Page 1
[bookmark: _GoBack]3GPP TSG-RAN WG1 #88b 	R1- 1706675
3th – 7th April 2017
Spokane, USA

[bookmark: Source]Agenda item:	8.1.4.2.1.2
Source: 	Qualcomm Incorporated
Title: 	A comprehensive rate-matching scheme for polar codes and performance evaluation
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
In RAN1#87, Polar codes were adopted as channel coding for uplink control information and downlink control information (working assumptio) for eMBB system except for very small block length [1]. A detailed design of Polar codes is proposed in [2] for control channel in eMBB system. A circle buffer based rate-matching scheme are is propsed in the contribution.
In this contribution, we will provide more details on the rate-matching scheme.
Rate-matching scheme for Polar codes

Suppose there are K bits for control information and the allocated coded block size is M. Suppose the minimum code rate is R and N is the minimum power 2 integer which is not less than K/R. To get better trade off between decoding complexity and performance, the maximum value of N is set to 512 for downlink and 1024 for uplink. The circular buffer in Figure 1 can be generated for rate-matching. Assume Q is an integer and let Q=min(K/R, M). Assume m is an integer whose value is 1 or power of 2 and its value is selected such that Q is in . The desired coded block size J (i.e., kernel) with length of power of 2 will be

Where is an real value in [1, 2]. When is close to 1, Q will be close to . When is close to 2, Q will be close to . The rate-matching scheme is determined by
(1) M > J M - J coded bits is repeated based on Polar code (J, K) from J in anti-clockwise
The repetition pattern is [1 1 1 1 1 … 1 1 1]M-J, i.e., block repetition.
(2) M < J & K/M > 1/2 J - M coded bits is shortened based on Polar code (J, K) from J in anti-clockwise
The shortening pattern is [1 1 1 1 1 … 1 1 1]M-J, i.e., block shortening.
(3) M < J & K/M <= 1/2 J - M coded bits is punctured based on Polar code (J, K) from 0 in clockwise
The puncture pattern is [1 1 1 1 1 … 1 1 1]M-J, i.e., block puncture.

[image:]
Figure 1 Circular buffer for rate-matching
Block based puncture/shorten/repetition vs. bit-rev based puncturing/shortening/repetition
We show different rate matching schemes in this section. Consider basic polar code w/ cascading of Arikan kernels. Block vs. bit-rev puncturing are shown in Figure 2. Block vs. bit-rev shortening are shown in Figure 3. Block repetition is shown in Figure 4. With shortening operation, it starts from the bottom of the graph and hence, all the bits that are shortened are considered to be known to the receiver, hence also named as known-bit puncturing. For block puncturing, the upper part of the bits in u domain are forced to be frozen bits due to puncturing (no information can be conveyed in u domain positions due to the x domain puncturing). Similarly, w/ block shortening, the lower part of the bits in u domain are completely known to the receiver and does not require further decoding up to the last bit that is not shortened. Block repetition can be considered as a special case of block puncture, where in the upper half of the u domain are all frozen bits, hence the x domain bits in the upper half that are not punctured will be considered as simple repetition of lower part of x domain bits. It can be easily envisioned that for block puncturing/shortening, the decoding only has to occur on the non-punctured/non-shortened part of the graph as the other part is either completely unknown or completely known. Hence, the maximum decoding complexity/latency is linked to the actual code block length N, instead of the nearest power of two Nmax = 2^(ceil(log2(N))). In contrast, bit-rev shortening is spread evenly over Nmax = 2^(ceil(log2(N))) bits in x and u domain. As a result, the complexity/latency is linked to Nmax as discussed in [4].

[bookmark: _Ref478146746][bookmark: _Ref478146739]Figure 2 Illustration of block vs. bit-reversal puncture

[bookmark: _Ref478146744]Figure 3 Illustration of block vs. bit-reversal shortening

[bookmark: _Ref478146747]Figure 4 Illustration of block repetition

Minimum coding rate for Polar codes
One design decision in DL/UL control channel is to decide extension to lower rate coding vs repetition.
In general, the gain is hard to quantify, one way is via simulations. The performance comparison of DE-CA-SCL (Density evolution based CRC-aided Successive Concellation list decoding) among three code rates of 1/3, 1/6 and 1/12 are listed in table 2. It is seen that the perforamnce loss of 1/6 rate from 1/12 is almost less than 0.2 dB while the gain of 1/6 rate over 1/3 is around 0.3 to 0.5 dB, while the gain becomes even more negligible from R = 1/6 to R = 1/12, while the computational and HW complexity will both increase significantly [6]. Note that with the normalization of HW complexity, the gain by extension to a lower rate may further diminish or even incur performance loss [6].
Table 1 The gain over 1/3 and the loss from 1/12 for rate of 1/6
	Coding Gain
	K including 16-bit CRC

	
	32
	48
	64
	80
	120

	R = 1/3 to 1/6
	0.26
	0.37
	0.48
	0.29
	0.43

	R = 1/6 to 1/12
	0.23
	0.15
	0.09
	0.18
	0.16

An alternative way is considering the info bit distribution, it is easy to quantify potential coding gain upper bound by assuming an optimal info bit allocation while top info bits are received perfectly. This could guide the polar code design to tradeoff performance and decoding complexity. For polar code, when rate is low to some extent, the upper part of the u domain naturally becomes all frozen bits, hence repetition is obtained naturally. With FRANK construction of polar [5], one can simply calculate the number of info bits expected to be allocated to the upper part of the graph considering block puncturing. If the number of info bits is an insignificant compared with the overall payload size. That suggests, the expected gain from block puncturing over block repetition will be minor. In such scenarios, latency and decoding complexity will be more important and repetition could be considered. Figure 5 shows an example of rate matching for N = 576. In this case, block puncturing based on FRANK polar gives the best performance. PW construction is not robust to block puncturing and incurs huge loss. The only relatively reasonable performance for PW is achieved via bit-rev shortening which is still inferior to FRANK w/ block puncturing. Interesting, block repetition in conjunction w/ info bit allocation based on FRANK also compares favorably with PW w/ bit-rev shortening.
The following should be considered in control channel design:
1) Controlling the Nmax value for complexity saving when performance gain is diminishing based on information bit allocation ratio calculation.
2) Controlling the max number of info bits in the top part of the code to achieve better complexity and performance tradeoff.

[image:]
[bookmark: _Ref478148225]Figure 5 performance with different K values of fixed N = 576: FRANK vs. PW polar (L = 8)

Performance evaluation
We evaluate control channel performance of FRANK polar w/ block puncturing/shortening and repetition and compare it with PW w/ bit-rev shorten. It can be seen that across code rate and list size, FRANK polar performs consistently better. FRANK polar performs better w/ block shortening at high coding rate (R = 2/3 in this case), while it performs better with block puncturing at low coding rate (R <=1/2). Note that, w/ large list size, the number of CRC bits does not change, path pruning is perfomed based on path metric to get down to L = 4 before CRC check. It can be seen that, when info bit allocation is done properly as in FRANK polar case, L = 32 case substantial gain of FRANK w/ block rate match over PW w/ bit-rev shortening can be observed (~0.4dB gain over PW) .
Interestings, we see block shortening perform better at high coding rate R >= 1/2, while block puncturing performs well at low coding rate R <= 1/2, at very low coding rate R <= 1/6, with N value much closer to Nmax/2 than Nmax (the nearest power of two that is larger than N), repetition also delivers reasonably good performance. In fact, all these behaviors could be perfectly explained by mutual information based analysis. Due to the time constraint, we will leave this discussion to a later time. Interested reader could also try to analyze them using mutual information transfer chart with punctured/shortened nodes as inputs.
[image:]
Figure 6 Performance comparison of FRANK polar vs. PW polar for control channels (L = 8)
[image:]
Figure 7 Performance comparison of FRANK polar vs. PW polar for control channels (L = 32)

[image:]
Figure 8 Performance comparison of FRANK polar vs. PW polar for control channels (L = 2)
[image:]
[bookmark: _Ref478148861]Figure 9 Comparison of FRANK vs. PW polar under block puncture for control channels (L = 8)
Finally, FRANK polar is compared with PW both using block puncturing. As can be seen in Figure 9, PW sequence is not robust against block puncturing and performance fluctuates wildly up to 1~2dB loss.
Conclusions
Rate matching schemes are discussed for polar code for NR control channel. The simulation results and complexity analysis show that the proposed algorithms (FRANK polar with block rate matching) have good tradeoff between performance and decoding complexity.
Proposal 1: RAN1 to adopt FRANK construction of polar code based on nested extension of short sequence as baseline.
Proposal 2: RAN1 to adopt block puncturing/shortening/repetition as baseline rate matching schemes in conjunction with FRANK polar for its superior performance and low complexity.
Proposal 3: Block puncturing is used in moderate to low rate region, block shortening is used in moderate to high code rate and block repetition is used for very low code region. The exact switch point and necessity of it is FFS.

References
[1] [bookmark: _Ref463025321][bookmark: _Ref463025319]Chairman’s notes RAN1_87
[2] [bookmark: _Ref474164765]Chairman’s notes RAN1_adhoc_Spokane_Jan2017
[3] R1-1700832, “Detailed design of Polar codes for control channel”, Qualcomm Incorporated, RAN1 adhoc, Spokane, USA
[4] [bookmark: _Ref478147900]R1-1705632 “Polar Coding Construction and Rate Matching Impact on Complexity and Latency”, Qualcomm Inc.
[5] [bookmark: _Ref478148955]R1-1705633 “FRANK polar construction nested extension design of Polar codes based on mutual information”

1/9
image2.wmf
ú

û

ù

ê

ë

é

m

N

m

N

,

2

oleObject1.bin

image3.wmf
ï

î

ï

í

ì

£

=

otherwise

m

N

m

N

Q

if

m

N

J

2

2

b

oleObject2.bin

image4.wmf
b

oleObject3.bin

oleObject4.bin

image5.wmf
m

N

2

oleObject5.bin

oleObject6.bin

image6.wmf
m

N

oleObject7.bin

image7.png

image8.emf
Punctured bits

Block puncturing

oleObject8.bin
Punctured bits

Block puncturing

image9.emf
Punctured bits

Bit reversal puncturing

oleObject9.bin
Punctured bits

Bit reversal puncturing

image10.emf
Shortened bits

Block shorten

oleObject10.bin
Shortened bits

Block shorten

image11.emf
Shortened bits

Bit reversal shorten

oleObject11.bin
Shortened bits

Bit reversal shorten

image12.emf
0

Punctured bits

Block repeat

oleObject12.bin
0

Punctured bits

Block repeat

image13.emf
3248648096112128144160176192

-6

-5

-4

-3

-2

-1

0

1

2

3

4

K

10

-3

 achieving SNR

N_576_L_8

BlockPunctureFrank64

BlockPuncturePW

BitRevShortenPW

BlockShortenPW

image14.emf
32486480120200

-4

-3

-2

-1

0

1

2

3

4

5

6

K+16

10

-3

 achieving SNR

CA_19CRC_L_8

BlockPunctureFrank64,0.16667

BitRevShortenPW,0.16667

BlockRepeatFrank64,0.16667

BlockPunctureFrank64,0.33333

BitRevShortenPW,0.33333

BlockPunctureFrank64,0.5

BitRevShortenPW,0.5

BlockPunctureFrank64,0.66667

BitRevShortenPW,0.66667

BlockShortenFrank64,0.66667

image15.emf
32486480120200

-4

-3

-2

-1

0

1

2

3

4

5

6

K+16

10

-3

 achieving SNR

CA_19CRC_L_32

BlockPunctureFrank64,0.16667

BitRevShortenPW,0.16667

BlockRepeatFrank64,0.16667

BlockPunctureFrank64,0.33333

BitRevShortenPW,0.33333

BlockPunctureFrank64,0.5

BitRevShortenPW,0.5

BlockPunctureFrank64,0.66667

BitRevShortenPW,0.66667

BlockShortenFrank64,0.66667

image16.emf
32486480120200

-3

-2

-1

0

1

2

3

4

5

6

7

K+16

10

-3

 achieving SNR

CA_19CRC_L_2

BlockPunctureFrank64,0.16667

BitRevShortenPW,0.16667

BlockPunctureFrank64,0.33333

BitRevShortenPW,0.33333

BlockPunctureFrank64,0.5

BitRevShortenPW,0.5

BlockPunctureFrank64,0.66667

BitRevShortenPW,0.66667

BlockShortenFrank64,0.66667

image17.emf
32486480120200

-4

-2

0

2

4

6

8

K+16

10

-3

 achieving SNR

CA_19CRC_L_8

BlockPunctureFrank64,0.16667

BlockPuncturePW,0.16667

BlockPunctureFrank64,0.33333

BlockPuncturePW,0.33333

BlockPunctureFrank64,0.5

BlockPuncturePW,0.5

BlockPunctureFrank64,0.66667

BlockPuncturePW,0.66667

