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1	Introduction
In RAN1 #87, LDPC was agreed as the eMBB coding scheme and details of the LDPC design are required to discuss in the coming meetings. Several other agreements were made in previous Ran1 meetings related to the LDPC design. In particular, RAN1 #85 agreed to consider QC LDPC for study and comparison purposes of LDPC. 
Agreement:
· For the purpose of study and comparisons, quasi-cyclic like LDPC codes are defined as follows: 
· The Parity check matrix of Quasi-cyclic like LDPC Codes is defined at least by a matrix H of size (mb×z)×(nb×z), which consists of sub-block matrices of size z×z,  where each sub-block matrix is composed by circularly shifted matrices or zero matrices. Wherein, mb, nb and z are integers larger than 1.
· The values of mb, nb and z are FFS. 
· Companies providing evaluations or proposals for LDPC codes are encouraged to show how:
· Multiple code rates and multiple code sizes would be supported, 
· Suitable granularity of information block size and code rate would be supported,
· How to support HARQ with/without IR.

Moreover, additional details on proto-matrix was agreed during Ran1 #87 meeting, 
Agreements:
· Code extension of a parity-check matrix is used for IR HARQ/rate-matching support 
· Use lower-triangular extension, which includes diagonal-extension as a special case
· For the QC-LDPC design, the non-zero sub-blocks have circulant weight <=2
· Circulant weight is the number of superimposed circularly shifted ZZ identity matrices
· In parity check matrix design, the highest code rate (Rmax,j ) to design j-th H matrix for is 
· Rmax,j <=8/9
· Rmax,j is the code rate of the j-th H matrix before code extension is applied (0 j< J) 
· Rmax,j is the code rate after accounting for the built-in puncturing, if this is applied in H matrix design
· Rate matching to support transmission code rate higher than Rmax,j is not precluded

In this contribution, we propose LDPC design for the eMBB scenario and provide simulation results. 
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Code construction is mainly based on two proto-matrices to handle small and large block sizes that we expect in the eMBB scenario. In last few meetings, many companies showed that majority of the traffic in uplink might use shorter block sizes, where we think particular attention is required even with LDPC codes. The number of base graphs itself does not affect the implementation complexity, where implementation complexity mainly determined by the base graph dimensions, supported block sizes (or shift network configuration), row/column weights, and related other parameters. 
In the rest of the discussion, we use the following structure for the parity check matrix (PCM), H, which represents QC LDPC codes. 
 ,
where  is a cyclic-permutation matrix obtained from the zero matrix and the z by z cyclically shifted identity matrix to the right. Also,  often represented as a numerical entry in the matrix in the following discussion. 
Section 2.1 and 2.2 provide details of code constructions for LDPC for different block sizes. In summary, the coding families are summarized in Table 1. 
Table 1: LDPC coding families
	Code Family
	Block sizes
	Max code rate
	Min code rate
	Sub-matrix dimension

	
	
	
	
	Min
	Max
	Granularity 

	1
	100 – 2000
	11/15
	11/43
	8
	182
	1

	2
	2000 – 16K
	8/9
	1/3
	62
	512
	1



2.1 	Family 1: Short block sizes
Family 1 is mainly designed such that it provides good performance for lower code block sizes. Matrix dimensions are always lower compared to the Family 2 proposed to handle higher throughput cases. The parity check matrix for Family 1 is shown in Figure 1. The highest code rate PCM has much lower code rate than 8/9 and it extends to lower rates than 1/3. In summary, blanking based extension is used to get a PCM for different rates. 
[image: ]
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To boost performance, we introduce additional non-negative entries for each matrix. The first matrix of size 4x15 becomes
  49 82 -1 28 55 39 94 34 84 28 66  0 -1 -1 -1
  40  2 62 77 37 22 44 78 39 49 41 60  0 -1 -1
   2 81 74 13 17 54  7 -1 -1 45 92 -1  9  0 -1
  -1 49 90 52 50 60 -1 92 19 -1 67  0 44 78  0

Here, some elements are blanked (or set to -1) when deriving the extended matrices. This helps to improve the performance of lower code rates. 

The next matrix, of size 8x19 is
  -1 82 -1 -1 55 -1 94 34 -1 28 66  0 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 37 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1
   2 -1 74 -1 17 -1  7 -1 -1 -1 92 -1  9  0 -1 -1 -1 -1 -1
  -1 -1 90 52 50 60 -1 92 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1
  -1  7 40 51 -1 -1 76 -1 -1 30 -1 -1 -1 88 47  0 -1 -1 -1
   6 -1 -1 -1 -1 56 -1 -1 70 -1 -1 -1 49 52 62 -1  0 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 60  3  0 -1
  -1  6 33 29 44 71  9 -1 -1 -1 -1 -1 -1 -1 -1 33 -1  6  0

The third matrix of size 12x23 is
  -1 82 -1 -1 55 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 37 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   2 -1 74 -1 17 -1  7 -1 -1 -1 92 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 50 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 17 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 60 -1  0 -1 -1 -1 -1 -1
  -1  6 -1 -1 44 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 33 -1  6  0 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 47 39 -1  0 -1 -1 -1
  -1 36 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1
  46 -1 -1 -1 -1 -1 26 64 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1
  36 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 69 -1 61  0

The fourth is of size 16x27 is
  -1 82 -1 -1 -1 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 -1 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 74 -1 17 -1  7 -1 -1 -1 92 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 50 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  6 -1 -1 44 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  6  0 -1 -1 -1 -1 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 -1 39 -1  0 -1 -1 -1 -1 -1 -1 -1
  -1 36 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1 -1 -1 -1 -1
  46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1 -1 -1 -1 -1
  36 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61  0 -1 -1 -1 -1
  66 -1 -1 -1 -1 -1 -1 -1 12 -1 94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 57 -1  0 -1 -1 -1
  -1 -1 -1 17 -1 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 29  0 -1 -1
  20 -1 -1 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 52 -1 -1 -1 -1 -1 63 43 -1  0 -1
  61 57 -1 -1 -1 -1 -1 -1  9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1  0

The fifth matrix is of size 20x31 is 
  -1 82 -1 -1 -1 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 -1 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 74 -1 17 -1  7 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 50 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  6 -1 -1 44 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  6  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 -1 39 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61  0 -1 -1 -1 -1 -1 -1 -1 -1
  66 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 57 -1  0 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 17 -1 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1
  20 -1 -1 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 52 -1 -1 -1 -1 -1 63 -1 -1  0 -1 -1 -1 -1 -1
  61 57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1  0 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1  6 -1 55 -1 -1 -1 -1 -1 -1 23 -1 -1 -1 67 83 -1 -1 -1 -1  0 -1 -1 -1
  57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 46 -1 -1 -1 46 -1 -1 -1 -1 17 -1 -1 -1 -1 -1  0 -1 -1
  -1 -1 -1 60 -1 -1 -1 11  6 -1 70 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15 -1 -1 -1 -1 -1 -1  0 -1
  23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 64 -1 -1 90 -1 -1 89  0

The sixth matrix is of size 24x35 is
  -1 82 -1 -1 -1 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 -1 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 74 -1 17 -1  7 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 -1 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  6  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  66 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 57 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 17 -1 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  20 -1 -1 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 52 -1 -1 -1 -1 -1 63 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  61 57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 55 -1 -1 -1 -1 -1 -1 23 -1 -1 -1 -1 83 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1
  57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 46 -1 -1 -1 -1 17 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1
  -1 -1 -1 60 -1 -1 -1 11 -1 -1 70 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1
  23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 64 -1 -1 90 -1 -1 -1  0 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 48 -1 -1 -1 90 -1 72 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1
  70 -1 -1 69 -1 -1 -1 -1 -1 -1 -1 77 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 68  5  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 91  0 -1
  80 -1 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 50 -1 -1 -1 -1 -1 63 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0

The seventh is of size 28x39 is
  -1 82 -1 -1 -1 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 -1 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 74 -1 17 -1  7 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 -1 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  6  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  66 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 57 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 17 -1 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 52 -1 -1 -1 -1 -1 63 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  61 57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 55 -1 -1 -1 -1 -1 -1 23 -1 -1 -1 -1 83 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 46 -1 -1 -1 -1 17 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 11 -1 -1 70 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 64 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 48 -1 -1 -1 -1 -1 72 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1
  70 -1 -1 69 -1 -1 -1 -1 -1 -1 -1 77 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 68 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 19 91  0 -1 -1 -1 -1 -1
  80 -1 -1 -1 -1 -1 -1 -1 19 -1 -1 -1 -1 -1 -1 -1 -1 50 -1 -1 -1 -1 -1 63 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1
  -1 -1 -1 66 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1
  -1 -1 -1 -1 -1 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 23  6 -1 -1 58 -1 -1 -1  0 -1 -1
  -1 87 -1 17 -1 -1 -1 -1 -1 -1 -1  7 -1 -1 -1 -1 -1 -1 24 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 32 -1 -1 40 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 82 -1 -1 -1 -1 -1 -1 -1 -1 -1  0

The reason to define the matrices like these is that each code rate has its optimal check node degree distributions, and with the proposed structure, performance is optimized. Furthermore, these codes can be decoded by the same decoder, since they share the common structure. 
2.1.1 	Code block support
These codes support info block size K from 100 up to 2000. The matrices were designed with submatrix size 95. If smaller submatrix size is used, modulo lifting is applied. These codes are optimized for puncturing, and provide good performance for a wide range of code rates. 

2.1.2   HARQ support  
Both CC and IR HARQ can be supported with the proposed matrices. Since these codes tolerate heavy puncturing, incremental redundancy is possible. An ordinary circular buffer can be used, but there is one limitation compared to turbo codes. We have to choose what matrix is used. This selection is a matter of link adaptation. Once selected, we stay within that matrix. In some situations, this limitation may impact IR gains. Further investigations on the gains we get one first transmission versus small losses in IR transmissions should be investigated. 
Overall, base graphs of Family 1 share common elements and can be decoded by the same decoder. The base matrix dimensions, shift network sizes are small which allowing for an efficient implementation.    
Proposal 1: LDPC codes for short block size should guarantee good performance over a wider range of code rates. 

2.2 	Family 2: Larger block sizes 
Large code blocks will often use when supporting moderate to higher throughputs in the eMBB scenario of NR. When the information block sizes are large, required chip area will also increase. Similarly, the decoding latency and energy consumption will be larger. Overall, hardware requirement will often be determined by the provisioning that we do to support larger block sizes in eMBB. This requires special consideration when selecting the LDPC code for larger block sizes.
Proposal 2: LDPC codes for large block size should guarantee both high throughput and implementation efficiency.
Based on this requirement, one PCM family is designed as in the attached excel with this contribution.
2.2.1 	Code block support
This PCM family is mainly designed to support large block sizes, e.g. information block size as k>=2000. Also, this does not have issues even to support lower range of block sizes. However, we see that optimized approach we used in Family 1 is more suited to provide better performance. Considering the max cyclic-permutation value in the base matrix, i.e. 512, technically the maximum support block size could be 512*32=16384. However, we need further discussion on the maximum supported block size considering many other aspects. 
Although the designed PCM can support all the information block size larger than 2000, with different expansion factor z and padding/repetition/puncturing, it does not need to support all the expansion factor with request higher capability of the UEs. The expansion factor supported could be based on some rule, e.g. Di*2k, where Di and k are in some range.
Observation 1: The maximum code block size around 16K and granularity-1 for expansion factor z can be supported.  
Proposal 3: The maximum supported code block size could be high to guarantee a high throughput for eMBB but the set or expansion factor supported should be designed by taking the UE capability into account.
2.2.2 	Code rate and HARQ support
In this PCM family, PCM for lower code rate are generated by extension from the PCM for higher code rate. The PCM family are with the type of rate-compatible as in Figure 2, so IR HARQ can be supported by transmitting more parity bits in retransmission.


Figure 2: Structure of PCM for large block size
The extension part is divided into multiple parts, with each part containing multiple rows. All these parts are generated by dividing one same vector into multiple rows so that the multiple rows are orthogonal to guarantee only one layer decoder is needed for each part. For each part, the one sector is firstly divided into multiple orthogonal rows, then a proper cyclic shift for the whole part is searched, and some columns are replaced by all -1 to guarantee good performance. As an option, the generated part can be extended by inserting some columns with all -1. In the generation, the same vector is used to guarantee the cyclic-permutation values in each part, with each part corresponding to one layer, are from the same set corresponding to the vector. Based on this structured design the shifting network part can be same or shared by multiple parts and requested optimization effort will be reduced. Cyclic shifting is used to search the good performance in freedom of low ratio of small cycles between parts corresponding to different layers. The processing can be as Figure 2.


Figure 3: An example for PCM generation based on same vector to generate different layer by division to multiple orthogonal rows and cyclic shift

It can be seen good performance can be achieved by designing the PCM based on this structured method.
Proposal 4: A structured method should be considered in PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, in order for improvement of implementation efficiency and reduced optimization effort.

In this PCM family, the design target for highest supported code rate is 8/9. Some parity bits for rate 8/9 can be punctured to support higher code rate.
The information bits corresponding to the first 2*z columns are punctured, so the base matrix with total size as 66*98 can support the minimum code rate as 32/(98-2)=1/3. Repetition can be used to support lower code rate than 1/3.
Obviously, the base matrix can be extended to lower code rate than 1/3, which will provide better performance than the case with repetition. However, this will request more rows in the PCM and more layer needed when layer decoding is used, which will require higher layer decoding latency or larger chip area.

Observation 2: 
· The example PCM can directly support code rate from 8/9 to 1/3, support higher code rate by puncture more parity bit and support lower code rate by repetition.
· The example PCM can support both CC HARQ and IR HARQ.
· The PCM can be extended lower code rate to provide better performance for lower code rate.

2.2.3 	Implementation aspects  
When the base matrix is generated by dividing one vector to multiple orthogonal rows and cyclic shifting, then the shifting network for layered decoder for multiple layers can be same and can be shared. In detail, one set of cyclic shift processor + layer decoder can be used for any of the layers. We can set the exact cyclic shift value then the layer can be decoded. This shifting network can be specifically optimized in implementation, and the overall chip area can be reduced. 
As shifting network does not need to be changed from layer to layer, the latency will be reduced, as the latency for cyclic shifting will be less than the changing of the whole shifting network.
Observation 3: With similar performance/throughput, the decoding latency and chip area could be reduced based on the proposed PCM generation for larger block sizes.
Additionally, based on this structuring method for PCM generation, the effort of base matrix design and the standard effort will be reduced.

3	Performance
3.1			Simulation assumptions
We use simulation parameters showed in Table 2 to provide results for BLER versus SNR of the proposed codes in Section 2. We also plot LDPC codes in [1] to see the relative comparison. 

Table 2: Simulation parameters

	Channel*
	AWGN

	Modulation
	QPSK

	Coding Scheme
	LDPC
	LDPC – Samsung (R1-167889)

	Code rate
	1/5, 1/3, 2/5, 1/2, 2/3, 3/4, 5/6, 8/9

	Decoding algorithm**
	Offset min-sum
	Offset min-sum

	Info. block length*** (bits w/o CRC)
	100, 400, 1000, 2000, 4000, 6000, 8000 



We use offset min-sum decoder with 0.22 offset parameter with 50 iterations in the simulations. 

3.2			Performance of short block size 
Figure 4 (a)-(d) shows simulation results for 100, 400, 1000, and 2000 information block sizes with for QPSK scheme. A similar performance to be expected for 64 QAM as it does not change the properties of codes. Modulo lifting is used to get different code blocks with required padding/puncturing and repetitions whenever required.  These parameters used for simulation are provided in the attached excel data file.  
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Figure 4: BLER versus SNR for short block sizes. (a) 100 info bits, (b) 400 info bits, (c) 1000 info bits (d) 2000 info bits
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Figure 5: IR HARQ performance
Figure 5 shows the simulated spectral efficiency (SE) as a function of SNR. We used QPSK, 16-QAM and 64-QAM as modulation methods, with incremental redundancy (IR) as the HARQ method. Our IR implementation is quite ideal: the number or retransmissions is not limited, and the feedback channel is delayless and error-free. We simulated the performance of matrices 1, 2, 3 and 8 separately for each modulation method, and selected the best.
Observation 4: The proposed short block PCM provide very good performance over a wider range of code rates and supports IR HARQ. 

3.3			Performance of larger blocks 
Figure 6 (a)-(d) shows simulation results for 2000, 4000, 6000, and 8000 information block sizes with for QPSK scheme. Modulo lifting is used for different block sizes while puncturing happens on systematic bits and from the end of the parity bits whenever required. As code is limited to rate 1/3, code rate of 1/5 is obtained by repeating rate 1/3. 
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Figure 6: BLER versus SNR for large block (a) 2000 info bits, (b) 4000 info bits, (c) 6000 info bits, (d) 8000 info bits
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Figure 6: IR HARQ versus CC HARQ. (a) 1000 info bits, (b) 2000 info bits

Observation 5: The proposed large block PCM provide very good performance over a wider range of code rates and supports IR HARQ while providing good implementation benefits. 

4	Conclusion
In this contribution we propose code construction details of LDPC for eMBB data channel and we have following observations and proposals. 
Observation 1: The maximum code block size around 16K and granularity-1 for expansion factor z can be supported.  
Observation 2: 
· The example PCM can directly support code rate from 8/9 to 1/3, support higher code rate by puncture more parity bit and support lower code rate by repetition.
· The example PCM can support both CC HARQ and IR HARQ.
· The PCM can be extended lower code rate to provide better performance for lower code rate.

Observation 3: With similar performance/throughput, the decoding latency and chip area could be reduced based on the proposed PCM generation for larger block sizes.
Observation 4: The proposed short block PCM provide very good performance over a wider range of code rates and supports IR HARQ. 
Observation 5: The proposed large block PCM provide very good performance over a wider range of code rates and supports IR HARQ while providing good implementation benefits. 
Proposal 1: LDPC codes for short block size should guarantee good performance over a wider range of code rates. 
Proposal 2: LDPC codes for large block size should guarantee both high throughput and implementation efficiency.
[bookmark: _GoBack]Proposal 3: The maximum supported code block size could be high to guarantee a high throughput for eMBB but the set or expansion factor supported should be designed by taking the UE capability into account.
Proposal 4: A structured method should be considered in PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, in order for improvement of implementation efficiency and reduced optimization effort.
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