortResumeMAC-Input-NB in NB-IoT);

2>
with the KRRCint key and the previously configured integrity protection algorithm; and

Editor’s Note: FFS how to clarify KRRCint key here is “old” key for EDT.

2>
with all input bits for COUNT, BEARER and DIRECTION set to binary ones;

1>
restore the RRC configuration and security context from the stored UE AS context;

<Omitted>

Issue 3. How to refer to the “new” security context in EDT fallback indication in section 5.3.3.3c
When the UE receives EDT fallback indication for the UP solution, the UE shall fall back to the legacy resume procedure. That means the UE shall revert to the initial suspend state, i.e. no “new” keys derived for EDT. After that, the UE initiates the legacy resume procedure. Therefore, the “new” keys shall be deleted as in the current CR. Since we propose new names for these keys and propose not to introduce a “new” security context, we propose to update 5.3.3.3a” as shown below.

Proposal 7: Explicitly name the keys, remove the mention of a “new” security context and delete the Editor’s note in section 5.3.3.3c.
	5.3.3.3c
UE actions upon receiving EDT fallback indication from lower layers

Upon indication from lower layers that EDT is cancelled, the UE shall:

1>
start or restart timer T300;

1>
if the fallback is indicated by lower layers in response to the RRCEarlyDataRequest:
2>
initiate transmission of RRCConnectionRequest message in accordance with 5.3.3.3;

1>
else if the fallback is indicated by lower layers in response to the RRCConnectionResumeRequest for EDT and the fallback is not due to the UL grant provided in Random Access Response not being for EDT:

2> delete the keys in “new” security context KeNB,Next, KRRCint,Next, KRRCenc,Next and KUPenc,Next derived as specified in 5.3.3.3a;

Editor’s note: FFS how to refer to “new” security context and better rewording.

2>
re-establish RLC entities for all SRBs and DRBs;

2> suspend all SRB(s) and DRB(s) except SRB0;

2>
configure lower layers to suspend integrity protection and ciphering;

2>
initiate transmission of the RRCConnectionResumeRequest message in accordance with 5.3.3.3a;

Issue 4. How to refer to the “new” security context upon reception of the RRCConnectionReject in section 5.3.3.8
In section 5.3.3.8, the Editor’s Note is the same as the one in section 5.3.3.3c and the issue is similar to when the UE receives RRCConnectionReject message after RRCConnectionResumeRequest message. Then the same approach is proposed.
Proposal 8: Explicitly name the keys, remove the mention of a “new” security context and delete the Editor’s note” in section 5.3.3.8.
The change is shown below.
	5.3.3.8
Reception of the RRCConnectionReject by the UE

<Omitted>

1>
if the RRCConnectionReject is received in response to an RRCConnectionResumeRequest:
2>
if the rrc-SuspendIndication is not present:

3>
discard the stored UE AS context and resumeIdentity;

3>
inform upper layers about the failure to resume the RRC connection without suspend indication and that access barring for mobile originating calls, mobile originating signalling, mobile terminating access and except for NB-IoT for mobile originating CS fallback is applicable, upon which the procedure ends;

2>
else:

3>
if the RRCConnectionReject is received in response to an RRCConnectionResumeRequest for EDT:

4> delete the keys in “new” security context KeNB,Next, KRRCint,Next, KRRCenc,Next and KUPenc,Next derived as specified in 5.3.3.3a.

Editor’s note: FFS how to refer to “new” security context and better rewording.

4>
perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC suspension', upon which the procedure ends;

<Omitted>

Issue 5. Handling the security context on reception of RRCConnectionResume in EDT
In section 5.3.3.4a, if the RRCConnectionResume is received in response to RRCConnectionResumeRequest for EDT, the UE shall ignore the nextHopChainingCount value included in the RRCConnectionResume message and continue with the “new” keys derived earlier. The “new” keys become “in use” and should replace the “old” keys. The handling procedure is shown in Figure 5 below.
Proposal 9: Update section 5.3.3.4a to specify that the “old” keys are updated with the “new” ones and the “new” keys are deleted.

[image: image5.emf]UE AS security context

- security algorithms

- Kasme (from NAS)

- NH

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next

- NH,Next

- KeNB,Next

- K

RRCEnc,

Next

,

K

RRCInt,

Next

,

K

UPEnc,

Next

RRC-IDLE

(suspended)

RRC-IDLE (Suspended)

RRC Connection

Release (Suspend

inidcation)

RRCConnectionResume

(NCC)

RRCConnectionResumeReq

uest (EDT)

RRCConnectionResume

Complete

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH (derived)

- NCC (associated to NH)

- KeNB

- K

RRCEnc,

K

RRCInt,

K

UPEnc

- NCC,Next

Derive new keys

UE AS security context

- security algorithms

- Kasme (from NAS)

- NH



 NH, Next

- NCC (associated to NH)



 NCC, Next

- KeNB (derived)



 KeNB, Next

- K

RRCEnc,

K

RRCInt,

K

UPEnc



 K

RRCEnc,

Next

,

K

RRCInt,

Next

,

K

UPEnc,

Next

- NCC-Next

- NH-Next

- KeNB-Next

- K

RRCEnc-Next,

K

RRCInt-Next,

K

UPEnc-Next

Figure 5 AS security handling for fallback case of UP-EDT
The change is shown below.
	5.3.3.4a
Reception of the RRCConnectionResume by the UE
The UE shall:
…
1>
if the RRCConnectionResume is received in response to an RRCConnectionResumeRequest for EDT:

2>
ignore the nextHopChainingCount value;
2>
store the nextHopChainingCountNext value as the nextHopChainingCount value;
2>
store KeNB,Next, KRRCint,Next, KRRCenc,Next and KUPenc,Next keys derived as specified in 5.3.3.3a as KeNB, KRRCint, KRRCenc, KUPenc keys;

2>
delete the nextHopChainingCountNext value and KeNB,Next, KRRCint,Next, KRRCenc,Next and KUPenc,Next keys;

Note that similar actions shall be performed upon reception of RRCConnectionRelease in UP-EDT (see Figure 2). They are currently missing in section 5.3.12.

Proposal 10: Update section 5.3.12 to specify that the “old” keys are updated with the “new” ones and the “new” keys are deleted.
2.3 EDT impacts on Section 5.3.1.4 for NB-IoT (RIL#H100)
The new RRC procedures for early data transmission are applicable to NB-IoT and should be captured in section 5.3.1.4 Table 5.3.1.4-1 Connection control procedures applicable to a NB-IoT UE.

Proposal 11: Add CP-EDT and UP-EDT in Table 5.3.1.4-1.
The change is shown below.
	5.3.1.4
Connection control in NB-IoT

<Omitted>

Table 5.3.1.4-1: Connection control procedures applicable to a NB-IoT UE

Sub-clause

Procedures

5.3.2

Paging

5.3.3

RRC connection establishment

RRC connection resume (see NOTE)

CP-EDT
UP-EDT (see NOTE)
5.3.4

Initial security activation (see NOTE)

5.3.5

RRC connection reconfiguration (see NOTE)

5.3.7

RRC connection re-establishment

5.3.8

RRC connection release

5.3.9

RRC connection release requested by upper layers

5.3.10

Radio resource configuration

5.3.11

Radio link failure related actions

5.3.12

UE actions upon leaving RRC_CONNECTED

2.4 EDT impacts on timers handling upon reception of RRCConnectionRelease message

Upon transmission of RRCConnectionResumeRequest message for UP-EDT, timer T300 starts. In legacy procedure, T300 stops upon reception of RRCConnectionSetup, RRCConnectionResume or RRCConnectionReject message. Also, in CP-EDT, T300 stops upon reception of RRCEarlyDataComplete message. However, there is no trigger condition for T300 stopping for UP-EDT, which naturally should be upon reception of RRCConnectionRelease message. Additionally, in legacy, upon successful resumption timers T302, T303, T305, T306, T308 are stopped if running and NAS informed about the barring alleviation . We think similar actions should be taken upon reception of RRCConnectionRelease message in response to RRCConnectionResumeRequest message.
Proposal 12: Upon reception of RRCConnectionRelease message in response to RRCConnectionResumeRequest message, the UE shall stop timers T300, T302, T303, T305, T306, T308, if running and inform NAS about the barring alleviation.
2.5 EDT impacts on timer handling in Section 7.3
For CP-EDT, new RRC messages RRCEarlyDataRequest and RRCEarlyDataComplete are introduced, which will trigger the start of T300 and the stop of T300 respectively. Therefore, these two RRC messages should be added for timer T300.
Proposal 13: RRCEarlyDataRequest message and RRCEarlyDataComplete message are added for T300 in section 7.3.
For UP-EDT, RRCConnectionRelease message shall trigger the stop of T302, T303, T305, T306 and T308 respectively. Therefore, it should be added for each timer.

Proposal 14: RRCConnectionRelease message is added for T302, T303, T305, T306 and T308 in section 7.3.
2.6 EDT impacts on processing delay in Section 11.2

CP-EDT and UP-EDT procedures have not been captured in section 11.2
Proposal 15: Add CP-EDT and UP-EDT procedures in section 11.2

2.7 EDT impacts on protection of RRC messages in Section A.6

CP-EDT and UP-EDT procedures have not been captured in section A.6

Proposal 16: Add CP-EDT and UP-EDT procedures in section A.6
3 Conclusion
In this document we discussed the remaining issues for EDT and made the following observations and proposals:
Observation 1: Legacy connection resumption and Rel-15 UP-EDT are different concepts even though they use the same RRCConnectionResumeRequest message.

Proposal 1: Differentiate the concepts of connection resumption and UP-EDT in the specification.

Proposal 2: Consider renaming nextHopChainingCount to nextHopChainingCountNext in RRCConnectionRelease message.
Proposal 3: Consider using the names KeNB*,Next, KRRCint,Next, KRRCenc,Next, KUPenc,Next for the new set of key parameters.

Proposal 4: There is no need to introduce a “new” security context in the specification.

Proposal 5: The UE deletes the “new” keys after the keys have been used.

Proposal 6: Remove the first Editor’s Note from section 5.3.3.3a and no clarification is needed.
Proposal 7: Explicitly name the keys, remove the mention of a “new” security context and delete the Editor’s note in section 5.3.3.3c.
Proposal 8: Explicitly name the keys, remove the mention of a “new” security context and delete the Editor’s note” in section 5.3.3.8.

Proposal 9: Update section 5.3.3.4a to specify that the “old” keys are updated with the “new” ones and the “new” keys are deleted.

Proposal 10: Update section 5.3.12 to specify that the “old” keys are updated with the “new” ones and the “new” keys are deleted.
Proposal 11: Add CP-EDT and UP-EDT in Table 5.3.1.4-1.
Proposal 12: Upon reception of RRCConnectionRelease message in response to RRCConnectionResumeRequest message, the UE shall stop timers T300, T302, T303, T305, T306, T308, if running and inform NAS about the barring alleviation.
Proposal 13: RRCEarlyDataRequest message and RRCEarlyDataComplete message are added for T300 in section 7.3.
Proposal 14: RRCConnectionRelease message is added for T302, T303, T305, T306 and T308 in section 7.3.
Proposal 15: Add CP-EDT and UP-EDT procedures in section 11.2

Proposal 16: Add CP-EDT and UP-EDT procedures in section A.6
The corresponding changes are captured in a draft CR provided in [1].
4 Reference

[1] R2-1811823, Corrections to EDT in 36.331, Huawei, HiSilicon

2/14

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
RRC-IDLE (not suspended)
Security mode Command
RRC-IDLE (Suspended)
RRC Connection Release (Suspend indication, NCC)

Create
UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC, next

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC,Next
- NH, Next
- KeNB, Next
- KRRCEnc-Next, KRRCInt-Next, KUPEnc-Next
RRC-IDLE (suspended)
RRCConnectionReject
(suspend indication)

RRCConnectionResumeRequest (EDT)
UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC,Next Optional
Derive new keys

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC,Next
- NH, Next
- KeNB, Next
- KRRCEnc-Next, KRRCInt-Next, KUPEnc-Next

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC,Next
- NH,Next
- KeNB,Next
- KRRCEnc,Next, KRRCInt,Next, KUPEnc,Next
RRC-IDLE (suspended)
RRC-IDLE (Suspended)
RRC Connection Release (Suspend inidcation)

RRCConnectionResume
(NCC)

RRCConnectionResumeRequest (EDT)

RRCConnectionResume
Complete

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH (derived)
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC,Next
Derive new keys

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH 	 	 ß NH, Next
- NCC (associated to NH) 	ß NCC, Next
- KeNB (derived)	ß KeNB, Next
- KRRCEnc, KRRCInt, KUPEnc 	ß KRRCEnc,Next, KRRCInt,Next, KUPEnc,Next
- NCC-Next
- NH-Next
- KeNB-Next
- KRRCEnc-Next, KRRCInt-Next, KUPEnc-Next

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC,Next
- NH,Next
- KeNB,Next
- KRRCEnc,Next, KRRCInt,Next, KUPEnc,Next
RRC-IDLE (suspended)
RRCConnectionResumeRequest (EDT)
UE AS security context
- security algorithms
- Kasme (from NAS)
- NH (derived)
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC,Next
Derive new keys

RRC-IDLE (Suspended)
RRC Connection Release (Suspend indication, NCC)

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
- NCC, next
UE AS security context
- security algorithms
- Kasme (from NAS)
- NH 	 	 ß NH, Next
- NCC (associated to NH) 	ß NCC, Next
- KeNB (derived)	ß KeNB, Next
- KRRCEnc, KRRCInt, KUPEnc 	ß KRRCEnc,Next, KRRCInt,Next, KUPEnc,Next
- NCC-Next
- NH-Next
- KeNB-Next
- KRRCEnc-Next, KRRCInt-Next, KUPEnc-Next

UE AS security context
- security algorithms
- Kasme (from NAS)
- NH 	 	
- NCC (associated to NH)
- KeNB
- KRRCEnc, KRRCInt, KUPEnc
UE AS security context
- security algorithms
- Kasme (from NAS)
- NH 	 	
- NCC (associated to NH)
- KeNB 	
- KRRCEnc, KRRCInt, KUPEnc 	
- NCC,Next 			 Optional
- NH,Next		 	Optional Cond NCC,Next
- KeNB,Next		 	Optional Cond NCC,Next
- KRRCEn,Next, KRRCInt,Next, KUPEnc,Next 	Optional Cond NCC,Next
Legacy Security context
EDT capable UE - Security context

