3GPP TSG RAN WG1 #86bis
 R1-1608972
Lisbon, Portugal, 10th - 14th October 2016
Source: ZTE, ZTE Microelectronics
Title:
 Consideration on Channel Coding Candidates for NR eMBB
Agenda item: 8.1.3.1
Document for: Discussion

1. Introduction
For NR eMBB, downlink peak rate is required to achieve 20 Gbps and uplink peak rate is required to achieve 10Gbps. So the throughput of eMBB encoder/decoder will be much higher than that of LTE, therefore throughput should be the primary KPI for eMBB channel coding schemes.
Figure 1 gives an illustration of throughput and code rate based on the observation of LTE’s MCS table.
[image: image1.png]]
(el

g %
WinduRnelLL

[

°s o8
Codk Rele

[

02

o1

Figure 1 Throughput vs. code rate for LTE MCS table
From Figure 1 we can see that the throughput at code rate 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 needs to support about 10%, 20%, 40%, 50%, 60%, 70% and 80% of the maximum system throughput respectively. The maximum throughput is obtained with the highest code rate of 0.927. It is clear that high data throughput is always associated with high code rate.We think this rule should also apply to NR eMBB.
The organization of this contribution is that: from section 2 to section 4, we study the basic ideas of the LDPC, Turbo and Polar decoders. In section 5, we compare the complexity and throughput of these 3 candidates for eMBB. In section 6, the conclusion is drawn.
2. LDPC code
The basic structure of LDPC decoder is shown in Figure 2. The soft information propagated between CNU and VNU at a parallelism level P. There are two kinds of parallel decoding schedule for LDPC. One is flooding schedule, another is layered schedule.
[image: image2.png]o
ETU

1

Ly

[—)

Figure 2 Architectures of LDPC decoder

In flooding schedule, decoder first computes all messages from the variable nodes towards the check nodes and then computes the messages from the check nodes back to the variable nodes. Flooding schedule can be used for fully parallel, row-parallel and block parallel decoder architectures. The row-parallel architecture is conventionally used due to its high throughput and low routing complexity features.
[3] gives a design of row parallel of LDPC decoder. The decoder fully parallelizes the variable nodes (VN) and layer serializes the check nodes (CN). The flooding decoding schedule optimally utilizes the five-stage pipeline as shown in Figure 3. In the first stage, the VN outputs the marginalized V2C and the barrel shifter reorders the messages. The second stage consists of the pre-routing and global wiring to the check node. The CNs process their inputs in the third stage and route the messages back to the VNs across the global wires in the fourth stage. In the fifth stage, the VN accumulates the serial messages over three or four cycles. Dual frame processing [4] as shown in Figure 4 can be employed to further improve the throughput.
[image: image3.png]Pipeline stages:
® vz calcutation

@) vac routing

@ cav calcuiation

@ cav routing

(® vac accumulation

Figure 3 Pipeline stages for flooding scheduled row-parallel decoder
[image: image4.png]Iteration i

»S
R2 [PS Iteration i+1
4oydesall | VC[RI[CS[R2[PS
VC|[Ri[Cs[R2|PS
VC|Ri[Cs[R2[PS
VC[Ri[Cs[R2 | PS

(a)

[image: image5.png]Frame 1, Iteration i

VC[Ri[CSR2 [PS
VC[Ri[CS[R2[PS
VC[Ri[CS[R2[PS
VC|RI[CS[R2 [PS | Frame2, Iteration j
VC[Ri[CS[Ra[PS
VC|[Ri[CS[R2[PS
VC[Ri[Ccs[Ra[PS
VC|RL|CS[R2[[PS] Frame 1, Iteration i+1
VC[Ri[CS[R2[PS
VC|Ri[CS[R2[PS
VC[Ri[Cs[R2[PS
VC[Ri[CS[R2 [PS
VC[Ri[Cs[R2[PS
VC|[Ri[CS[R2[PS
VC[Ri[CS[R2
VC[Ri[cs

Frame 2, Iteration j+1

(b)

Figure 4 (a) single-frame decoder (b) dual-frame decoder
In the layered schedule, as shown in Figure 5, first all the messages flowing into and out of the first layer (i.e., check node) are calculated. Then, the messages flowing into and out of the second layer are calculated, possibly using the information that has already been updated by the first layer, etc. Therefore, layered schedule can lead to a significant reduction of the number of iterations required to achieve a target BLER when compared with the flooding schedule.

[image: image6.wmf]RVPW

RVPW

RVPW

0

1

mb

-

1

a

mb

*

a

Iter

0

RVPW

Figure 5 pipeline stages for layered schedule row based decoder

[5] and [6] present an LDPC application-specific instruction set processor (ASIP) using the row-based architecture with layered scheduling, which is both area and energy efficient even compared with the ASIC design. Every layer decoding takes three cycles. In the first cycle, the posterior information is read from 16 data memories, then passed through the barrel shifter and finally subscribed by the ‘extrinsic’ information to produce the a priori information. In the second cycle, the CFU take charge of finding the minimum absolute value and overall sign of all the fed in a priori information. In the last cycle, the output module generates the updated ‘extrinsic’ information, added by the pre-stored a priori information and then directly written back to the data memories.
Complexity and throughput consideration for low code rate LDPC:
There is a comment that LDPC decoder is complex due to low code rate parity check matrix with large size. However, [4] tells us that if we use QC-like LDPC, and row parallel decoding architecture, the decoding complexity can be independent of the number of rows. The check node units and memory can be reused for each layer. As shown in Figure 6, the shaded part represents the section of the parity check matrix that is processed simultaneously.

[image: image7.emf]Programmable Routing

VNU 0 VUN 1 VNU 2 VNU v ……

V2C

msg

C2V

msg

V2C

msg

C2V

msg

V2C

msg

C2V

msg

V2C

msg

C2V

msg

CNU 0

V2C

msg

C2V

msg

CNU 1

V2C

msg

C2V

msg

CNU 2

V2C

msg

C2V

msg

……

CNU c

V2C

msg

C2V

msg

Row Layer 0

Row Layer 1

……

Row Layer mb

Figure 6 Row parallel architecture
For example, as for the base matrix proposed in [7], also shown in Figure 7, the complexity of decoder is determined by the row with maximum degree (max row weight, which is 10) in the red rectangle area and parallelism level. To lower the code rate, we need to add extra columns and rows out of the red rectangle area. However, this will not increase the complexity because:
1) Each extra column right outside the red rectangle area only has degree of 1, which means no extra VNU is needed for these columns;
2) Each extra row below the red rectangle area has degree less than the max degree in the red rectangle area, which means that the number of VNU for rows in red rectangle area is sufficient for the whole base matrix.
Therefore, with regards to decoding complexity for low code rate, we don’t need extra VNUs, just more row layer operation. If the parallelism level unchanged, the decoder area is not necessary to increase, just increases the number of layer (=latency) for lower code rate. If we use flooding schedule decoder, the increasing of the latency is not a problem. Even for layered decoder, increasing of latency for low code rate is not vital either, since low code rate takes no responsibility for peak data rate. The detailed illustration for the relationship between code rate and throughput can be found in [8].
Furthermore, compared to IEEE 802.11ad’s base matrix (which has max of 16 VNUs in code rate 13/16), the base matrix proposed in [7] has less row weight. A lower complexity decoder for LDPC proposed in [7] can be expected.
[image: image8.png]-1
-1
-1

-1

0
-1 561

-1
-1

sasg
893
2R
sae
282
a3
bS]
238
gee
B
s8e
&8¢
#OR

-1

-1

-1

-1 911

-1

-1 396

49

-1

910 310 928

-1 -1

-1 a2 -1 814

28 660
438 646
420 768
136 936

11 -1 -
11 -1

-1

-1

-1 257

-1772 30

-1
-1

-1330 -1

-1
-1
-1
-1 399

-1
-1
-1
-1

-1

-1 268

-1

-1

-1
-1

148 40 382
486 928
781 400
290 606
502 420
756 100

-1

-1
-1
-1

-1
-1

-1

-1

-1756 -1

-1

-1
-1
-1
-1

-1

-1 296

-1 618
-1
-1
-1

]
-1

-1
-1

-1 748

-1 118

-1705 -1
-1

-1
-1

-1

-1 977

Figure 7 Example of low complexity LDPC’s base matrix
Observation: With proper design for LDPC, the decoding complexity is not necessary to increase for low code rate LDPC.
3. Turbo code
An efficient way to achieve high throughput turbo decoder is to use parallel decoder architecture. The most widely used parallel architecture is based on sliding-window soft-input soft-output (SISO) maximum a-posteriori (MAP) component decoders.

In this architecture, a code block is divided into multiple sub-blocks. Each sub-block is again divided into several windows. Each sub-block is processed independently by a dedicated MAP decoder. The corresponding sub-block trellis in such a MAP decoder is serially processed on window level.

The approximated BCJR algorithm amounts to a forward and backward recursion through the trellis. The forward state-metrics generated at the end of window m are used as initial forward state-metrics for the adjacent window m+1. However, since the backward recursion evolves from the end of the window to its beginning, suitable initial values for the backward recursion have to be estimated.

Conventionally, acquisition runs technique (ACQ) [9], as shown in Figure 8, has been widely adopted in turbo decoder implementation to initialize the window boundaries and sub-block edges. In each window, a dummy backward state metric “dummy beta” (starting from uninitialized state-metrics), forward state metric “alpha”, backward state metric “beta” and LLR are computed. Note that in order to facilitate hardware implementation and to allow for a concurrent processing of backward and forward state-metrics on the adjacent two windows respectively, the window length is often chosen to be equalled to the required acquisition length. The initialization of the state-metrics at the subblock edges is typically performed over the sub-block boundaries to increase their reliabilities. In particular, the forward state-metrics in the first window of the pth SISO decoder are initialized with the forward state-metrics computed at the end of subblock p-1. Similarly, the last dummy backward-recursion in the pth decoder is run over the first window of subblock p+1.

[image: image9.png]. read required data Calculate paih wirte decoding
" from memories | 1" metics or LLR | ™ result to memories

haf-iteration for original sequence [l hait-iteration for permuted sequence

U]

2ouz

Figure 8 ACQ approach turbo decoder with two windows

Another approach named state-metric propagation (SMP) [10], as shown in Figure 9, for window boundaries initialization has gained significant interest mainly due to its good VLSI implementation efficiency when high code rates have to be supported. Instead of the dummy calculation, SMP utilize the boundary of “alpha” and “beta” from the previous iteration to initialize them in the current iteration. Therefore, no dummy state-metric recursion is needed for this SMP approach.

[image: image10.png]1s

oo
&0,

Figure 9 SMP approach turbo decoder with two windows

However there are some limits of these parallel decoders including: (1) for ACQ decoder: large amount of trellis are required for warm up the decoding process for high code rate; (2) for SMP decoder: lower convergence speed of turbo decoding due to uninitialized backward state-metrics during the first two half-iterations ;(3) both for ACQ and SMP decoder: limit of parallelism, for example, the maximum parallelism is 64 bit per clock cycle at which conflicts are avoided by the QPP interleaver.

More recently, an SMP based ACQ (SAA) decoder has been proposed [11]. SAA approach is based on dummy backward-recursions to obtain reliable initial values for the recursive computation of the backward state-metrics. However, in contrast to pure ACQ, where the dummy backward-recursions start from uninitialized state-metrics, the backward state-metrics propagated from the previous iteration is used as start values in order to increase the reliability of the obtained initial values. In [11], the author says SAA decoder can achieve a throughput in excess 1 Gb/s over full range of code rate without any concessions in BER performance. However, in [12], which is the detailed description of the prototype, the BER performance for high code rate is questionable, since the ideal performance of turbo decoder for high code rate in [12] is too poor to be used as the bench mark for comparison.

To improve the throughput, a fully parallel turbo decoder (FPTD) has been investigated [13]. The authors say the FPTD VLSI achieves a processing throughput up to 15.8 Gb/s. However, the core area is also up-to more than 109 mm2, and the power consumption is unacceptable 9618 mW.
In RAN1#85 meeting, a low-complexity turbo decoding method named “T-SOVA” (trimming-SOVA) was proposed, with simulations results provided showing that T-SOVA had a much closed performance with Log-Map. However, to our understanding, T-SOVA is a kind of simplified SOVA. The performance of T-SOVA should not exceed that of SOVA. Furthermore, SOVA is usually worse than Log-MAP in terms of performance. For example, the simulation results in [23] clearly show an inferior performance (up to 0.5 dB loss in AWGN) of T-SOVA compared to Log-MAP. With this, the feasibility of T-SOVA method for high performance turbo decoding should be investigated further.
4. Polar code
Several decoding algorithms have been proposed for polar code, such as Successive Cancellation (SC), Belief Propagation (BP), SC List (SCL) and CRC-aided SCL (CA-SCL). However, the performance of SC and BP is much inferior to that of SCL and CA-SCL with sufficient list size. In this section, we focus on the complexity for SCL decoder.
SCL decoder proposed in [14] searches the code tree level by level, in much the same manner as does the SC. However, unlike SC where only one path is reserved after processing at each level, related to an information bit, SCL doubles the number of candidates by appending a bit 0 or 1 to each of the candidate paths. It then selects a maximum of l ones with the largest metrics and stores them in a list.
SCL decoder for polar codes with multi-bit decision is proposed [16]. On the SCL decoding tree, nodes are visited every 2K layers, i.e., metrics of nodes in 2K layers can be computed simultaneously for the 2K b-rSCL decoder. Latency is reduced approximately from 3n to n/2K-2. However, as K increases, the number of candidate paths which is 2K-th power of 2, increases rapidly so that path metrics comparison and metric computation become difficult. As a result, for practical implementation K is suggested to be no more than 2 and the latency is approximately n. The 2K b-rSCL decoder does not bring any performance loss.
Recently, a reduced latency list decoding (RLLD) algorithm has been proposed [15]. RLLD algorithm reduces the computational complexity and is of advantage for efficient hardware implementation at the cost of performance degradation. For RLLD, the full binary tree is pruned and some nodes are removed based on some criterion so that fewer nodes need to be visited when SCL decoding is performed.
5. Complexity and throughput comparison
The throughput of flooding scheduled row-parallel decoder for LDPC can be denoted as:

[image: image11.wmf][]

[]

cMHz

Mbps

Layer

Lf

Throughput

IN

×

=

×

, (1)

where

[image: image12.wmf]I

 denotes the number of iteration;

[image: image13.wmf]L

 denotes the length of code block;

[image: image14.wmf]Layer

N

 denotes the decoding layer.
When using layered BP decoder, the throughput for LDPC can be calculated as:

[image: image15.wmf][]

[]

(*1)

cMHz

Mbps

pipLayer

Lf

Throughput

ITN

×

=

×+

, (2)

where,

[image: image16.wmf]I

 denotes the number of iteration;

[image: image17.wmf]L

 denotes the length of code block;

[image: image18.wmf]Layer

N

 denotes the decoding layer;

[image: image19.wmf]pip

T

denotes the processing clocks for CNU and VNU updating plus memory reading and writing at each decoding step; here
[image: image20.wmf]3

pip

T

=

for ASIP based layered decoder.

[image: image21.wmf]c

f

 denotes the operating frequency.

The throughput of sub-block parallel turbo decoder can be written as:

[image: image22.wmf][]

[]

2()

cMHz

Mbps

Pip

Lf

Throughput

L

IWT

P

l

×

=

æö

éù

××++

ç÷

êú

êú

èø

, (3)

where,

[image: image23.wmf]I

 denotes the number of iteration;

[image: image24.wmf]L

 denotes the length of code block;

[image: image25.wmf]pip

T

denotes the processing clocks for pipelining ,and
[image: image26.wmf]7

pip

T

=

is typically employed to limit the critical path to the add-compare-select (ACS) delay;

[image: image27.wmf]W

denotes the window size, which is different for ACQ, SMP, and SAA decoder, and also different for low code rate and high code rate;

[image: image28.wmf]()

W

l

is the latency for sub-block MAP decoder output , and
[image: image29.wmf]()2

WW

l

=

is typically employed for ACQ and SAA decoder, and
[image: image30.wmf]()

WW

l

=

is typically employed for SMP decoder.

Throughput of SCL decoder for polar code is given as [16]:

[image: image31.wmf][]

[]

2

/22

cMHz

Mbps

K

Lf

Throughput

N

-

×

=

-

, (4)

where,

[image: image32.wmf]L

 denotes the length of code block;
N denotes the code length of polar code, which is a power of 2;

K denotes the multi-bits decision level, which means 2K bits can be decoded simultaneously;

[image: image33.wmf]c

f

 denotes the operating frequency.

Assume the information length is 6120 bits, and code rate is 0.93, operating frequency is set to 400M Hz. Table 1 compares the calculated throughput for LDPC, turbo and polar codes. Note that, the NLayer is set to 4 for LDPC based on the parity check matrix design in [7]. From table 1, we can see the throughput of LDPC can fulfil the eMBB’s requirement.
Table 1 Throughput calculations of LDPC, Turbo and Polar codes

	
	LDPC
	Turbo
	Polar

	Reference paper
	[3][4]

 REF _Ref458627510 \r \h * MERGEFORMAT
[5]

 REF _Ref458628177 \r \h * MERGEFORMAT
[6]
	[9]

 REF _Ref458629559 \r \h * MERGEFORMAT
[10]

 REF _Ref458629806 \r \h * MERGEFORMAT
[11]
	[16]

	Decoder Type
	flooding
	Layered
	ACQ
	SMP
	SAA
	SCL

	Iteration Number
	20
	10
	5.5
	6
	5.5
	-

	Window size
	-
	-
	134
	32
	32
	-

	Parallelism level
	765
	765
	32
	64
	64
	 8 (K=3)

	Throughput (Gbps)
	30.6
	18.8
	0.6
	1.51
	1.33
	 0.598

Then, we summarize in Table 2 some VLSI implementation of turbo, LDPC and Polar decoders in the literature. For turbo decoders, architectures based ACQ, SMP, SAA and FPTD are presented. For LDPC decoders, both flooding and layered schedule with row parallel architectures are presented. For Polar decoders, we investigate the SCL based architecture.
Note that the LDPC decoders listed in Table 2 are based on IEEE 802.11ad where the code block length in 802.11ad is fixed to 672 bits. We think the complexity analysis still holds for flexible code length of LDPC code. The reason is that as we have pointed out in section 2, the complexity of decoder is determined by the maximum row weight and parallelism level. When code word length changed, the maximum parallelism level might change accord. However, if we use the same maximum parallelism level as 802.11ad (which is 42) , and limit the max row weight in parity check matrix to no more that of 802.11ad’s PCM, we can get the similar throughput with no increase in complexity.
Table 2 Complexity and throughput comparison of turbo, LDPC and Polar decoders
	
	LDPC
	Turbo
	Turbo
	Turbo
	Polar
	Polar
	Polar
	Polar

	Reference paper
	[4]
	[11]
	[10]
	[13]
	[16]
	[16]
	[16]
	[16]

	technology
	65nm
	65nm
	65nm
	65nm
	65 nm
	65 nm
	65 nm
	65 nm

	Information length
	336
	6144
	6144
	6144
	512
	512
	512
	512

	Code rate
	1/2
	0.95
	0.95
	1/3
	1/2
	1/2
	1/2
	1/2

	Decoding schedule
	flooding
	SAA
	SMP
	FPTD
	2b-rSCL (List size=2)
	4b-rSCL (List size=2)
	2b-rSCL (List size=4)
	4b-rSCL (List size=4)

	Throughput (Gbps)
	0.5
	6.0
	9.0
	1.013
	0.15
	0.255
	0.131
	0.201
	1.28
	15.8

	Core area (mm^2)
	1.6
	2.49
	8.3
	109
	0.97
	1.06
	1.98
	2.14

	Frequency(MHz)
	30
	360
	540
	410
	600
	500
	525
	400
	400
	100

	Average Iterations
	Max of 10
	5.5
	Max of 6
	39
	-
	-
	-
	-

	Power(mW)
	11.8
	373.6
	782.9
	966
	321
	395
	734
	718
	845
	9618

	Energy Eff (pJ/ bits)
	21
	61.7
	89.5
	170
	2140
	1549
	5603
	3581
	110
	609

	Area Eff (Gbps/mm^2)
	0.31
	3.75
	5.63
	0.41
	0.155
	0.241
	0.066
	0.094
	0.154
	0.145

Table 2 compares complexity and throughput of turbo, LDPC and Polar decoders in some published literature. We can see that LDPC has an attractive feature for the case of high throughput with low power consumption and high chip area efficiency. Therefore, our conclusion is LDPC is more suitable for eMBB data channel especially for high throughout scenario.
Proposal: Adopt LDPC as the channel coding scheme for eMBB data channel at least for high throughput scenario.
6. Conclusion
In this contribution, we provide the complexity, throughput and latency analysis of LTE turbo, LDPC, and Polar code. We have the following observation.
Observation: With proper design for LDPC, the decoding complexity is not necessary to increase for low code rate LDPC.
We also have following proposal:
Proposal: Adopt LDPC as the channel coding scheme for eMBB data channel at least for high throughput scenario.

References

[1]. 3GPP R1-1608974, “Consideration on LDPC design for NR”, RAN1 #86bis, ZTE, ZTE Microelectronics
[2]. 3GPP R1-1608971, “Consideration on flexibility of LDPC codes for NR”, RAN1 #86bis, ZTE, ZTE Microelectronics
[3]. M. Weiner, M. Blagojevic, etc., “A scalable 1.5-to-6Gbs 6.2-to-38.1mW LDPC decoder for 60GHz wireless networks in 28nm UTBB FDSOI”, 2014 IEEE International Solid-State Circuits Conference.
[4]. Y. S. Park , D. Blaauw , D. Sylvester and Z. Zhang, "Low-power high-throughput LDPC decoder using non-refresh embedded DRAM", IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 783-794, 2014.
[5]. M. Li, Y. Lee, Y. Huang, etc.,“Area and energy efficient 802.11ad LDPC decoding processor”, 《Electronics Letters》, 2015, 51(4):339-341
[6]. M. Li, J. Weijers, etc., “An energy efficient 18Gbps LDPC decoding processor for 802.11ad in 28nm CMOS”, Solid-State Circuits Conference (A-SSCC), 2015 IEEE Asian, Year: 2015, Pages: 1 – 5.
[7]. 3GPP R1-166414, Discussion on LDPC codes for NR, 3GPP RAN WG1 #86, ZTE.
[8]. 3GPP R1-166413, Consideration on channel coding for NR, 3GPP RAN WG1 #86, ZTE.
[9]. C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and Implementation of a Parallel Turbo decoder ASIC for 3GPP-LTE”, IEEE Journal of Solid-State Circuits, Year: 2011, Volume: 46, Issue: 1, Pages: 8 – 17.
[10]. Y. Sun and J. Cavallaro, “Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder,” J. VLSI Integr., vol. 44, no. 4, pp. 305–315, Sep. 2011.
[11]. C. Roth, S. Belfanti, C. Benkeser and Q. Huang, "Efficient parallel turbo-decoding for high-throughput wireless systems", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 6, pp. 1824-1835, 2014.
[12]. S. Belfanti, C. Roth, etc., “A 1Gbps LTE-Advanced Turbo-Decoder ASIC in 65nm CMOS”, 2013 Symposium on VLSI Circuits, Pages: C284 - C285, 2013.
[13]. A. Li, L. Xiang, etc., “VLSI Implementation of Fully Parallel LTE Turbo Decoders”, IEEE Access Year: 2016, Volume: 4,Pages: 323 – 346.
[14]. I. Tal and A. Vardy, “List Decoding of Polar Codes,” IEEE Int’l. Symp. Info. Theory (ISIT), 2011, pp. 1–5.

[15]. J. Lin, C. Xiong and Z. Yan, “A high throughput list decoder architecture for polar codes,” IEEE Trans. VLSI, Nov. 2015.

[16]. B. Yuan and K. K. Parhi, “Low-latency successive-cancellation list decoders for polar codes with multi-bit decision,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, pp. 2268 – 2280, Oct. 2015.
[17]. YZ. Fan. et al., “A low-latency list successive-cancellation decoding implementation for polar codes,” IEEE JSAC, Feb. 2016.
[18]. C. Leroux, A. Raymond, G. Sarkis, and W. Gross, “A semi-parallel successive-cancellation decoder for polar codes,” IEEE Trans. Signal Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[19]. H. Li, Y. Li, J. Wang, “A Parallel Viterbi Algorithm for Low Latency TBCC Decoding”, Journal of Computational Information Systems 10: 13 (2014) 5513–5521, Available at http://www.Jofcis.com.
[20]. 3GPP R1-164279 Throughput and latency analysis on New channel coding candidates. #85, ZTE.
[21]. Kai Niu, Kai Chen, Jiaru Lin, etc., Polar Codes: Primary Concepts and Practical Decoding Algorithms, IEEE Communication Magazine, July, 2014.
[22]. Q. Huang, Q. Xiao, etc., “Trimming Soft-Input Soft-Output Viterbi Algorithms”, 《IEEE Transactions on Communications》, 2016, 64(7):2952-2960.
[image: image34.png]

11

_1536772173.unknown

_1536772182.unknown

_1536772186.unknown

_1536772188.unknown

_1536772190.unknown

_1536772191.unknown

_1536772189.unknown

_1536772187.unknown

_1536772184.unknown

_1536772185.unknown

_1536772183.unknown

_1536772178.unknown

_1536772180.unknown

_1536772181.unknown

_1536772179.unknown

_1536772175.unknown

_1536772177.unknown

_1536772174.unknown

_1536772169.unknown

_1536772171.unknown

_1536772172.unknown

_1536772170.unknown

_1536772167.vsd
Programmable Routing

VNU 0

VUN 1

VNU 2

VNU v

……

V2C msg

C2V msg

V2C msg

C2V msg

V2C msg

C2V msg

V2C msg

C2V msg

CNU 0

V2C msg

C2V msg

CNU 1

V2C msg

C2V msg

CNU 2

V2C msg

C2V msg

……

CNU c

V2C msg

C2V msg

Row Layer 0

Row Layer 1

……

Row Layer mb

_1536772168.unknown

_1536772166.vsd
�

RVPW

RVPW

RVPW

0

1

mb-1

a

mb*a

Iter 0

RVPW

