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Introduction

In RAN1-88bis [1], the following agreements regarding LDPC base graph design were made:
Working Assumption: 
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined is {8448, 384} => Kbmax = 22
· To be confirmed automatically at RAN1#89 if no significant implementation or performance issues are identified. 
· The base graph supporting Kmax should support the following set of shift sizes Z, where :
· 
	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	 
	 

	
	6
	128
	192
	320
	 
	 
	 
	 
	 

	
	7
	256
	384
	 
	 
	 
	 
	 
	 


· FFS by RAN1#89 whether some values can removed from the above table. 
· FFS by RAN1#89 whether some of {272, 304, 336, 368} can be added to the above table. 

Conclusion: 
· Companies to submit almost-final proposals for one base graph by RAN1#89
· Fine-tuning still permitted until submission deadline for June adhoc. 
· Final base graph to be finalized by the June NR Ad-Hoc meeting
· If it is agreed to support a second base graph, aim also to finalise it by the June adhoc. 

This working assumption limits the maximum number of systematic columns in the base graph to Kbmax = 22, the maximum lift size to Zmax = 384, and the maximum information block length to 8448. The working assumption also provides a set of 51 supported lift sizes, which can be further limited in this meeting.
We present a base graph design corresponding to the new Zmax = 384 and Kbmax = 22 parameters. We show that good and consistent performance can be achieved across the block length and code rate range while using only a clustered subset of the 51 lift sizes from the working assumption, which reduces implementation complexity. This performance is shown to hold for block error rates (BLER) of at least 1e-4.
The agreement in RAN1-88bis also outlined the parameters for single and two-family proposals:
Agreement: 
The base graph design is selected from the following alternatives:
Alt 1: One base graph covering ~1/5 <= R <= ~8/9
Alt 1a: Two nested base graphs, where: 
· Base graph #1 
· Covers info block size K: 
	Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2 
· Nested within base graph #1
· Covers info block size K: 
	 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3 
· Kbmax =16 is the starting point; lower values in the range 10<=Kbmax<16 are encouraged if feasible. 
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
Alt 2: Two base graphs, where: 
· Base graph #1 
· Covers info block size K: 
	Kmin1 <=K<= Kmax1, Kmin1 > Kmin, Kmax1 =Kmax
· Covers code rate R: ~1/3 <= R <= ~8/9; FFS whether Rmin can be ~1/5
· Base graph #2 
· Not nested within base graph #1
· Covers info block size K: 
	 Kmin2 <=K<= Kmax2, Kmin2 =Kmin, Kmax2 < Kmax, where 512<=Kmax2<=2560
· Covers code rate R: ~1/5 <= R <= ~2/3 
· Kbmax = 10 is the starting point; higher values in the range 10<Kbmax<=16 can also be considered if necessary.
· The set of supported shift sizes is taken from the set of shift sizes supported by the base graph supporting Kmax
BLER Performance is the main criterion for selecting between Alts 1, 1a and 2 (since it is already assumed that complexity is not increased significantly by the addition of a second smaller base graph); decoding latency (e.g. evaluated by the number of edges) should also be considered as an important criterion.
This contribution proposes a two-family solution where the second family, of Kbmax = 12, is not nested within the Kbmax = 22 code family according to Alt 2, but shares the same encoding structure. Using two code families reduces decoding latency and improves hardware utilization while maintaining good error correction performance. The benefits relative to a single-family design were analysed in in [3] and some are reviewed here.
LDPC code family
In this section, we review the LDPC code design principles first introduced in [2]. We emphasize here how the particular nesting of optimized base graphs support fine granularity in K, even when used with a clustered set of liftings. This clustered set of liftings can lead to improved hardware implementation as well as reduced description complexity compared to the super-set in [1].
[bookmark: _Ref474122053]Nested basegraphs
We define a family as a base graph which contains a collection of nested base graphs. Such a base graph consists of a high-rate core graph (i.e., highest rate supported before puncturing) and a low rate extension. The high-rate core includes two relatively high-degree punctured variable nodes that are base information nodes, and a set of degree three base information nodes that completes the set of information variable nodes. The parity structure is generally similar to the 802.11n encoding structure with the addition of one degree one-parity bit which is a parity of the two punctured variable nodes. The remainder of the base graph beyond the core graph consists of low-rate extension bits which are formed by taking parities of the systematic and parity-bits of the core graph. These can be used to generate re-transmissions that support rate-compatible IR HARQ. The entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs. Figure 1 depicts nested base graph family. Various details such as number of systematic information bit-columns and parities are different for the different families and are explained below.
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[bookmark: _Ref481706484]Figure 1: Family of nested base graphs













 
For each family, we define quantities  and  as the minimum and the maximum number of base information bit-columns in the nested set of base graphs and  and  as the minimum and maximum number of parity bit-columns. The number of punctured base information bit-columns is denoted by  and is set to two. 
Multiple base graphs are nested within each other starting at the smallest basegraph over  base information columns and ending with the largest basegraph with  base information columns. For different operating rates supported by the family, different starting base graphs can be selected from the nested collection and used for encoding and decoding.  More precisely, the base graph is described using the maximum number  and the base graphs with smaller base information bits, say kb, are obtained by deleting the  last base information bits. 
(This procedure can be interpreted as shortening at the base graph level, however to avoid confusion we prefer to view this as an extraction of systematic bits from the nested basegraph family. This representation can also be exploited to simplify the implementation at the decoder, since it works only on the extracted basegraph within the family.)
The maximum rate supported by all of the nested base graphs associated to the family is given by  and the minimum rate supported by the all of the nested base graphs is given by. Note that while the range from  to  is supported by all the blocklengths there are additional rates supported at particular information blocklengths. For example, there is a rate  code, but this rate cannot be supported at all the above stated information blocklengths.  For simplicity of exposition we restrict the use of a family to rates in between   and blocklengths in between . It will be seen later that each family has sufficient range and granularity in rate required for NR.
Set of clustered liftings
The base graphs derived from a given family are then lifted to achieve a binary parity check matrix. Rather than supporting a continuum of liftings, each family also consists of a set of clustered liftings, which are defined as follows. Consider the set of numbers  and the set of lifts given by  for . For each  the set of lifts  is referred to as the cluster of lifts.  Limiting Zmax to 384 provides the following set of lifts {4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384}. The lifting values used to cyclically lift the base graph are common for each element of a cluster.
The importance of having liftings designed in this manner is two-fold. First, by maximizing the use of  in the lift description, implementation complexity for supporting all permutations at this lift size can be simplified. The additional factor of  also lends itself to an efficient implementation but can provide added flexibility e.g., in the granularity of the liftings. Second, by allowing such an exponentially growing set of lifts, the blocklength range can be covered adequately with a limited number.
Using a coarse, clustered set of liftings significantly reduces the complexity of the switch networks within the LDPC decoder. These switch networks perform cyclic shifts of messages in the decoder. In [5], this reduction in complexity was studied in detail. Using coarse lifting value enables decomposing the shift network from a monolithic QC-LDPC shift network (QSN) to several smaller shift networks. Using clustered lifts of the form , further reduces switch implementation complexity by enabling the use of simple Banyan switches in addition to smaller QSNs. The complexity reduction is negatively affected by the cardinality and maximum value of the set . Therefore, [5] recommends the use of the set  that is proposed in this contribution to significantly reduce implementation complexity.
Observation 1: The clustered set of lifts  for , subject to Zmax = 384 reduces decoder implementation complexity.
Procedure to obtain code from family
Consider finding a code with parameters K,N in a given family.  If K is in the specified range and K/N is in the specified range then a solution is guaranteed.  There may be more than one solution.  We first determine a lifting size and the base graph parameters.  The lifted code may require some additional shortening and puncturing, but this is limited, usually to less than one lifted column, except in the case of the highest rate codes.
The following algorithm can be used to determine a suitable base graph and lifting value.
1. Find  so that 
a. If multiple potential  values exist for the high family, choose , unless it is the largest in the cluster, then choose .
b. If multiple potential  values exist for the low family, choose  if ; otherwise, choose .
2. Set the number of base graph information variable nodes to   by deleting the last  base information variable nodes from the base graph of the family
3. Append the first  parity variable nodes unless  in which case the  parity variable nodes are appended. (The number of base check nodes is equal to the number of base parity variable nodes.)







Algorithm 1


The base graph and the lift values have been designed so that a solution to 1 is always possible for K in the supported range. In some cases there may be more than one solution.  If K/N is within the supported rate range then it is guaranteed that  is in the range .  When the lifted code will be shortened by padding the K information bits with an additional h zeros. 
The definition of  ensures that and that if  then K=. This implies that to obtain the desired information blocklength, , we need to shorten less than one column or  worth of information bits in the lifted graph and that the number of information bits is a least . 
In general the final bit-level shortening should be done on the last information column. In the same vein, the amount of puncturing of parity bits required to obtain the desired code blocklength , is at most one column, except in the case of the highest family when a rate higher than the core rate is desired, in which case up to two of the degree two parity bit columns may be punctured. More details can be found in [2].
Observation 2: The LDPC family design of [2] nests multiple optimized basegraphs ranging from  to  within the overall family basegraph description. From this structure, any value of  in the range of .and .can be supported by selecting one of the nested basegraphs with one of the lifts Z from the clustered set of lifts, and any further shortening at the bit-level will be of length less than Z lifted bits (i.e., less than 1 column of the basegraph).
Multiple LDPC families
Families and lifts
The design and benefits of using multiple LDPC families were first discussed in [2]. We note that the original highest family proposed in [2] used Zmax = 320 to attain a Kmax of 8192 The performance advantages of this design were demonstrated in [8] for designs with Zmax = 512 and Zmax = 320 as well.
In this contribution, we present a new high family with Zmax = 384 and Kmax = 8448. The maximum number of base information bit-columns is 22 per the RAN1-88bis agreement and the minimum is 16. The proposed code design follows the structure described in Figure 1, i.e., it contains nested base graphs with two punctured state nodes, 11-n like encoding structure, a degree one parity-bit connected to only punctured state nodes and clustered liftings which are optimized for robust performance across all blocklengths and prescribed rates. We have found that this range of base information bit-columns is needed to have a uniformly robust and consistent performance at least down to BLER of 1e-4 for a wide range of blocklengths and rates.
We also propose a new low family with kbmax = 12 and kbmin = 8. The low family is meant to complement the performance of the high family, e.g., by allowing for largest lift size at smaller K or lower rates. More discussion on the design of multiple families from an implementation standpoint is given in [3] and a review is provided in Section 4.
[bookmark: _Ref481755401]Table 1 Design parameters of the new high and low families
	Family
	
	
	
	
	
	
	
	
	
	

	High
	22
	16
	2
	6
	50
	4
	16/18
	22/70
	64
	8448

	Low
	12
	8
	2
	6
	50
	4
	8/10
	12/60
	32
	4608



Performance of the New Families
The performance of the new high and low families is shown in Figure 2 and Figure 3, respectively. The decoder used is the floating-point sum-product decoder with 50 flooding iterations and maximum LLR magnitude of ~ 84 and the performance is evaluated at the blocklength agreed upon in [10]. It is observed that both the families have robust and consistent performance down to at least a BLER of 1e-4 across all blocklengths. They also show no error floors at least down to BLER of 1e-4.  

[image: ]
[bookmark: _Ref481758805]Figure 2: Robust performance of the high family.
[image: ]
[bookmark: _Ref481758807]Figure 3: Robust performance of the low family.
Observation 3: The designs with clustered set of lifts have robust and consistent performance for fine blocklength granularity and different code rates with no error floor at least down to BLER of 1e-4.
Based on the performance and complexity benefits, we propose the following:
Proposal 1: The supported set of lifts used by NR LDPC should be reduced to the clustered set  for , subject to Zmax = 384, in order to reduce implementation and description complexity and provide robust performance.
Matrices for the high and low families are provided in [10] and [11]. Each folder consists of PCMs provided in the .csv format and has as many PCMs as there are clusters. For example, the PCM for all the lift values belonging to the cluster {8,10,12,14} is given in the file “Ca_b_a_c_Graph8_PCM.csv”. Note that in both the folders, the numbers a, b, and c correspond to the maximum base information bit-columns, minimum base code bit-columns (base information plus base parity bit-columns) and maximum base code bit-columns (base information plus base parity bit-columns), respectively.
Encoding structure
Recall that design principles in [2] maintained that all the three families have 802.11n-like encoding structure. The encoding structure consists of an accumulate chain of degree two and terminated with a degree-three node. In 802.11n, the permutations on the three edges connected to the degree three variable nodes is 1, 0, 1. I.e., the first edge has a cyclic shift of 1, the second edge has 0 and the third edge has a shift of 1. It has been observed that the 802.11n encoding structure can be limiting the performance for low rate codes. The failure is caused by small loops created by the encoding structure of 802.11n which limits the performance of the rest of the code. In order to circumvent this problem, the encoding structure is designed to be slightly different. The basic structure remains the same, however the cyclic shifts on the edges of the degree-three variable node are not 1,0,1 as is done usually but some other numbers. The change in the cyclic shift value does not materially increase the complexity of the encoding and all the underlying encoding machinery can be easily leveraged. The encoding process are discussed in detail in [11].
By having the same encoding structure, the same encoding hardware can be used to encode both families without additional complexity since the same circuitry can be used to calculate the core parities in both families. Thus, the proposed families use the same encoding structure.
Observation 4: Identical encoding structures for multiple family codes allow the hardware implementation to share the same encoding circuitry.
[bookmark: _Ref481712879]Implementation Benefits of a Two-Family Solution
The implementation benefits of a two-family solution were analysed in detail in [3]. This section provides a brief summary. The low family has a smaller kb than the high one. Therefore, at a given blocklength K, codes from the low family will have a larger lift size than those from the high family, increasing decoding parallelism and reducing latency. In addition, the low family uses smaller basegraphs with fewer edges than the high family, further reducing decoding latency. Since the proposed low family uses lifts that are the same as those of the high family, this reduction in latency does not incur an increase in shift network complexity. Instead, hardware utilization is improved at short block lengths.
These speed gains are illustrated in Figure 4 using normalized throughput per iteration for a single-edge (single-core) decoder for clarity. As discussed in [3], these latency and utilization gains also apply to multiple-edge and node-parallel (row-parallel) designs. From the results, it can be observed that the two-family solution provides 2—2.4 times latency reduction compared to a single-family solution.
[image: ][image: ][image: ][image: ]
[bookmark: _Ref481752676]Figure 4 Normalized decoding speed for codes from the two-family solution.
Observation 5: A two-family solution improves hardware utilization and efficiency and decreases decoding latency compared to a single-family solution.
Improved Memory Utilization
It was agreed in RAN1-87a [9] that the minimum code rate supported at the maximum block size is 1/3. Lower code rates are not precluded as long as the codeblock length is less than . For a code of rate , information block length , and lift size , there are  channel LLRs. In an edge-parallel decoder, these LLRs are arranged in memory as words of  LLRs each[footnoteRef:2]. The depth of this memory is the maximum number of base graph columns given a minimum supported rate. [2:  This memory is composed of multiple, narrower banks of memory] 

As the rate decreases below 1/3, the number of columns in the base graph increases, further increasing the memory depth, but without increasing the useful amount of available memory because the number of channel LLRs cannot exceed . The memory can be either made deeper, physically increasing its size and wasting memory, or via additional routing circuitry to mimic a deeper memory, increasing decoding complexity and critical path length.
Using the low family for code rates < 1/3 resolves this issue: the low family has uses larger lift sizes and has smaller base graphs than high families at the same block length, reducing the required memory depth. This can be observed in Table 1, where the maximum number of columns parity columns in the base matrices of the low and families are the same even though the low family has a smaller minimum rate.
Observation 6: A two-family solution leads to more efficient memory utilization than a single-family solution at low code rates.
Given the throughput and efficiency gains and the robust performance of the two-family solution, we propose the following:
Proposal 2: Two LDPC code families with the clustered set of lifts  for , should be supported in NR.
Conclusions
Observation 1: The clustered set of lifts  for , subject to Zmax = 384 reduces decoder implementation complexity.
Observation 2: The LDPC family design of [2] nests multiple optimized basegraphs ranging from  to  within the overall family basegraph description. From this structure, any value of  in the range of .and .can be supported by selecting one of the nested basegraphs with one of the lifts Z from the clustered set of lifts, and any further shortening at the bit-level will be of length less than Z lifted bits (i.e., less than 1 column of the basegraph).
Observation 3: The designs with clustered set of lifts have robust and consistent performance for fine blocklength granularity and different code rates with no error floor at least down to BLER of 1e-4.
 Based on the performance and complexity benefits, we propose the following:
Proposal 1: The supported set of lifts used by NR LDPC should be reduced to the clustered set  for , subject to Zmax = 384, in order to reduce implementation and description complexity and provide robust performance.
Observation 4: Identical encoding structures for multiple family codes allow the hardware implementation to share the same encoding circuitry.
Observation 5: A two-family solution improves hardware utilization and efficiency and decreases decoding latency compared to a single-family solution.
Observation 6: A two-family solution leads to more efficient memory utilization than a single-family solution at low code rates.
Given the throughput and efficiency gains and the robust performance of the two-family solution, we propose the following:
Proposal 2: Two LDPC code families with the clustered set of lifts  for , should be supported in NR.
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