3GPP TSG RAN WG2 Meeting #101 R2-1803298
Athens, Greece, 26th February – 2nd March 2018
Agenda item:

9.14.2
Source:

Intel Corporation

Title:

Security framework for Msg3 and Msg4 in EDT
Document for:

Discussion and decision
1 Introduction

The early data transmission topic is one of the objectives included in eFeMTC and FeNB-IoT WIs [1] [2]. In the RAN2 # 100 meeting, following agreements were made.

	Agreements
For UP solution

- UE supporting EDT shall support both UL and DL EDT.

- The UE shall have NCC prior ro indicating EDT.

- resumeID, shortResumeMAC-I, and resumeCause are included in Msg3 for EDT.

- None of the parameters currently provided in MSG5 are included in Msg3 for EDT.
- UE is in RRC_IDLE when transmitting Msg3 for EDT, same as legacy.

- UE shall perform access barring check before initiating EDT.

- UE shall restore the UE context, reactivate security, and re-establish/resume all SRBs/DRBs. The UE shall derive new keys based on the NCC provided in the previous connection. It is FFS in which message NCC is provided in the previous connection. The FFS is pending SA3 feedback.

- Legacy RRCConnectionResumeRequest message is used in Msg3.

- Legacy RRCConnectionRelease message with suspend is extended to include NCC in Msg4 when the network wants the UE to move to RRC_IDLE.

In this contribution, we discuss the details on how the provided NCC is used to secure RRC message and user data in msg3 and Msg4.

2 Discussion
2.1 Use of NCC for Msg3
In legacy RRC connection resume request message, a shortResumeMAC-I is calculated taking into account the stored KRRCint [Ref TS 33.401] which is associated with the old NCC from the previous connection. Since RRC connection resume request is transmitted using SRB0 and is thus neither integrity protected nor ciphered, it can re-use only the existing key KRRCint for shortResumeMAC-I calculation. In EDT, user data needs to be protected in Msg3 and hence it also requires fresh UP AS key (KUPenc). Therefore, the new fresh AS keys associated with KeNB* that is either derived from the currently active KeNB of the source cell (referred as horizontal derivation assuming same old NCC) or derived from the NH associated with the new NCC (referred as vertical derivation) could be used. Whether it is horizontal or vertical, UE gets new KeNB* for each derivation.

[image: image1.emf]K

ASME

NH

NH

K

eNB

*

(K

eNB

)

Initial

NAS uplink COUNT

NCC = 1

NCC = 2

NCC = 0K

eNB

K

eNB

K

eNB

PCI,

EARFCN-DL

K

eNB

*K

eNB

*

K

eNB

K

eNB

K

eNB

K

eNB

*K

eNB

*

PCI,

EARFCN-DL

PCI,

EARFCN-DL

PCI,

EARFCN-DL

PCI,

EARFCN-DL

NH

K

eNB

*

NCC = 3

K

eNB

K

eNB

K

eNB

K

eNB

*K

eNB

*

PCI,

EARFCN-DL

PCI,

EARFCN-DL

PCI,

EARFCN-DL

Figure 1 General principle of key handing (TS 33.401 Figure 7.2.8.1-1)

Observation 1. Regardless of whether or not eNB provides new NCC to UE, UE gets fresh keys to protect user data in Msg3 using vertical or horizontal key derivation.
As shown in the figure, when a UE receives a value of NCC from the eNB and determines that it is different from the one it has stored, the UE derives the new keys using vertical derivation from NH associated with new NCC. Similarly in EDT, if UE received new NCC in the previous connection (for example, previous Msg4 or in suspend message) and the NCC is unused, the UE can perform the vertical derivation from NH parameter to derive keys before sending Msg3.

If UE received same value of currently used NCC in the previous connection or it already used the new NCC received in the previous connection, the current active KeNB needs to be associated with this value of the NCC. Therefore, UE can perform horizontal derivation from KeNB to derive new keys before sending Msg3 in EDT.
Observation 2. UE can perform vertical derivation to derive Keys (KRRCint, KRRCenc and KUPenc) before sending Msg3 in EDT if it has stored unused NCC from the previous connection.
Observation 3. UE can perform horizontal derivation to derive Keys before sending Msg3 in EDT if it has stored used NCC from the previous connection.
Proposal 1. UE derives Keys (KRRCint, KRRCenc and KUPenc) using vertical derivation before sending Msg3 in EDT if it has stored unused NCC otherwise horizontal derivation.

As already endorsed in [3] for EDT in NB-IoT, UE uses the currently stored KRRCint to calculate the shortResumeMAC-I as authentication token for RRC message. Then it derives new keys (KRRCint, KRRCenc and KUPenc) to secure the user data in msg3 using the existing KeNB via horizontal derivation or using NH parameter via vertical derivation.

Observation 4. UE uses the currently stored KRRCint to calculate the shortResumeMAC-I for integrity protection of Msg3 and derives new keys (KRRCint, KRRCenc and KUPenc) to secure the user data in msg3 using the existing KeNB via horizontal derivation or using NH parameter via vertical derivation.
As endorsed in [3], NCC can also be provided in the extended legacy RRC connection release message. It is possible that UE is in full RRC_CONNECTED mode and the network would have option to provide new value of NCC for the UEs who supports EDT while suspending the RRC connection. From the above observations, it is clear that it is not necessary to always provide new NCC to UE such that the UE requires to store unused NCC for the next resume procedure. This implies that network can optionally provide the new NCC in the suspend message. There are following solutions.
Option # 1: Network optionally provides value of NCC in the RRCConnectionRelease with suspend indication for UEs supporting EDT.
Option # 2: Network provides new NCC for future Msg3 in RRC reconfiguration message for UEs using EDT.

Option # 3: Network provide NCC only in Msg4 for UEs using EDT.

The option # 2 is not preferred over the option # 1 as UE always have chance to receive new NCC in option # 1 to use for EDT. As discussed above in observation 1, UE always derives new keys to secure the user data whether it has new value of NCC or not.

In option # 1 and option # 3, NCC is provided in Msg4. In option # 1, network has more flexibility to provide more security to user data with new values of NCC to be used in future resume procedure when UE is currently not using EDT and is in legacy RRC_CONNECTED mode. If the value of NCC provided is same as the currently used NCC, then UE will perform horizontal derivation of keys in the future resume procedure. In this case, the option #1 and option # 3 would be similar for EDT. Therefore, to address the following FFS from RAN # 100, it is preferred that network optionally provides the new NCC in the RRCConnectionRelease with suspend indication for UEs supporting EDT.
- UE shall restore the UE context, reactivate security, and re-establish/resume all SRBs/DRBs. The UE shall derive new keys based on the NCC provided in the previous connection. It is FFS in which message NCC is provided in the previous connection. The FFS is pending SA3 feedback.
- Legacy RRCConnectionRelease message with suspend is extended to include NCC in Msg4 when the network wants the UE to move to RRC_IDLE.
Proposal 2. Network can optionally provide NCC in the RRCConnectionRelease for UEs supporting EDT during suspend procedure of the legacy RRC connection.
2.2 Use of NCC in Msg4
2.2.1 Msg4 asks UE to go to IDLE

In legacy, the RRC message in Msg4 is only integrity protected using the MAC-I. In EDT, since keys are generated and AS security is activated before Msg3, there is additional option to cipher the RRC message in Msg4. When the Msg4 contains extended legacy RRC connection release message to move UE to IDLE mode, the message contains resume ID and optionally DL user data. There are following options to secure the user data and resume ID in Msg4.

Option # 1: Existing keys (KRRCint, KRRCenc and KUPenc) generated during Msg3 are used for ciphering and integrity protection
Option # 2: If new NCC is provided in Msg4, new keys (KRRCint, KRRCenc and KUPenc) for ciphering and integrity protection are derived using vertical derivation. If no NCC or same NCC is provided in Msg4, the new keys for ciphering and integrity protection are derived using horizontal derivation.
The benefit of Option # 2 above is that the DL user data and resume ID are more secured however there is complexity as UE would have to derive the keys twice.

Proposal 3. Existing keys (KRRCint, KRRCenc and KUPenc) generated during Msg3 are used for ciphering and integrity protection of the DL user data, if present, in Msg4.

2.2.2 Msg4 asks UE to go RRC_CONNECTED

In EDT, keys are generated before Msg3. The UL data in the Msg3 are ciphered using those keys. Therefore, the legacy RRC message in Msg4, if it asks UE to go to RRC_CONNECTED mode, can also be ciphered using the existing keys.

Proposal 4. When UE is initiating EDT, legacy RRCConnectionResume in Msg4 is also ciphered using the existing keys.

In legacy, RRCConnectionResume message has mandatory field for NCC, therefore, a UE has to derive new keys corresponding to the value of the NCC provided in RRCConnectionResume in Msg4. For EDT, there are following solutions.

Option #1: follow legacy procedure for key derivation

Option #2: ignore the NCC and continue using existing keys

Option #3: If network provides new NCC use option # 1 but if network provides same NCC use option # 2

In the option # 1, UE always follows the legacy procedure when a legacy RRC connection resume message is received. This would minimize the standardization effort, however, UE would require to derive keys twice. In option # 2, whatever value is provided in the legacy RRC connection resume message, UE just ignores the NCC. This would mean the network needs to provide a dummy value in the field of NCC.
In option # 3, there is possibility that network wants to change the keys here with vertical derivation because the network may have provided same NCC in the previous connection and horizontal key derivation was performed to derive keys before Msg3. If network wants UE to use the same existing keys, it provides the same value of NCC. When UE finds the value of NCC has not changed, it does not derive any new keys.
Proposal 5. If the value of NCC provided in legacy RRCConnectionResume is same as the stored NCC, UE continues using the existing keys for the protection of subsequent messages otherwise the UE follows legacy procedure to derive new keys.
3 Conclusion

The observations captured are the following:
Observation 1.
Regardless of whether or not eNB provides new NCC to UE, UE gets fresh keys to protect user data in Msg3 using vertical or horizontal key derivation.
Observation 2.
UE can perform vertical derivation to derive Keys (KRRCint, KRRCenc and KUPenc) before sending Msg3 in EDT if it has stored unused NCC from the previous connection.
Observation 3.
UE can perform horizontal derivation to derive Keys before sending Msg3 in EDT if it has stored used NCC from the previous connection.
Observation 4.
UE uses the currently stored KRRCint to calculate the shortResumeMAC-I for integrity protection of Msg3 and derives new keys (KRRCint, KRRCenc and KUPenc) to secure the user data in msg3 using the existing KeNB via horizontal derivation or using NH parameter via vertical derivation.

The proposal captured are the following:
Proposal 1.
UE derives Keys (KRRCint, KRRCenc and KUPenc) using vertical derivation before sending Msg3 in EDT if it has stored unused NCC otherwise horizontal derivation.
Proposal 2.
Network can optionally provide NCC in the RRCConnectionRelease for UEs supporting EDT during suspend procedure of the legacy RRC connection.
Proposal 3.
Existing keys (KRRCint, KRRCenc and KUPenc) generated during Msg3 are used for ciphering and integrity protection of the DL user data, if present, in Msg4.
Proposal 4.
When UE is initiating EDT, legacy RRCConnectionResume in Msg4 is also ciphered using the existing keys.
Proposal 5.
If the value of NCC provided in legacy RRCConnectionResume is same as the stored NCC, UE continues using the existing keys for the protection of subsequent messages otherwise the UE follows legacy procedure to derive new keys.

4 Reference
[1] RP-171427, Revised WID on Even further enhanced MTC for LTE, June 2017.
[2] RP-171428, Revised WID on Further NB-IoT enhancements, June 2017.

[3] R2-1714272, Running Rel-15 36.331 CR for NB-IoT, December 2017.
_1306829045.vsd
NCC = 0

KeNB*

NH

PCI, EARFCN-DL

KASME

(KeNB)
Initial

NH

PCI, EARFCN-DL

KeNB

KeNB

KeNB

PCI, EARFCN-DL

KeNB

KeNB

KeNB

PCI, EARFCN-DL

KeNB*

PCI, EARFCN-DL

KeNB*

KeNB*

KeNB*

NH

NCC = 3

KeNB*

KeNB

KeNB

KeNB

KeNB*

KeNB*

PCI, EARFCN-DL

PCI, EARFCN-DL

NAS uplink COUNT

PCI, EARFCN-DL

NCC = 1

NCC = 2

