3GPP TSG RAN WG1 #90                                   	          R1-1714373
Prague, Czech Republic, 21st-25th August 2017

Agenda item:		6.1.4.1.2
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Nokia, Nokia Shanghai Bell  
Title:	Code block segmentation principles 
Document for:		Discussion and Decision
1 	Introduction
In RAN1 NR Ad-Hoc #2 meeting, the following agreement was made on code segmentation [1]. 
Agreement: 
· Working assumption from RAN1-NRAH#1 is confirmed that filler bits F are attached at the end of info block B.

Agreement: 
· Same value of Z for code blocks within a TB

In this contribution, we share our views on code segmentation to finalize the description in TS 38.212 specification.  
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]2.    Code segmentation for eMBB
Considering the aforementioned agreements and use of two base graphs, it is reasonable to assume the segmentation process as follows. 

· As agreed in Ran1, TB should be segmented to have code block sizes such that they can use the same shift size Z. Ran1 agreed to find minimum Z such that Kb*Z >= K from the set of shift sizes. Therefore, LTE like segmentation principle has to be used with the LDPC codes. As LDPC has finer granularity, we can do the segmentation to have only two code block sizes which also differ at most by one bit.  

· In particular to base graph (BG) #2, we think that it should be applied to the lower code rates. The MCS levels which are associated with lower code rates may also have larger TBS than 2560 depending on the number of allocated PRBs. This could lead to situations that TBS + CRC <= 2560 is using BG #2 and higher TBS with the same MCS may use base graph #1 with repetition. This destroys the principle of having BG #2, where one motivation to use BG #2 is to improve the performance at lower code rates. We think if the TBS is larger than 2560 but MCS field belong to lowest code rates, for example lower than 1/3, using BG#2 is use full with segmenting the TBS with maximum code block size supported by BG #2. 

Proposal 1: CBs in segmentation process should be done such that CBs differ at most by one bit. 

Proposal 2: CB segmentation should also consider for the base graph #2 when the transmission is supported with MCS level of lower code rate.

We highlight the modifications required by using the existing text in TS 38.212 specification. 





The input bit sequence to the code block segmentation is denoted by , where . If  is larger than the maximum code block size , segmentation of the input bit sequence is performed and an additional CRC sequence of  bits is attached to each code block. The maximum code block size is:
For base graph #1

-	.
For base graph #2
- Kcb = 2560 
The filler bits shall be set to <NULL> at the input to the encoder. 
Total number of code blocks C is determined by:

if 

	

	Number of code blocks: 

	
else

	

	Number of code blocks: .

	
end if





The bits output from code block segmentation, for , are denoted by , where  is the code block number, and   is the number of bits for the code block number .

Number of bits in each code block (applicable for only):
	 	
		
For LDPC base graph 1,

.
For LDPC base graph 2, 

If  

;

elseif 

;

elseif 

;
else

;
end





find the minimum value of   in all sets of lifting sizes in Table 5.3.2-1, denoted as , such that , and denote  for LDPC base graph 1 and  for LDPC base graph 2;

;


for  to 

	if 

			;
else

;
end

		;

while 

;

;

;
end while

if 



The sequence  is used to calculate the CRC parity bits  according to section 5.1.1 with the generator polynomial [].

while 

;

;
end while
end if

while 

;

;
end while
end for
4 	Conclusions
In this contribution, we discuss the remaining details of segmentation and we have following proposals, 
Proposal 1: CBs in segmentation process should be done such that CBs differ at most by one bit. 

Proposal 2: CB segmentation should also consider for the base graph #2 when the transmission is supported with MCS level of lower code rate.
[bookmark: _GoBack]
References
[1] 3GPP RAN1 Ad-Hoc #2, Chairman Notes.

oleObject44.bin

image45.wmf
(

)

1

'

3

2

1

0

,...,

,

,

,

-

-

L

K

r

r

r

r

r

c

c

c

c

c


oleObject45.bin

image46.wmf
(

)

1

2

1

0

,...,

,

,

-

L

r

r

r

r

p

p

p

p


oleObject46.bin

image47.wmf
CRC

g


oleObject47.bin

image48.wmf
'

K

k

<


oleObject48.bin

image49.wmf
(

)

'

K

L

k

r

rk

p

c

-

+

=


oleObject49.bin

oleObject50.bin

image50.wmf
K

k

<


oleObject51.bin

image51.wmf
>

=<

NULL

c

rk


oleObject52.bin

oleObject53.bin

image1.wmf
1

3

2

1

0

,...,

,

,

,

-

B

b

b

b

b

b


oleObject1.bin

image2.wmf
0

>

B


oleObject2.bin

image3.wmf
B


oleObject3.bin

image4.wmf
cb

K


oleObject4.bin

image5.wmf
CB

L

L

=


oleObject5.bin

image6.wmf
8448

cb

=

K


oleObject6.bin

image7.wmf
cb

K

B

£


oleObject7.bin

image8.wmf
0

=

L


oleObject8.bin

image9.wmf
1

=

C


oleObject9.bin

image10.wmf
B

B

=

¢


oleObject10.bin

image11.wmf
CB

L

L

=


oleObject11.bin

image12.wmf
(

)

é

ù

L

K

B

C

cb

-

=

/


oleObject12.bin

image13.wmf
L

C

B

B

×

+

=

¢


oleObject13.bin

image14.wmf
0

¹

C


oleObject14.bin

image15.wmf
(

)

1

3

2

1

0

,...,

,

,

,

-

r

K

r

r

r

r

r

c

c

c

c

c


oleObject15.bin

image16.wmf
C

r

<

£

0


oleObject16.bin

image17.wmf
r

K


oleObject17.bin

image18.wmf
r


oleObject18.bin

image19.wmf
0

¹

C


oleObject19.bin

image20.wmf
22

=

b

K


oleObject20.bin

image21.wmf
640

>

B


oleObject21.bin

image22.wmf
10

=

b

K


oleObject22.bin

image23.wmf
560

>

B


oleObject23.bin

image24.wmf
9

=

b

K


oleObject24.bin

image25.wmf
192

>

B


oleObject25.bin

image26.wmf
8

=

b

K


oleObject26.bin

image27.wmf
6

=

b

K


oleObject27.bin

image28.wmf
Z


oleObject28.bin

image29.wmf
c

Z


oleObject29.bin

image30.wmf
+

³

×

K

Z

K

c

b


oleObject30.bin

image31.wmf
c

Z

K

22

=


oleObject31.bin

image32.wmf
c

Z

K

10

=


oleObject32.bin

image33.wmf
0

=

s


oleObject33.bin

image34.wmf
0

=

r


oleObject34.bin

image35.wmf
1

-

C


oleObject35.bin

image36.wmf
)

,

mod(

C

B

r

<


oleObject36.bin

image37.wmf
+

=

K

K

'


oleObject37.bin

image38.wmf
-

=

K

K

'


oleObject38.bin

image39.wmf
0

=

k


oleObject39.bin

image40.wmf
L

K

k

-

<

'


oleObject40.bin

image41.wmf
s

rk

b

c

=


oleObject41.bin

image42.wmf
1

+

=

k

k


oleObject42.bin

image43.wmf
1

+

=

s

s


oleObject43.bin

image44.wmf
1

>

C


