Page 1
[bookmark: _GoBack]
3GPP TSG-RAN WG1 #88b	R1-1706465
3rd Apr – 7th Apr 2017
Spokane, USA

[bookmark: Source]Agenda item:	8.1.4.3
Source: 	Qualcomm Incorporated
Title: 	Polar Coding Construction and Rate Matching Impact on Energy Efficiency and Latency
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
In RAN1 #88a, it was agreed [1]:
Agreement:
· Polar codes for control channels support one of the following alternatives:
· Alt. 1: CRC + “basic polar” (i.e. as per above agreed description) codes
· 1a: Longer CRC
· e.g.	(J + J’) bits CRC + basic polar
· 1b: J bit CRC
· The J bits can be distributed
· The CRC can be used for both error detection and error correction
· Alt. 2: J bits CRC + concatenated polar codes
· e.g.	 J bits CRC + J’ bits CRC + basic polar;
· J bits CRC + J’ bits distributed CRC + basic polar;
· J bits CRC + PC bits + basic polar; (i.e. PC-Polar)
· J bits CRC + Hash sequence + basic polar;
· …
· J bits CRC is only used for error detection
In this contribution, we compare the (J + J’) non-distributed CRC option from Alt. 1 and the PC-Polar option from Alt. 2 and study the impact on encoding and decoding latency of each. We show that the single-CRC option provides significant reduction in latency. The performance comparison for the two outer codes is provided in [2].
This contribution also studies the shortening and puncturing schemes proposed for use with polar codes in DCI and UCI. The performance of these schemes is investigated in [3]. In this study, we show that bit-reversed shortening significantly increases decoding latency and we therefore recommend the use of block puncturing.
[bookmark: _Ref471757252]Complexity and latency comparison between CA-SCL and PC-SCL
The main implementation difference between CA-SCL and PC-SCL is the PC-frozen bits since the CRC bits is also applied for PC-SCL. Because the parity check bits must be encoded in transmitter and decoding in receiver, the complexity, latency and memory will be increased for PC-SCL. What is more, PC-SCL limits parallelization opportunities in the decoder because of the parity check bits as will be shown in this section. Therefore, CA-SCL has lower complexity and latency than PC-SCL. We analyze the encoding and decoding implementation complexity and latency in this section.
Encoding
Both PC-polar and CRC-polar can be viewed as concatenated coding schemes where the inner code is the polar code and outer code is either the PC code (+ a CRC for error detection or detection&correction) or a long CRC for joint error correction and detection. The encoding of the polar code is parallelized: parallel circuits that perform the multiplication of information and frozen bits by the generator matrix G has been proposed in the literature. In this section, we investigate the impact of PC bits and CRC bits on encoding latency and complexity.
PC-Polar Encoding
The outer code in the PC-polar code scheme is calculated using cyclic feedback shift register as shown in [4]. When a parity bit location is encountered, its value is copied from the first register element. Therefore the value of a parity bit depends on previous information bits and since parity bits are not uniformly spaced in the polar encoder input, the number of additional information bits required to calculate the next parity bit varies. The direct, serial linear feedback register implementation lends itself well to these requirements. However, a parallel circuit implementation becomes complex due to the dependency and the variability in the number of additional information bits involved in the calculation of a parity value. Furthermore, the parallel circuits for CRC calculations cannot be used for the parity-bit calculations since the parity values comprise intermediate values from the shift register.
Since the parity bits are distributed in the PC-polar scheme, the polar encoder cannot proceed until the parity bit value is calculated. Therefore, the polar encoder will be limited by the serial parity calculations and latency will be on the order of N cycles.
It should be noted that a CRC is still required in a PC-Polar scheme to reduce the false alarm rate and/or to improve BLER performance.
CRC-Polar Encoding
Like the parity bits in PC-Polar, CRCs can also calculated using cyclic feedback shift registers. However, there are two major differences the lead to lower encoding latency for CRC-polar. The first is that CRC-polar uses the final CRC result and not intermediate values, enabling the use of high speed parallel CRC circuits that load w bits at a time [5]. The second difference is that the CRC is appended to the end of the information bits; therefore, the polar encoder will not need the value of the CRC to be known until all information bits have already been encoded. This enables the CRC to be calculated in parallel to the polar encoding process, stalling the latter for one cycle only if the last information bits does not fall on a w-bit boundary. The parallelism of the CRC calculation can be matched to that of the polar encoder and the encoding of the concatenated CRC-polar will have a latency on the order of N/w + c + 1 clock cycles, where c is the depth of the polar encoder pipeline.
Since a CRC is already needed to reduce false alarm rate, the latency overhead of increasing its length by a few, 2—5, bits to perform joint decoding and detection will be negligible.
Observation 1: CA-SCL has lower encoding complexity and latency than PC-SCL.
Decoding
One of the most efficient methods to reduce decoding latency of polar codes, is the simplified successive cancellation list (SSC-list) decoding algorithm [6][7][8][9]. This algorithm increases parallelism and reduces the number of operations performed by applying low complexity decoding algorithms to certain constituent code structures that appear in the recursively constructed polar code. When constituent codes of rate 0 (all frozen), codes of rate 1 (all information), or repetition codes are encountered during the decoding process, the path metrics and the path list are updated directly based on the available decoder messages without the need for further recursion. By avoiding unnecessary recursion, a large number of calculations is avoided and the latency is significantly reduced.
The speed gains of SSC-list decoding increase when the number of constituent codes decreases and the size of the constituent codes with efficient decoding methods increases. For example, decoding a rate-1 code of length 16 is faster than decoding two constituent rate-1 codes of length 8.
Parity bits (dynamic frozen bits) in PC-polar list decoder do not generate new paths and are used to update the path metrics, like frozen bits. However, unlike frozen bits, the values of parity bits are not known a priori. Therefore, parity bit cannot be treated as frozen or as information bits in the SSC-list decoder, but require specialized processing. For example, if a parity bit replaces an information bit in a rate-1 constituent code, then the resulting constituent code is replaced with two or more smaller constituent codes that require a longer time to decode compared to the original rate-1 code. Therefore, introducing parity bits reduces the benefits of SSC-list as they reduce the number of large rate-0 and rate-1 constituent codes and increase the number of smaller constituent codes, decreasing decoding efficiency. Since the parity bits are distributed throughout the code, they do not form large constituent codes of their own.
In a CRC-assisted polar list decoder on the other hand, the CRC bits are only used to select the final candidate from the list after the decoder is finished performing all calculations. Therefore they are treated as information bits and do not interfere with the constituent-code structure utilized by the SSC-list decoding algorithm.
To quantify the effect of using a PC-polar code vs. non-PC polar (single CRC assisted polar) on the efficiency of the SSC-list decoding algorithm, Figure 1 shows the recursive structure of the PC-polar and CRC-assisted polar as binary trees. The root of the tree represents a code of length N = 128 and dimension K = 64, and is constructed from the concatenation of two constituent polar codes of length 64. This recursive process is repeated until constituent codes that can be directly decoded are reached. The length of a constituent code that is of distance from the root is . The decoder traverses this tree depth-first starting with the left child of the root node. From Figure 1, it can be observed that the CRC- polar code has significantly fewer constituent codes than the PC-polar code. The minimum size of a directly decodable constituent code in the CRC-assisted polar code is two, reducing its tree depth to 7 levels compared to 8 levels for the PC-polar tree where there are length-1 constituent codes. This reduction in tree size is reflected in the decoder latency of each code: the CRC-assisted polar code requires 110 cycles to decode where the PC-polar code requires 192 cycles when the list size is 8. Therefore, using a PC-polar code in this case increased the decoding latency by 70% compared to a CRC-assisted polar code.
Table 1 provides a comparison between the latency of an SSC-list decoder with L = 8 when decoding a PC-polar and a CA-polar codes for different code lengths and rates. The presented K value includes 16 bits of CRC for error detection. The CA-polar codes account for the addition of 3 bits to form a 19-bit joint CRC. The number of parity bits in the PC-polar codes is listed in the appendix. From this comparison, it can be seen that PC-polar codes have a detrimental effect on latency, increasing it by 1.7 to 5.4 times the latency of CA-polar codes. In [13], hybrid PC-CA polar codes were proposed. These codes use both distributed parity bits and a CRC for decoding. The latency of decoding these codes is presented in Table 2, where the hybrid PC-CA polar codes use a total of 18 CRC bits compared to 19 bits for CA-polar. The number of parity bits is listed in the appendix. The K values in the table include the information bits and 16 of the CRC bits. The results are similar to those from Table 1 and it can be observed that hybrid PC-CA polar codes have the same latency issues as PC-polar codes. To improve the latency of PC-polar schemes, the number of parity bits must be greatly reduced.

[image:]
[bookmark: _Ref478049082]Figure 1-a Decoding tree structure of SSC-list for CRC-assisted polar

[image:]
Figure 1-b. Decoding tree structure of SSC-list for PC-polar

[bookmark: _Ref478049398]Table 1 SSC-list (L=8) decoding latency of PC-polar and CA-polar codes
	
	N = 256
	N = 512
	N = 1024

	
	CA-Polar
	PC-Polar
	CA-Polar
	PC-Polar
	CA-Polar
	PC-Polar

	K = 40
	143
	362
	161
	560
	181
	887

	K = 60
	169
	501
	205
	740
	236
	1269

	K = 80
	210
	557
	242
	784
	279
	1287

	K = 100
	244
	539
	284
	795
	317
	1293

	K = 120
	238
	551
	339
	857
	363
	1283

	K = 200
	240
	409
	416
	1037
	503
	1775

Figure 2 SSC-list (L=8) decoding latency of PC-polar and CA-polar codes
[bookmark: _Ref478118292]Table 2 SSC-list (L=8) decoding latency of Hybrid-PC-CA-polar and CA-polar codes
	
	N = 256
	N = 512
	N = 1024

	
	CA-Polar
	PC-Polar
	CA-Polar
	PC-Polar
	CA-Polar
	PC-Polar

	K = 40
	143
	367 (2.6x)
	161
	572 (3.6x)
	181
	887 (4.9x)

	K = 60
	169
	488 (2.9x)
	205
	759 (3.7x)
	236
	1263 (5.4x)

	K = 80
	210
	565 (2.7x)
	242
	774 (3.2x)
	279
	1288 (4.6x)

	K = 100
	244
	533 (2.2x)
	284
	881 (3.1x)
	317
	1280 (4.0x)

	K = 120
	238
	552 (2.3x)
	339
	927 (2.7x)
	363
	1335 (3.7x)

	K = 200
	240
	440 (1.8x)
	416
	1024 (2.5x)
	503
	1783 (3.5x)

Observation 2: CA-SCL has lower decoding latency than PC-SCL.
Overall, CA-SCL outperforms PC-SCL in terms of lower encoding/decoding latency and complexity.
Observation 3: CA-SCL outperforms PC-SCL in terms of lower encoding/decoding latency and complexity.
Based on their advantages in encoding and decoding latency and complexity and their error correction perfomance shown in [2], we propose the following:
Proposal 1: A single (J + J’) bit CRC concatenated with a polar code should be used for channel coding in DCI and UCI.
Latency Comparison Between Bit-reversed and Block Rate-matching
In [3][12], the error-correction performance of different rate matching schemes is compared. Here, the impact of bit-reversed shortening on decoding latency is compared with block rate-matching. Both methods can alter the location of frozen bits, affecting decoding latency. SSC-list decoding can be updated to accommodate both bit-reversed and block rate-matching scheme. Those updates and the resulting latency are currently being investigated. Therefore, this section, discusses only SC-list decoding latency.
When reducing the codeblock length from N to M using bit-reversed shortening, the bits , where and is the bit-reversal operator, are set to 0 at the input and the corresponding output bits are not transmitted. This choice of shortened bit locations is one which ensures that the value of the corresponding outputs will be 0, allowing the decoder set their reliability information to a certain 0. Since the shortened input bits are known a priori to be 0, they can be treated as frozen bits in both the encoder and the decoder. Because the shortened bits are interspersed with the information bits due to the bit-reversal operation, the decoder and encoder must process N-1 bits.
In block shortening, the last N – M bits are set to 0 and the corresponding bits in the polar codeword are not transmitted (no bit reversal of the shortened bit locations is applied). In this case, both encoder and decoder need to process only M bits since the remaining bits are known to be 0 and will not affect the decoding or encoding results.
In block puncturing, the first N – M bits of the polar codeword are not transmitted and the first N – M bits of the input become frozen bits. The punctured bit values are not known to the receiver and are set as unknowns that can be 0 or 1 with equal probability. The first bits in the polar code are known a priori to be unreliable and therefore tend to be already frozen. The encoder can start processing the Mth bit, ignoring all prior bits since they are frozen.
At the beginning of the decoding process and before the first information bit is encountered, only one (the all-zero) path is available in the list. Therefore, the decoder can skip all calculations associated with those initial frozen bits. Table 3 and Table 4 present the latency of an SC-list decoder employing only this latency reduction technique, which is also referred to as frozen-bit-skip-logic in [14]. The bit-reversed shortening latency in the N = 576, K = 40 case is increased singificantly due to a large decrease in the number of initial frozen bits.
[bookmark: _Ref478069130]Table 3 Effect of rate matching on the latency of SC-list decoding when block puncturing and bit-reversed shortening are used
	
	N = 288
	N = 576	

	
	Bit-reversed Shortening
	Block Puncturing
	Bit-reversed Shortening
	Block Puncturing

	K = 40
	953 (1.0x)
	940
	1730 (1.8x)
	948

	K = 60
	1117 (1.1x)
	1031
	1821 (1.0x)
	1808

	K = 80
	1486 (1.3x)
	1147
	1985 (1.0x)
	1893

	K = 100
	1566 (1.3x)
	1227
	2161 (1.1x)
	1991

	K = 120
	1657 (1.3x)
	1312
	2434 (1.2x)
	2095

	K = 200
	2162 (1.3x)
	1661
	3153 (1.3x)
	2468

[bookmark: _Ref479328055][bookmark: _Ref479328035]Table 4 Effect of rate matching on the latency of SC-list decoding when block shortening and bit-reversed shortening are used
	
	N = 288
	N = 576	

	
	Bit-reversed Shortening
	Block Shortening
	Bit-reversed Shortening
	Block Shortening

	K = 40
	953 (1.4x)
	659
	1730 (1.8x)
	948

	K = 60
	1117 (1.4x)
	781
	1821 (1.5x)
	1244

	K = 80
	1486 (1.5x)
	1005
	1985 (1.5x)
	1360

	K = 100
	1566 (1.4x)
	1085
	2161 (1.5x)
	1488

	K = 120
	1657 (1.4x)
	1170
	2434 (1.5x)
	1664

	K = 200
	2162 (1.4x)
	1580
	3153 (1.4x)
	2182

Observation 4: Block shortening and block puncturing have lower SC-list decoding latency than bit-reversed shortening
Complexity Comparison Between Bit-reversed Shortening and Block Puncturing
This section analyses the number of operations performed in an SC-list decoder when bit-reversed shortening, block shortening, and block puncturing are used. The computational complexity is directly related to the energy efficiency of the decoder.
A polar list decoder performs two basic functions on the LLRs until it arrives at a directly decodable constituent code or a single bit. These two operations are the check calculation, denoted , and the equality calculation, denoted , and are defined as:
, and
.
The signs of the LLRs in are readily available as the most-significant bit in each LLR; therefore, the sign-extraction operation is excluded from this complexity comparison. Sign application on the other hand requires negation, which is non-trivial and is included in the analysis. The other operations are two absolute value calculations and one minimum value calculation. All these operations are performed for each path in the list.
In a fast hardware implementation, both branches of the function will be implemented and the final output selected from them based on the value of . Therefore, this function always performs two operations for each path in the list.
When the decoder reaches a frozen bit after the first information bit is estimated, the path metric is updated if the LLR is negative. This could require one addition for each path.
At an information bit, the decoder generates two candidates and updates their metrics for each path on the list. These candidates will be sorted and the list pruned when necessary. Sorting complexity will be addressed shortly.
Sorting can be implemented using a network such the bitonic sorting network, which performs comparisons when sorting inputs.
Table 5 and Table 6 summarize the computational complexity of the SC-list decoder with a list size 8 when using the three different rate matching schemes. The results show that bit-reversed shortening leads to an increase in computational complexity compared to when block puncturing or block shortening are used.
[bookmark: _Ref478080346]Table 5 Computational complexity of an SC-list decoder (L=8) when bit-reversed shortening and block puncturing are used
	
	N = 288
	N = 576

	
	Bit-reversed Shortening
	Block Puncturing
	Bit-reversed Shortening
	Block Puncturing

	K = 40
	58518.0 (1.7x)
	35403
	76706.0 (2.1x)
	35915

	K = 60
	61482.0 (1.0x)
	59487
	128342.0 (1.7x)
	77663

	K = 80
	71850.0 (1.2x)
	61191
	131306.0 (1.0x)
	129227

	K = 100
	75906.0 (1.2x)
	62397
	135146.0 (1.0x)
	130487

	K = 120
	87318.0 (1.4x)
	64251
	142634.0 (1.1x)
	131975

	K = 200
	99336.0 (1.4x)
	68967
	191126.0 (1.4x)
	139691

[bookmark: _Ref479329534]Table 6 Computational complexity of an SC-list decoder (L=8) when bit-reversed shortening and block shortening are used
	
	N = 288
	N = 576

	
	Bit-reversed Shortening
	Block Shortening
	Bit-reversed Shortening
	Block Shortening

	K = 40
	58518.0 (1.3x)
	43467
	76706.0 (2.0x)
	37451

	K = 60
	61482.0 (1.4x)
	45255
	128342.0 (1.4x)
	93791

	K = 80
	71850.0 (1.4x)
	50343
	131306.0 (1.4x)
	95495

	K = 100
	75906.0 (1.4x)
	52653
	135146.0 (1.4x)
	97703

	K = 120
	87318.0 (1.5x)
	58251
	142634.0 (1.4x)
	101555

	K = 200
	99336.0 (1.5x)
	64779
	191126.0 (1.5x)
	125387

Observation 5: Bit-reversed shortening increases computational complexity compared to block puncturing and block shortening in an SC-list decoder.
[bookmark: _Ref471757255]Conclusions
Observation 1: CA-SCL has lower encoding complexity and latency than PC-SCL.
Observation 2: CA-SCL has lower decoding latency than PC-SCL.
Overall, CA-SCL outperforms PC-SCL in terms of lower encoding/decoding latency and complexity.
Observation 3: CA-SCL outperforms PC-SCL in terms of lower encoding/decoding latency and complexity.
Observation 4: Block shortening and block puncturing have lower SC-list decoding latency than bit-reversed shortening
Observation 5: Bit-reversed shortening increases computational complexity compared to block puncturing and block shortening in an SC-list decoder.
Proposal 1: A single (J + J’) bit CRC concatenated with a polar code should be used for channel coding in DCI and UCI.
References
[1] [bookmark: _Ref478071543][bookmark: _Ref471725611][bookmark: _Ref471661623]RAN1 #87a Chairman’s Notes.
[2] [bookmark: _Ref478069473][bookmark: _Ref478071599]“Comparison of Polar codes between CA and PC for control channel,” Qualcomm Incorporated, R1-1705630, RAN1 NR AdHoc, Spokane, USA.
[3] [bookmark: _Ref478051001]“A comprehensive rate matching scheme for the control channel”, Qualcomm Incorporated, R1-1705634, RAN1 NR AdHoc, Spokane, USA.
[4] [bookmark: _Ref471731093]“Design Aspects of Polar and LDPC Codes for NR,” Huawei, HiSilicon, R1-1613300, RAN1-87, Reno, USA.
[5] [bookmark: _Ref478072050]“Implementation for Short Blocks in EMBB,” Qualcomm Incorporated, R1-1612085, RAN1-87, Reno, USA.
[6] [bookmark: _Ref471725612]“Control Channel Complexity Considerations,” Qualcomm Incorporated, R1-1613561, RAN1-87, Reno, USA.
[7] [bookmark: _Ref471729265]“Comparison of Polar Codes for Control Channel,” Qualcomm Incorporated, R1-1700833, RAN1 NR AdHoc, Spokane, USA.
[8] [bookmark: _Ref471664328][bookmark: _Ref478072156][bookmark: _Ref471729639]“Efficient Channel Coding Implementations for EMBB,” Qualcomm Incorporated, R1-1610139, RAN1-86bis, Lisbon, Portugal.
[9] [bookmark: _Ref463012162]Lin et al, “A High Throughput List Decoder Architecture for Polar Codes,” T-VLSI, Vol 24, No. 6, Jun. 2016.
[10] [bookmark: _Ref478077566]“Efficient Channel Coding Implementations for EMBB,” Qualcomm Incorporated, R1-1610139, RAN1-86bis, Lisbon, Portugal.
[11] [bookmark: _Ref478078820]Wei et al, “Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation,” in IEEE T-CAS-I, Vol 55, No. 11, Dec. 2008.
[12] [bookmark: _Ref478115666]R1-1705634, “A comprehensive Rate-matching scheme for polar codes and performance evaluation”, Qualcomm Inc.
[13] [bookmark: _Ref478118548]R1-1701701, “Parity check polar and CRC-aided polar evaluation,” Huawei, HiSilicon RAN1-88, Athens, Greece.
[14] [bookmark: _Ref479334085]R1-164040, “On latency and complexity,” Huawei, HiSilicon, RAN1-85, Nanjing, China.

Appendix

[bookmark: _Ref478079978]Table 7 Number of parity bits in the PC-polar codes
	
	N = 256
	N = 512
	N = 1024

	K = 40
	29
	54
	91

	K = 60
	66
	106
	190

	K = 80
	62
	99
	177

	K = 100
	43
	90
	163

	K = 120
	62
	86
	151

	K = 200
	30
	122
	264

Table 8 Number of parity bits in the hybrid-PC-CA polar codes
	
	N = 256
	N = 512
	N = 1024

	K = 40
	30
	53
	89

	K = 60
	64
	108
	188

	K = 80
	60
	97
	176

	K = 100
	41
	104
	161

	K = 120
	60
	141
	160

	K = 200
	35
	120
	264

CA-Polar, N = 256	40	60	80	100	120	200	143	169	210	244	238	240	CA-Polar, N = 512	40	60	80	100	120	200	161	205	242	284	339	416	CA-Polar N = 1024	40	60	80	100	120	200	181	236	279	317	363	503	PC-Polar, N = 256	40	60	80	100	120	200	362	501	557	539	551	409	PC-Polar, N = 512	40	60	80	100	120	200	560	740	784	795	857	1037	PC-Polar, N = 1024	40	60	80	100	120	200	887	1269	1287	1293	1283	1775	K (bits)

Latency (cycles)

1/9
image2.png

image3.png

