Page 1

3GPP TSG-RAN2 Meeting #99
R2-1708357
Berlin, Germany, 21 - 25 Aug 2017
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	TR 36.754
	CR
	0001
	rev
	-
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Clean Up of the TR 36.754

	
	

	Source to WG:
	CATT

	Source to TSG:
	R2

	
	

	Work item code:
	FS_LTE_UDC
	
	Date:
	2017-08-09

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	There are some editorials in TR 36.754 which would mislead readers.

	
	

	Summary of change:
	Most changes are editorials: lack of blanks, wrong title of figure, wrong formats, etc.
In Table 7.2.3.2-1, the mixed traffic number is corrected.

	
	

	Consequences if not approved:
	The TR is not good for reading and some words, formats are not aligned.

	
	

	Clauses affected:
	5.2, 6.3, 7.1.2, 7.2.1.2, 7.2.2.2, 7.2.3.1, 7.2.3.2, 7.2.4.1.2, 7.2.5.1,7.3, 8,

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

3GPP TR 36.754 V15.0.0 (2017-06)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access (E-UTRA);
 Study on UL data compression for E-UTRA

(Release 15)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPPOrganizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPPonly. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

E-UTRA, radio

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
4
2
References
4
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
5
4
Requirements on UL data compression
5
5
Use cases and traffic characteristics
6
5.1
Use cases
6
5.2
Traffic characteristics
6
6
Evaluation Methodology
11
6.1
Evaluation Guidelines
12
6.2
Simulation Assumptions
12
6.3
Performance Metrics
12
7
UL data compression solutions
13
7.1
Existing data compression methods and encryption trend
13
7.1.2
Traffic Encryption Trend
13
7.2
Solutions for RAN level UL data compression
14
7.2.1
Solution 1: UL RoHC
15
7.2.1.1
Solution description
15
7.2.1.2
Simulation results
15
7.2.2
Solution 2: UDC solution based on RFC 1950: Zlib-based
16
7.2.2.1
Solution description
16
7.2.2.2
Simulation results
17
7.2.3
Solution 3: UDC solution based on RFC 1951: DEFLATE- based
17
7.2.3.1
Solution description
17
7.2.3.2
Simulation results
20
7.2.4
Solution 4: Adaptive Packet Data Compression (APDC)
21
7.2.4.1
Solution description
21
7.2.4.1.1
Overview
21
7.2.4.1.2
Detailed Compressed Data Format Description
22
7.2.4.2
Simulation results
27
7.2.5
Compression Gain Enhancement Technique
28
7.2.5.1
Pre-defined dictionary
28
7.3
Comparison of UL data compression solutions
28
8
Conclusions
30
Annex A:
Example compressor and decompressor algorithms based on solution 4 (APDC)
31
Annex B:
Change history
35

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

At the 3GPP TSG RAN#75 meeting, the Study Item Description on "Study on UL data compression in LTE" has been approved RP-162541[2]. This study item covers evaluation of the data compression schemes to improve uplink capacity in E-UTRA.

1
Scope

The present document is related to the study item "Study on UL data compression in LTE" [2]. This Technical Report constitutes performance evaluation of potential data compression schemes to support increased uplink capacity for E-UTRA.

This document captures descriptions related to the evaluation methodology used technical outcomes of the study, analysis of potential UL data compression solutions and a conclusion on the way forward.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TSG-RAN RP-162541: "New SI proposal: Study on UL data compression in LTE", RAN#74, June.2016.

[3]
IETF RFC 3095, "RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP and uncompressed".

[4]
IETF RFC 1950, "ZLIB Compressed Data Format Specification version 3.3".

[5]
IETF RFC 1951,"DEFLATE Compressed Data Format Specification version 1.3"
[6]
Usage of HTTP/2 for websites, World Wide Web Technology Surveys. W3Techs. Dec 2, 2016.

[7]
https://www.google.com/transparencyreport/https/metrics/?hl=en#contry
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply.
A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Compression efficiency

1 – (output compressed data size / input uncompressed data size)

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

UDC
Uplink Data Compression

APDC
Adaptive Packet Data Compression

4
Requirements on UL data compression
The shortage of uplink resource becomes a concern in the network due to the following factors:

-
More and more mobile internet users are becoming content producers.

-
Increasing of downlink traffic when using CA leads to more uplink traffic. However UE operates with few uplink carriers, typically only one. This is to satisfy requirements on UE battery consumption and reduce UE complexity.

-
Typical UL/DL configuration in TD-LTE network is configuration 2, i.e. 3DL: 1UL. It is quite often that uplink becomes bottleneck in case of, e.g. file uploading.

Thus uplink capacity improvement is becoming an urgent requirement to address the increase amount of UL traffic in the network. Another concern on uplink is transmission vulnerability to poor radio condition.

-
As the number of LTE subscribers increases, the uplink interference level reaches 5~10 dB in a typical network, making uplink transportation in poor radio condition difficult.

-
Due to power limitation, RLC segmentation is a common way to extend uplink coverage. However, it is not a preferred solution in some cases, e.g. VoLTE call setup where long call setup latency is an issue.

-
Size of SIP message used in VoLTE call setup is about 2KB. When UE is in poor radio condition (e.g. RSRP < -120dBm) and/or high interference (e.g. uplink IoT = 10dB), it has been observed in practical network that a SIP message is segmented into 200 RLC pieces, thus average call setup time and call drop rate are increased. Therefore a large SIP message size becomes a problem.

A RAN level solution should be considered to resolve these problems. Although the data could be compressed at application layer, in current practical networks, some of applications do not compress data. Moreover, operator would not require all applications to support this function. A RAN level solution allows the operator to control the UL compression based on the traffic type.

5
Use cases and traffic characteristics

5.1
Use cases

Use case 1 and case 2 below are evaluated in UDC with high priority while use case 3 may also be considered possibly with low priority.

-
Use Case1 (Non-encrypted traffic): The application data which are not encrypted at application layer, e.g. web surfing, text uploading, online video and text over instant messaging etc.

-
Use Case 2 (VoLTE SIP signalling): SIP signalling for VoLTE, which is neither compressed nor encrypted, e.g. INVITE, PRACK etc.

-
Use Case 3 (HTTPS traffic w/o RoHC): Packet header could be compressed if ROHC is not used even the application data is encrypted, e.g. the TCP/IP header can be compressed by UDC.

Mixed traffic is also evaluated in UDC, e.g. mix web surfing and video, multiple IP flows etc.

5.2
Traffic characteristics
Repetitive appearance of data blocks/strings has been identified in the use cases under study. As demonstrated in the below examples, application layer data, SIP signallings and TCP/IP ACK have traffic characteristics where many fields/content are repeated throughout the transmission.

a)
HTTP

POST or GET message is applied for requesting the HTTP service.Two examples for POST and GET are shown below.

POST format:

POST***********HTTP/1.1
Accept: */*

Accept-Language: zh-cn

host:*********

Content-Type: application/x-www-form-urlencoded

Content-Length:**

Connection:close
GET format:

GET******************HTTP/1.1
Accept: */*

Accept-Language: zh-cn

host:*******

Content-Type: application/x-www-form-urlencoded

Content-Length:**

Connection:close

Referring to the above message formats, POST and GET share similar message formats.

The following is a comparison of two POST messages from captured data in a practical system (words in red are different, other parts are same).

[image: image3.png]
From the comparison, many matched data blocks could be found. If the previous POST message is used as the dictionary for the later one, the message can be compressed while improving the transmission efficiency. Even in the same message, some common data is visible. For example“content” is visible several times in the same message.

b)
SIP

The following UL SIP signals are compared for illustration of repetitive nature of the traffic field.

-
INVITE

-
UPDATE

-
ACK

-
BYE

Comparison of two INVITE messages (words in red are different, other parts are same).

[image: image4.png]
[image: image5.png]
Comparison of two UPDATE messages (words in red are different, other parts are same).

[image: image6.png]
[image: image7.png]
Comparison of two ACK messages (words in red are different, other parts are same).

[image: image8.png]
Comparison of two BYE messages (words in red are different, other parts are same).

[image: image9.png]
c)
TCP/IP ACK

In addition to the above application layer data and signalling, TCP/IP ACK packets also show common fields among packets thus it is a candidate for a compression.

	TCP Header

	Bit offset
	 0
	 1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	0
	Source port
	Destination port

	32
	Sequence number

	64
	Acknowledgment number

	96
	Data offset
	Reserved
	C
W
R
	E
C
E
	U
R
G
	A
C
K
	P
S
H
	R
S
T
	S
Y
N
	F
I
N
	Window Size

	128
	Checksum
	Urgent pointer

Considering TCP header structure, many fields would be same as across packet(s) of the same IP flow.

6
Evaluation Methodology
In order to provide the necessary degree of commonality and comparability between different UL data compression solutions results, an evaluation framework has been established encompassing evaluation guidelines, simulation assumptions and performance metrics.

6.1
Evaluation Guidelines

Input traffic profile

For fair comparison of different UDC solutions, the solutions are to be evaluated using a common traffic profile. Traffic traces where data traffic captured from live systems are expected to be used in the evaluation. Traffic generated based on synthetic models or statistical models are not used. The data file format is “.pcap” which only includes UL packets (DL packets are removed).

Evaluation model

The aim of the simulation is to evaluate the compression algorithms in terms of compression efficiency, impacts to the existing protocol and specification efforts. Thus detail channel model and radio channel simulation are not seen essential for the evaluation of compression algorithms. To emulate the unreliability of radio channel and data loss if considered necessary, a suitable simplified radio channel based on packet loss rate and random packet discard to be used.

A simplified evaluation model without packet loss rate is considered and scenarios with packet loss rate are considered with low priority.

Protocol unit

UL data compression algorithm is considered to be located in PDCP layer in the evaluation.

6.2
Simulation Assumptions

-
UDC aims to design a compression solution for the UL user plane (DRB) data received from higher layer, e.g. HTTP data, SIP signalling, TCP ACK for DL traffic, etc. Therefore, only User Plane (DRB) data is considered in simulation of different UDC solutions.

-
The amount of buffered data which are used in compressing current packet could have an effect on the achieved compression ratio. For the simulation and comparison of different solutions 8K and 32K buffer size are considered, and 64K can be optionally selected.

-
RLC-AM is considered in UDC evaluation.

-
UL data compression is applied for both header and payload in evaluation of different solutions.

-
The case of combination of UDC and RoHC on the same DRB is not evaluated.

-
UDC solutions should be agnostic to packet header format.

6.3
Performance Metrics
The aim of UDC study is to identify compression algorithms and/or compressed data formats which could be used in RAN to fulfil the objectives of UDC (e.g. controllability of UDC on service basis by operator). The following Figure illustrates a block diagram of UDC operation. The UDC entity processes the input data and generates the output compressed data.

[image: image10.emf]Input data

UDC (compression)

Output data

Figure 6.3-1: Block diagram of UDC operation

Compression efficiency as per the following formulation is considered for performance metric in evaluation of different UL data compression solutions.

Compression efficiency = 1 – (output data size / input data size)

High computation complexity of compression algorithm degrades usefulness of UDC even if the resulted compression efficiency is significant. Additionally, required memory for compression/ decompression also has impacts on the overall performance of UL data compression algorithms. Therefore, not only the compression efficiency but also processing complexity of compressor/ de-compressor and memory requirements are agreed as the criteria for performance evaluation. Even though it may not be possible to quantify the processing complexity, qualitative analysis of complexity is expected in the performance evaluation. In addition, the evaluation criteria of a compression solution shall take into account the byte alignment and reliability.
7
UL data compression solutions
7.1
Existing data compression methods and encryption trend
Compression is commonly used when storing and transmitting data and several applications exist in different layers of the network, as illustrated in Figure 7.1-1. Application layer file formats, such as MPEG-4 and JPEG use compression in generating encoded outputs.

[image: image11.png]
Figure 7.1-1: OSI/RAN Level architecture and location of existing algorithms

Application layer compression algorithms have been standardized in IETF and 3GPP SA4. Such application layer algorithms include:

-
HTTP-2 is an updated version of HTTP. An advantage of HTTP-2 over previous HTTP version is that it decreases latency to improve page load speed in web browsers by considering data compression of HTTP headers.

-
QUIC (Quick UDP Internet Connections) aims to provide faster and secured/encrypted web browsing experience.

-
SigComp is a solution for compressing messages generated by application protocols with primary driver to compress SIP message.
In addition, Data Compression Proxies can provide data compression.

The UDC gain depends on whether the data is encrypted and/or compressed by the application layer. HTTP-2 is known to perform encryption of HTTP payload and compression of HTTP header. But it should be considered that some of popular websites still use HTTP protocol like HTTP or HTTP-1.1.The web technology report [6] shows that 14.2 % of all the website use HTTP-2 (on 23th May 2017). This means that most of the websites are currently using legacy HTTP protocol. It is also shown in [6] that HTTP-2 is gaining popularity.

7.1.2
Traffic Encryption Trend

Figure 7.1.2-1 illustrates the encrypted traffic trend based on google transparency report [7]. While Figure 7.1.2-1 (a) shows the percentage of pages loaded over HTTPS per operating system Figure 7.1.2-1 (b) shows the regional distribution of the usage of HTTPS. The frequency of HTTPS is higher when using Chrome OS and least when using Android however both follow an increasing trend of usage of.The statistics are taken from 9 countries. Note that China is not among the listed countries. The usage of HTTPS is increasing and is above 50 % in the middle of April 2017 for the listed countries except for Japan where the ratio of encrypted traffic is lower and is around 35 % in the middle of April 2017.
[image: image12.png]
(a)
Percentage of pages loaded over HTTPS per operating system

[image: image13.png]
(b)
Regional distribution of (a) slide 1

[image: image14.png]
(c)
Regional distribution of (a) slide 2 highlighting the USA trend

Figure 7.1.2-1: percentage of encrypted traffic as per google transparency report [7]

7.2
Solutions for RAN level UL data compression

A number of different UL data compression solutions have been simulated with the following input traffic scenarios. These traffic profiles are generated with neither application layer compression nor application layer encryption.

Table 7.2-1: Traffic profiles

	PCAP File #
	PCAP File Name
	Note

	1
	FTP data-CMCC(UL-client)
	

	2
	FTP data-CMCC(UL-server)
	

	3
	SIP signalling-CMCC 01(UL)
	

	4
	SIP signalling-CMCC 02(UL)
	

	5
	SIP signalling-CMCC 03(UL)
	

	6
	Video data-CMCC(UL)
	duration: ~6s

	7
	web surfing-CMCC(UL)
	

	8
	long period Video data-CMCC(UL)
	duration: ~6min

	9
	Video data-MTK
	duration: ~1hr

	10
	Long period ftp-MTK
	

	11
	Multiple IP flows-Qualcomm
	

7.2.1
Solution 1: UL RoHC

7.2.1.1
Solution description

RoHC (Robust Header Compression) is a method to compress the IP, UDP, RTP and TCP headers of internet traffic [3]. Several compression profiles are available, including e.g. IP-only, IP/UDP and IP/TCP. In Rel-14, uplink-only RoHC operation was introduced (UL RoHC for short). For UL RoHC, profile 0x0006 has been standardized (the usage is TCP/IP). UL RoHC implies compression is applied only in UL and compression is disabled in the downlink. The payload of the packets is not targeted for compression. The RoHC protocol exploits redundancies in the headers, so that redundant information is only transmitted in the first packet. The following packets contain only dynamic information, such as identifiers and sequence numbers. To enhance performance, the packets are classified into different streams which are compressed according to the best fitting compression profile available.

The RoHC algorithm can operate in several different modes and states. The modes define if there is a reliable feedback link or not, while the states define the level of compression performed by the algorithm. In the Initialization and Refresh (IR), packet headers are sent uncompressed and are used when the compressor has just been created or has been reset. In First (FO) and Second (SO) order states compression is performed in a way that reflects an increasing level of confidence about the correctness of the information available in the decompression side. The RoHC implementation should strive to get the compressor into SO state, where the highest compression efficiency is achieved, but the ROHC compressor will typically transit between states depending on the variability of the header to compress, decompression errors, or if there for other reasons is a need to refresh the decompression context.

7.2.1.2
Simulation results

Table 7.2.1.2-1 shows the simulation results. It can be found that UL RoHC-based method provides good compression efficiency in FTP and long video data scenarios. In long video data scenario, most of the uplink packets are for TCP ACKs, which makes UL-only RoHC highly efficient. Note that the simulation results consider the overhead from the RoHC headers.
Table 7.2.1.2-1: Compression efficiency for UL RoHC

	Input file
	UL RoHC
	Ratio of TCP/IP headers

	Input traffic1: FTP data-client-CMCC
	73.3%
	90.8%

	Input traffic2: FTP data-server-CMCC
	59.7%
	73.4%

	Input traffic 3: SIP signalling-CMCC
	#01
	5.4%
	7.5%

	Input traffic4: SIP signalling-CMCC
	#02
	5.1%
	7.1%

	Input traffic5: SIP signalling-CMCC
	#03
	4.4%
	6.2%

	Input traffic6: Video data-CMCC (duration: ~6s)
	21.7%
	29.1%

	Input traffic 7: Web surfing-CMCC
	23.1%
	31.3%

	Input traffic8: Long period Video data-CMCC (duration: ~6min)
	45.1%
	58.1%

	Input traffic9: Video data-MTK (duration: ~1hr)
	80.7%
	95.9%

	Input traffic 10: Long period ftp-MTK
	83.4%
	99.96%

	Input traffic 8 + 10:
	39.3%
	

7.2.2
Solution 2: UDC solution based on RFC 1950: Zlib-based

7.2.2.1
Solution description

The concept of Zlib-based UDC is shown in Figure 7.2.2.1-1 below. To perform cross-packet checking to find repeated pattern, each source packet is stored in the configurable buffer after being compressed. And, the compressed data format for Zlib [4] is given in Figure 7.2.2.1-2. The definitions of Zlib headers are:

CMF: compression window length

FLG: flag to indicate if preset dictionary is applied

DICTID: preset dictionary ID

Note that, pre-defined dictionary is not used in this evaluation. For the detail descriptions of Zlib algorithm and compressed data format can be found in [4].

[image: image15.emf]Zlib-based compressor

with configurable

buffer size (8K or 32K)

Source packet

Compressed packet

in Zlib data format

Figure 7.2.2.1-1: Illustrative compression flow with Zlib

[image: image16.png]
Figure 7.2.2.1-2: Zlib-based compressed data format

7.2.2.2
Simulation results

Zlib v1.2.11 is used in this evaluation. The compressed packets are byte-aligned, and ended with no tail-byte. The simulation results are shown in Table 7.2.2.2-1. The results show that larger window size provides slightly better compression efficiency though it is not significant. Input traffic 6 is an exception, where 8Kbyte window size configuration is better than 32Kbyte window size configuration. It is because the repeated pattern can be found by short distance in the window. Larger window size configuration provides no additional gain in terms of compression efficiency, but introduces longer header length. Note that the simulation results consider all the overhead from the UDC header as specified in Section 7.2.2.1.To carefully evaluate the performances of Zlib, cross-checking was conducted using the same configuration. Similar compression efficiency is achieved by different companies.

Table 7.2.2.2-1: Compression efficiency for Zlib

	Input file
	Zlib-based UDC (8K)
	Zlib-based UDC (32K)

	Input traffic 1: FTP data-client-CMCC
	50.5%
	50.5%

	Input traffic 2: FTP data-server-CMCC
	45.1%
	45.1%

	Input traffic 3: SIP signalling-CMCC
	#01
	86.7%
	88.1%

	Input traffic 4: SIP signalling-CMCC
	#02
	84.2%
	85.3%

	Input traffic 5: SIP signalling-CMCC
	#03
	87.2%
	88.5%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	65.1%
	65.1%

	Input traffic 7: Web surfing-CMCC
	66.3%
	70.1%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	72.9%
	73.9%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	60.7%
	59.1%

	Input traffic 10: Long period ftp-MTK
	63.6%
	60.0%

	Input traffic 8 + 10:
	65.6%
	67.4%

7.2.3
Solution 3: UDC solution based on RFC 1951: DEFLATE- based

7.2.3.1
Solution description

RFC 1951 (DEFLATE Compressed Data Format Specification) [5] is broadly used with fewest overhead (e.g. compare to RFC 1950, reduced with header and tail bytes.Deflate is a lossless data compression algorithm and associated file format (specified in [5]) that uses a combination of the LZ77 algorithm and Huffman coding.

LZ77 compression works by finding sequences of data that are repeated. A sliding window is used to find the match characters in previous data. An 8K/32K sliding window means that the compressor (and de-compressor) has a record of what the last 8192 or 32768 characters were. When the next sequence of characters to be compressed is identical to one that can be found within the sliding window, the sequence of characters is replaced by two numbers: a “distance”, representing how far back into the window the sequence starts, and a “length”, representing the number of characters for which the sequence is identical. And then, the string pair (length, distance) is used to replace the current matched characters. Lazy-match is considered in the simulation to finding the longest matching part in the buffer. The un-matched characters are noted as “literal”.

[image: image17.emf]abcdefgh

Data in buffer

bcd

Compression Entity

Packet to be compressed

Position 7 6 5 4 3 2 1 0

(a)
Before compression

[image: image18.emf]B110011

defgh

Data in buffer

bcd

Compression Entity

Compressed Packet

Position 7 6 5 4 3 2 1 0

(b)
After compression

Figure 7.2.3.1-1: Illustration of data format before and after compression using RFC 1951 (LZ77 compression)

In Figure 7.2.3.1-1, the buffer size is 8 bytes. When a new packet which has content of “bcd” coming, a cross-packet match can be identify in the buffer, with the previous position 6, length 3. The new packet which original length is 3 byte can be compressed to 6 bits (i.e. 3 bits to identify 8 positions in the buffer, and 3 bits for length). After compression, the new packet is inserted in the buffer.

After compressed by LZ77, Huffman coding is used to encode the “literal”, “length” and “distance” by replacing frequently used codes with shorter representations and infrequently used codes with longer representations. Adaptive selection of static Huffman coding and dynamic Huffman coding is enabled to achieve maximum compression efficiency in the simulation.

The Huffman codes used for each alphabet (e.g. literal/length alphabet and distance alphabet) in the “deflate” format have two additional rules: 1) All codes of a given bit-length have lexicographically consecutive values, in the same order as the symbols they represent; 2) Shorter codes lexicographically precede longer codes (details can be seen in RFC1951 [5]).

The Huffman codes for the two alphabets appear in the block immediately after the header bits and before the actual compressed data, first the literal/length code and then the distance code. Each code is defined by a sequence of Huffman code lengths. For even higher compression ratio, the code length sequences themselves are compressed using a Huffman code.
In our UDC solution, the following compression block format is used respectively for static Huffman coding and dynamic Huffman coding.

[image: image19.emf]Compressed data bits

Dynmic

/Static

LA

ST

76543210

Byte

Compressed data bits ……

END

0

Figure 7.2.3.1-2: Compression block by using static Huffman tree
[image: image20.emf]HLIT (5bits)

Dynmic

/Static

LA

ST

HDIST (5bits)HCLEN(0-2)

HCL

EN

(3)

Code Length Tree

Code Length Tree ……

Literal tree ……

Distance tree ……

7654321076543210

ByteByte

76543210

Byte

Compressed data bits ……

END

0

Figure 7.2.3.1-3: Compression block by using dynamic Huffman tree
Where, dynamic/Static flag: indicating whether static Huffman or dynamic Huffman is used

00- No compression

01 - Compressed with fixed Huffman codes

10 - Compressed with dynamic Huffman codes

11 - Reserved (error)

HLIT - Number of Literal/Length (257 - 286) codes minus 257

HDIST - Number of Distance codes (1 - 32) minus 1

HCLEN - Number of Code Length codes (4 - 19) minus 4

END - The literal/length symbol 256 (end of data)

LAST - Reserved, can be used to indicating whether this is the last block for a file

Proposed UDC format for Solution 3

Checksum mechanism could be used to resolve synchronisation miss-match (if any) between compression buffer and de-compression buffer. This means, compressor calculate a checksum value by using the data in buffer, and the de-compressor can validate the buffer content by the checksum value.

Additionally, multiple IP flow in one ratio bearer using various profile should be considered when design UDC solution, where some data packet in the bearer need to be compressed by UDC entity, while others need not. Thus whether the current received packet is processed by UDC entity or not could be included in the UDC header. Considering these two aspects, one byte UDC header is introduced. Whether the current PDCP SDU is compressed/processed by UDC entity is indicated by 1 bit in the UDC header, and 4~6 bits allocated for the checksum (note that the checksum is calculated by the data in buffer, excluding the current packet).

Example UDC header format is shown in Figure 7.2.3.1-4. The detail of the UDC header format can be further discussed in WI phase.

[image: image21.emf]...

Reserved

Oct 1F

Checksum

Figure 7.2.3.1-4: An example of UDC header format
The reserved bits can be used to indicate whether to reset the buffer and whether to copy this packet data into the de-compression buffer. Thus could assist to improve efficiency of compression/de-compressor buffer utilisation.

7.2.3.2
Simulation results

The simulation results of RFC 1951 for 8Kbyte and 32Kbyte buffer are shown in Table 7.2.3.2-1. Note that the simulation results do not consider the overhead from the proposed UDC header as specified in Section 7.2.3.1. To carefully evaluate the performances of solution 3, cross-checking was conducted using the same configuration. Similar compression efficiency is achieved by different companies.
Table 7.2.3.2-1: Simulation results with RFC 1951

	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency

	Input traffic 1: FTP data-client-CMCC
	1211
	585
	51.69%
	1211
	585
	51.69%

	Input traffic 2: FTP data-server-CMCC
	1782
	962
	46.02%
	1782
	962
	46.02%

	Input traffic 3: SIP signalling-CMCC UE 1
	51020
	6639
	86.99%
	51020
	5997
	88.25%

	Input traffic 4: SIP signalling-CMCC
	32680
	4921
	84.94%
	32680
	4791
	85.34%

	Input traffic 5: SIP signalling-CMCC
	46688
	5927
	87.31%
	46688
	5313
	88.62%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	13450
	4632
	65.56%
	13450
	4633
	65.55%

	Input traffic 7: Web surfing-CMCC
	2381720
	786295
	66.99%
	2381720
	689638
	71.04%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	1371861
	365346
	73.37%
	1371861
	337360
	75.41%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	2453749
	950644
	61.26%
	2453749
	983524
	59.92%

	Input traffic 10: Long period ftp-MTK
	879630
	317485
	63.91%
	879630
	347815
	60.46%

	Input traffic 11: Multiple IP flows-QC
	5319100
	1434672
	73.03%
	5319100
	1336519
	74.87%

	Input traffic 7+8:average mixed
	3753581
	1220693
	67.48%
	3753581
	1071819
	71.45%

	Input traffic 7+8:one inserted in another one
	3753581
	1151601
	69.32%
	3753581
	1026762
	72.65%

	Input traffic 7+8:random mixed
	3753581
	1220407
	67.49%
	3753581
	1067292
	71.57%

7.2.4
Solution 4: Adaptive Packet Data Compression (APDC)

7.2.4.1
Solution description

7.2.4.1.1
Overview

Both UE and eNB maintains APDC Compression Memory to remember uncompressed contents of previous packets. When a new packet arrives, the UE tries to match (partially or fully) with the stored packets. If a match is found, then the UE sends pointers (addresses/locations of matched data block in both the compression memory and the packet) instead of the actual data bytes, to the eNB. The decompression algorithm is similar to the famous C language library function “memcpy(srcaddr, destaddr, length)” which simply copies the pointed data from the compression memory to the current packet, to recover the original packet. So the compressed data format mainly contains the following parameters.

-
“srcaddr”: the address in compression memory [called “Lookback Length” in this solution]

-
“destaddr”: the address in the current packet [called “Distance to pointer” in this solution]

-
“length”: the length of the data bytes that was replaced by the compressor [called “size” in this solution]

APDC header memory

Sometimes the APDC headers of two packets can be the same, in this case, the compressor does not have to send the APDC header, instead, the compressor can inform the decompressor to use the APDC header of the previous compressed packet. To enable such mechanism, a separate APDC header memory of APDCHeaderMemorySize (=32 bytes) is set apart at both the compressor and decompressor for saving the APDC header from the latest compressions.

The APDC header memory is used for previous packet compression context reference (PPCR), which is a packet action that indicates the decompressor to use the full APDC header from a previous packet. To achieve this, both the compressor and decompressor push the APDC header in a packet to APDC header memory. The compression/decompression mechanism using this method is referred to as PPCR. The PPCR is indicated by setting the field “Packet action” of APDC common header to ‘100’.

For packet actions 011 and 010, the entire APDC header shall be pushed to the APDC header memory. If there are more than APDCHeaderMemorySize bytes of APDC header in any packet, then that header is not pushed. The APDC header is always copied to the beginning of the APDC header memory, overwriting any contents before.

Compression memory

The compression memory is first in first out (FIFO) queue and illustrated in the figure below. New contents are pushed into the memory from the one end of the queue, as illustrated by Table 7.2.4.1.1-1 below. When a DRB is configured with APDC or when APDC compression memory is reset, every octet in the compression memory is reset to 0x00 in both compressor and decompressor. Packets stored in APDC compression memory are word-aligned (4 byte aligned). The beginning of each packet pushed to APDC compression memory starts from the next word (4 byte aligned) boundary. APDC compression memory is padded with zeros to fill the space between the last byte of the packet to the next word boundary.

Table 7.2.4.1.1-1: Compression memory illustration

	Memory Address
	Memory Content
	Note

	0x0000
	zeros
	Unused Memory

	0x0001
	zeros
	Unused Memory

	0x0002
	
	oldest content

	0x0003
	
	

	…
	
	

	maxMemEndAddr
	
	newest content

7.2.4.1.2
Detailed Compressed Data Format Description

The compressed packet is preceded by the APDC header, which dictates how the decompression can be performed. As shown in Figure 7.2.4.1.2-1, the APDC header format consists of one APDC common header, (zero or one) PMCR header(s) and (zero or one) CPCR header(s). One PMCR header can have multiple PMCR metadata. Similarly, one CPCR header can have multiple CPCR metadata. The PMCR header is present if the “E” bit in the APDC common header is set to 1; otherwise, PMCR header is not present. If present, the PMCR header in a compressed packet is always ahead of the CPCR header. This implies that a section of the data packet is decompressed using the PMCR header and the remaining section of the packet is decompressed using the CPCR header.

-
Current Packet Compression Reference (CPCR): The compression/decompression mechanism, which indicates individual matches from APDC compression memory, is referred to as CPCR and this header is called the CPCR header. This header refers to matches in APDC compression memory using CPCR header metadata each of which points to a block of prior memory that needs to be copied to create the decompressed packet.

-
Packet Match Compressed Reference (PMCR): This header refers a prior block of data from APDC compression memory and indicates the mismatches in the current packet with respect to the prior block in APDC Compression memory. The compression/decompression mechanism using this PMCR header is referred to as PMCR.The PMCR header may be optionally present, which is indicated by the “E” bit set to 1 in the APDC common header.

[image: image22.emf]...

Number of Mismatches

Match lengthMismatch length

OptionLookback length

Lookback length

Length

Numof

mismatch

E

Packet actionChecksumE

Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

...

Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

Match lengthMismatch length

...

Number of matches

:

Uncompressed data bytes

:

Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7Bit 8

PMCR header

CPCR header

metadata

PMCR header

metadata

UDC header

CPCR header

UDC Common

header

CPCR common

header

PMCR common

header

Figure 7.2.4.1.2-1: Compressed data format

The PMCR header in a compressed packet is always ahead of the CPCR header. This implies that a section of the data packet is decompressed using the PMCR header and the remaining section of the packet is decompressed using the CPCR header.

Packets stored in APDC compression memory are word-aligned (4 byte aligned). The beginning of each packet pushed to APDC compression memory starts from the next word (4 byte aligned) boundary. APDC compression memory is padded with zeros to fill the space between the last byte of the packet to the next word boundary.

APDC common header (the first octet in Figure 7.2.4.1.2-1)

Packet action (upper 3 bits)

-
011 – Decompression shall be performed as indicated by the APDC header that follows the first octet. The entire packet (decompressed) shall be pushed to UL compression memory. The APDC header shall be pushed to APDC header memory if the APDC header length is less than or equal to APDCHeaderMemorySize.

-
010 – The compression shall be performed only for the first APDCHeaderLength octets of the original packet; the rest portion of the packet shall not be compressed. This mode is referred as header-only compression mode in this solution. The compression and decompression algorithms in header-only compression mode are the same as those in the full-packet compression mode, respectively. No deep packet inspection (DPI) is performed in header-only compression mode. The only difference between header-only and full-packet modes is that the compressor skips compression on the portion of a packet beyond the first APDCHeaderLength octets in header-only mode, to reduce processing. Decompression shall be performed as indicated by the APDC header that follows the first octet. The packet header (of the decompressed packet), as indicated by APDCHeaderLength, shall be pushed to UL compression memory. The APDC header shall be pushed to APDC header memory if the APDC header length is less than or equal to APDCHeaderMemorySize.
-
001 – For this packet action, there is no following header and no decompression needs to be performed. The entire packet shall be pushed to UL compression memory. The APDC header shall not be pushed to APDC header memory.

-
000 – For this packet action, there is no following header and no decompression needs to be performed. The packet shall not be pushed to APDC compression memory. The APDC header shall not be pushed to APDC header memory.

-
100 – This is an exact match of the APDC header with the contents of APDC header memory. This is the signaling for the PPCR method that is described in Section 7.2.4.1.1. Decompression shall be performed, as indicated by the previous APDC header, as contained in APDC header memory. The entire packet or packet header only shall be pushed to APDC compression memory, depending on the packet action in the previous packet (011 or 010 respectively). The APDC header shall not be pushed to APDC header memory.

-
101 – Reset APDC compression memory to all zeros. For this packet action, there are no following header and no decompression needs to be performed. The entire packet shall be pushed to APDC compression memory. The APDC header shall not be pushed to APDC header memory.

Checksum (next 4 bits) – The checksum is used by the decompressor to detect APDC compression memory out-of-sync conditions between the compressor and decompressor.

Extension (E) (next 1 bit) – Set to 1 if, and only if, a PMCR header follows; set to 0 otherwise. For packet actions 011 and 010, an E bit set to 0 means the CPCR header follows and an E bit set to 1 means the PMCR header follows. For all other packet actions, the E bit is set to 0.

Checksum computation

The checksum is computed based on the packet action.

For packet actions 011 and 010, the checksum contents depend on the presence of the PMCR header.

-
No PMCR header – Checksum contains the sum of the first 5 bytes of the first match in this packet.

-
PMCR header is present – Checksum contains the sum of the 5 bytes starting from the location pointed to by the lookback length minus 8. See the PMCR header format for the processing of lookback length.

For packet action 001, the checksum contains the sum of the last 5 bytes in APDC compression memory before the packet that includes the checksum is pushed into APDC compression memory.

For packet action 000, the checksum bits are invalid and shall not be checked.

For packet action 101, the checksum bits shall be set to all zeros.

For packet action 100, the checksum contents depend on the presence of the PMCR header in the APDC header memory.

-
No PMCR header – The checksum contains the sum of the first 5 bytes of the first match in this packet.

-
PMCR header is present – The checksum contains the sum of the 5 bytes starting from the location pointed to by the lookback length minus 8. See the PMCR header format for the processing of lookback length.

CPCR Header

[image: image23.emf]Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

...

Distance to pointer

Distance to pointerLookback length

Lookback length

Lookback

length

Length

Number of matches

CPCR header

metadata

CPCR header

CPCR common

header

Figure 7.2.4.1.2-2: CPCR Header format

The CPCR header consists of the following two parts:

-
CPCR common header – The first byte gives the decompressor the Number of matches in the packet.

-
CPCR header metadata – 4 bytes of metadata for each matched block of data indicating Distance to pointer, Lookback length, and length. There are as many metadata as there are Number of matches.

CPCR common header

-
Number of matches (1 byte) – The number of matches indicates the number of CPCR header metadata present in the packet. No more than 255 compressed blocks can be present in a single compressed packet.

CPCR header metadata (4 bytes)

Each CPCR header metadata identifies a compressed block within the packet.

-
Distance to pointer (11 bits) – Length in bytes of the uncompressed block before this compressed block. It can cover a packet size up to 2048 bytes. The range is 0 to 2047, with a value of 0 indicating that there are no uncompressed bytes that precede this compressed block.

-
Lookback length (14 bits) – Distance in bytes to look back in APDC compression memory from the current end of APDC compression memory to find the replacement for the compressed block; it can reference a APDC compression memory capacity up to 16 kB. Valid values for this field range from 4 to 16383, for example, a value of 4 means that the match occurred with the last 5 bytes in APDC compression memory.

-
Length (7 bits) – Number of bytes to copy from APDC compression memory; match length is interpreted as Length + Minimum match length (5). Number of bytes to be copied can be as large as 132 bytes (27 + 5).

PMCR Header

[image: image24.emf]Number of Mismatches

Match lengthMismatch length

OptionLookback length

Lookback length

Length

Numof

mismatch

E

Match lengthMismatch length

...

PMCR header

PMCR header

metadata

PMCR common

header

Figure 7.2.4.1.2-3: PMCR Header format

The PMCR header consists of the following two parts:

-
PMCR common header – The first 3 bytes give the decompressor the location and length of the block to be copied from APDC compression memory (Lookback length and Length respectively) and the Number of mismatches within that copied block.

-
PMCR header metadata – 1 byte of metadata for each mismatched block of data in the copied section indicating Match length and Mismatch length. There are as many metadata bytes as there are Number of mismatches.

PMCR common header

-
Option (2 bits) – Set to 01; indicates that this is a PMCR header.

-
Extension (1 bit) – Set to 1 if the CPCR header follows. Set to 0 if no CPCR header follows.
-
Lookback length (10 bits) – Distance in words to look back in APDC compression memory from the current end of APDC compression memory to find the block to be copied. Distance in bytes = (Lookback length + 1) * 4 – 1. Valid values for this field range from 0 to 1023.
-
Number of mismatches (4 bits) – Number of the PMCR header metadata present in the packet. Valid values for this field range from 0 to 15. No more than 15 mismatched blocks can be present in the copied block. A value of 0 indicates that there are no mismatches in the copied block.
-
Length (7 bits) – Number of bytes to copy from APDC compression memory. Valid values for this field range from 1 to 127. The number of bytes to be copied can be as large as 127 bytes.
-
Note that the PMCR header can be used only when the compressor compresses the consecutive data block(s) that start from the first byte of the uncompressed packet.
PMCR header metadata (1 byte)

Each PMCR header metadata identifies a mismatched block within the copied block.

-
Match length (5 bits) – Length in bytes of the matched block. This length is counted from the end of the previous mismatched block or the start of the packet (for the first metadata). The range is 0 to 31, with a value of 0 indicating that there are no matched bytes that precede the mismatched block.

Mismatch length (3 bits) – Length in bytes of the mismatched block. This length is counted from the end of the matched block. The range is 0 to 7, with a value of 0 indicating that there are no mismatched bytes that follow the matched block. This block of bytes (as many as Mismatch Length) is found in the uncompressed bytes following the APDC header. Note that the mismatched block indicated by this field is found before the uncompressed bytes indicated by the CPCR header, if any.

Example compressor and decompressor algorithms are provided in Annex A.

Packet checksum failure

Figure 7.2.4.1.2-4 illustrates the behavior on checksum failure. See the text above for details of the checksum computation and packet action. Note that the decompressor continues to discard any compressed packets after the first checksum failure is observed until the packet with packet action = 101 (reset compression memory) is received.

If the packet with packet action = 101 is not received by the decompressor for some time (recommended value = 5 seconds) after the RRC Connection Reconfiguration Complete is received, then the decompressor should release APDC by sending RRC Connection Reconfiguration with APDC release.
If decompressor has sent two reset messages but encounters another checksum failure within a short time (e.g., one minute), the decompressor should release the APDC by sending RRC Connection Reconfiguration with APDC release.

[image: image25.emf]UEeNB

3. Indicate the UE to reset UDC compression buffer via

RRCConnectionReconfiguration

6. RRCConnectionReconfigurationComplete

8. Packet with packet action= 101

7. Resets buffer

2.Checksum failure

1.UDC context established and compression being done

9.eNB resets buffer

10. UDC continues with the new buffer

4. Compressed packet

5. Discard compressed packets

if packet action!= 101

Figure 7.2.4.1.2-4: Call flow on checksum failure

7.2.4.2
Simulation results

The compression memory is filled with all zeros in the beginning of the simulation. The same simulation results are obtained for setups with 8Kbyte and 32Kbyte compression buffer sizes. The results are shown below. Note that the simulation results consider all the overhead from the APDC header as specified in Section 7.2.4.1.

Table 7.2.4.2-1: Simulation results

	PCAP File #
	PCAP File
	Original Size (Bytes)
	Compressed Size (Bytes)
	Compression Efficiency

	1
	FTP- Client (CMCC)
	1211
	548
	54.74%

	2
	FTP- Server (CMCC)
	1782
	884
	50.39%

	3
	Online video (CMCC)
	13450
	5105
	62.04%

	4
	Long period video (CMCC)
	1371861
	295658
	78.44%

	5
	SIP UE1(CMCC)
	51020
	7337
	85.61%

	6
	SIP UE2 (CMCC)
	32680
	5827
	82.16%

	7
	SIP UE3 (CMCC)
	46688
	6561
	85.94%

	8
	Web surfing (CMCC)
	2381720
	767990
	67.75%

	9
	Video data (MediaTek)
	2453749
	638347
	73.98%

	10
	Long duration FTP (MediaTek)
	879630
	216910
	75.34%

	11
	Multiple IP flows (Qualcomm)
	5319100
	1312299
	75.32%

7.2.5
Compression Gain Enhancement Technique

7.2.5.1
Pre-defined dictionary

For SIP signalling case, the initial IMS registration related SIPs are not compressed in application layer and the first message of a VoLTE session only could be compressed partially if there is no data receive before. And in UDC solutions 2, 3, 4, cross-packets compressions (dynamic dictionary) are used which the first packet could not be compressed since there is no data for reference as a dictionary. To compress the initial IMS registration related SIPs and the first message of a VoLTE session, the pre-defined dictionary can potentially be used. Specification defined static dictionary (e.g. static dictionary defined in RFC 3485) or the third party pre-defined dictionary (e.g. operator defined dictionary) can be used in UDC.

The following is an example of specification defined static dictionary. In the Appendix A section in RFC 3485, it lists the SIP input strings that were used in generating the dictionary, as well as a priority value, the offset of the string in the generated dictionary, and the length of the string. The following is part of the static dictionary defined in RFC 3485:

Table 7.2.5.1-1: part of static dictionary defined in RFC 3485

	String
	Pr
	Off
	Len
	

	"sip:"
	1
	0CDD
	0004
	

	"sips:"
	3
	08AC
	0005
	

	"tel:"
	3
	08BD
	0004
	

	"SIP/2.0"
	1
	0CB9
	0007
	

	"SIP/2.0/UDP "
	1
	0CFE
	000C
	

	……
	
	
	
	

While use pre-defined dictionary, the compressor/de-compressor should copy the dictionary into the compression/decompression buffer and then start to compress/decompress data. It means the pre-defined data is just the initial data in the buffer, and new data in the packets would enter the buffer after compression/decompression.

Corresponding signalling procedure to support pre-defined dictionary can be discussed in next phase.

Pre-defined dictionary can potentially be used complementary to solution 2, 3 and 4.

7.3
Comparison of UL data compression solutions
The results from UDC solutions 2 to 4 show a similar trend in terms of the compression efficiency for simulated uplink input traffic. Wherein, about 40% to 50% compression efficiency is shown for FTP traffic, over 80% of compression efficiency is shown for SIP signalling and about 60% to 75% compression efficiency is shown for video traffic. Similarly, over 60% of compression efficiency can be obtained with web surfing data.

Simulation results are shown considering 8KBytes and 32KBytes buffer sizes. The buffer size has not shown a significant factor to the simulation results in terms of compression efficiency, although the performance with 32KBytes buffer shows a slight increase of gain compared to that of 8KBytes buffer case in UDC solution 2 and solution 3. No compression efficiency variation due to buffer size was observed in UDC solution 4.

Significant compression efficiency is shown with all UDC solutions when applying on mixed traffic profile. Simulation results for mixed traffic were derived based on combination of input traffic profiles as well as mixed traffic profile captured in a practical system. It can be observed that the compression efficiency of mixed traffic is between the compression efficiencies resulted from individual traffic profiles.

Compression efficiency of SIP signalling achieved with UL RoHC is around 5% while compression efficiency is achieved in the order of 50 to 80% on other traffic. It was noted that the compression efficiency by UL RoHC has correlation to the size of TCP/IP header ratio. If the TCP/IP header ratio is high, the compression efficiency achieved with RoHC is also high as expected from a header compression scheme.

Pre-defined dictionary can be used to compress the initial IMS registration related SIPs and the first message of a VoLTE session. Specification defined static dictionary (e.g. static dictionary defined in RFC 3485) or the third party pre-defined dictionary (e.g. operator defined dictionary) can be used in UDC.

A summary of the proposed UDC solutions (solution 2, 3 and 4) is below. Step 1 is the same for the three solutions. The main difference is in Steps 2 and 3. Solution 3 (Deflate) and solution 2 (Zlib) require Huffman encoding in Step 2, while solution 4 (APDC) mainly writes the matching and mismatching information into UDC headers and copy mismatched bytes to the compressed packet.

Table 7.3-1 Comparison of Compressor Side Computation Complexity

	
	Step 1
	Step 2
	Step 3

	Deflate (RFC 1951)
	Search for repeated strings from compression memory (e.g., LZ77).

	Huffman encoding.
	

	Zlib (RFC 1950)
	
	Huffman encoding.
	Add Zlib header; compute checksum for decompressor to verify decompression result.

	APDC
	
	Write the matching and mismatching information (like pointers) into APDC headers and copy mismatched bytes to the compressed packet.
	Compute checksum for decompressor to verify decompression result.

Table 7.3-2 Comparison: Decompressor side Computation complexity

	
	Step 1
	Step 2
	Step 3

	Deflate (RFC 1951)
	Huffman decoding.
	Copy matched bytes from compression memory to the decompressed packet (memory copy).
	

	Zlib (RFC 1950)
	Huffman decoding.
	
	Compute checksum to verify decompression result.

	APDC
	[Nothing]
	
	Compute checksum to verify decompression result.

The following remarks can be made based on the simulations:

Remarks on solutions:

-
Compression efficiency of UL RoHC depends on the size of TCP/IP header ratio and depending on the traffic input, RoHC could achieve significant compression efficiency up to 80%. For SIP signalling the compression efficiency of RoHC is around 5%.

-
RoHC is designed to fully exploit packet header format and would need to be updated should a new type of internet header emerge.

-
Solution 2 (Zlib) is an abstraction of solution 3 (Deflate) algorithm where a header and trailer bytes are added to the raw DEFLATE data.

-
Solution 2 (Zlib) adds some extra overhead to solution 3 (Deflate) protocol as header and trailer bytes are added to the raw DEFLATE data.

-
The possibility to manage the compression context memory as proposed in APDC could be expected to increase compression efficiency as packets with no or low level of redundancy could be excluded from the buffer.

-
Pre-defined dictionary could be used for SIP signalling compression in UDC. Potential gain of using pre-defined dictionary for SIP signalling compression is expected. However, impact of buffer and authentication when using pre-defined dictionary have not been investigated. Pre-defined dictionary can potentially be used complementary to solution 2, 3 and 4.

Remarks on comparisons of solutions:

-
A significant compression performance can be achieved with UDC solutions in UL for all types of traffic including FTP, SIP, video and web surfing in case 1 and case 2 type traffic scenarios.

-
Mixed traffic representing a nature of traffic in a practical system could also be compressed using UDC solution and significant compression efficiency can be achieved.

-
For the cases that RoHC does not achieve high compression efficiencies, all other UDC solutions provide compression efficiencies in the range from 60%-88%.

-
Among the simulated traffic types, solution 3 outperforms other solutions in terms of compression efficiencies in some cases while in some other cases solution 4 outperforms other solutions.

-
Solution 3 (Deflate) shows the best compression efficiencies for SIP signalling.

-
Solution 2 (Zlib) and solution 3 (Deflate) can be consolidated as a DEFLATE based solution.

-
For Zlib/DEFLATE based compression solutions (solution 2 and solution 3), multiple companies achieve consistent compression performance with the same configuration.

8
Conclusions

Four different solutions were studied in this study item for UDC.

Solution 1 is based on UL RoHC with TCP/IP profile has been standardized in rel-14 for LTE. RoHC is designed to fully exploit the packet header formats and the RoHC compression/decompression algorithms need to be updated should a new type of internet header emerge. Compression efficiency of UL RoHC depends on the size of TCP/IP header ratio. Depending on the input traffic types, RoHC could achieve significant compression efficiency up to 80%. For SIP signalling the compression efficiency of RoHC is around 5%.

Cross-checking was conducted for solution 2 and 3 and similar UDC results can be achieved by different vendors for the same configuration. Solution 2 and solution 3 can be consolidated to a DEFLATE based solution considering the commonality of the two solutions. The consolidated solution is based on the compression algorithm, DEFLATE [5].

Solution 4 (APDC) is based on a new compression algorithm named APDC which is described in section 7.2.4 and details of compressor and decompressor are defined in Annex A.

Pre-defined dictionary could be used for SIP signalling compression in UDC. Potential gain of using pre-defined dictionary for SIP signalling compression is expected. However impact of buffer and authentication when using pre-defined dictionary have not been investigated. Pre-defined dictionary can be used complimentarily to solution 2, 3 and 4.

The simulation results of UDC solution based on DEFLATE (solution 3) and Solution 4 (APDC) have shown a similar trend in terms of the compression efficiency for uplink on various input traffic profiles simulated including FTP, SIP signalling, video and web surfing in case 1 and case 2 type traffic scenarios. Wherein, about 40% to 50% compression efficiency is shown for FTP traffic, over 80% of compression efficiency is shown for SIP signalling and about 60% to 75% compression efficiency is shown for video traffic. Similarly, over 60% of compression efficiency can be obtained with web surfing data. From technical point of view, solution based on DEFLATE and solution based on APDC have shown significant and similar compression efficiency.

Both solutions based on DEFLATE and APDC are candidates for a UL data compression solution. However RAN2 recommends only one solution to be selected for specification in a potential Work Item (WI).

Annex A:
Example compressor and decompressor algorithms based on solution 4 (APDC)

An example compressor is illustrated in the figure below which includes key functions of the solution. Explanations of the figure are also provided below.

[image: image26.emf]Step 2a –PMCR: If decided to use PMCR to

represent the consecutive data block(s) that start

from the first byte of the uncompressed packet,

represent each matched and mismatched data

block using PMCR header metadata (there is at

most one PMCR header); Append mismatched data

blocks to the compressed packet payload in their

original order. See examples.

Start

Step 1a: search for the next

data block of the original

packet in the compression

memory

End

Input: Original Packet

for compression

Intermediate Output:

matched and

mismatched data blocks

Step 0: Push the part of the

packet that is to be compressed

into compression memory

Is the UDC header (excluding

the uncompressed data

portion) for this compressed

packet the same as the

previous packet’s UDC

header?

Yes

Step 3a: set common UDC

common header field “Pkt Action”

to ‘100’. Discard the other UDC

headers that are composed in the

previous steps.

Step 3b: store the

composed UDC headers

into the UDC Header

Memory

No

Output Compressed Packet: one

UDC common header + zero or one

PMCR header + zero or one CPCR

header. One PMCR header can

have multiple PMCR metadata. One

CPCR header can have multiple

CPCR metadata.

Is the data block of

original packet found in

the compression memory?

Yes

No

Step 1c: save

the size and

locations of

matched data

block

Is it the end of the data

length to be compressed

for this packet?

Yes

No

Step 1b: save

the

mismatched

data block

and save its

size

Is compression enabled?

Yes

No

Add UDC common header (1

Octet). Set Pkt Action to ‘000’

Is at least one matched

data block found?

Yes

No

Add UDC common header (1

Octet). Set Pkt Action to ‘001'

Step 2b -CPCR: For the other matched and

mismatched data blocks, represent each

matched and mismatched data block using

CPCR header formats. Append mismatched

data blocks to the compressed packet

payload in their original order. See examples.

Figure A-1: Example on Compressor Illustration

Intermediate output from Step 1: the original packet is divided into data blocks, each of which is either a matched or mismatched data block. The matched and mismatched data blocks are alternately present. The following figure is an example of an original uncompressed packet that is represented in this way.

Table A-1: Example uncompressed packet which is divided into matched and mismatched data blocks

	Matched data block #1: 7 bytes
	Mismatched data block #2: 1 bytes
	Matched data block #3: 9 bytes
	Mismatched data block #4: 2 bytes
	Matched data block #5: 11 bytes
	Mismatched data block #6: 3 bytes

The following table is the example compression memory from which the compressor found the matched data blocks as shown in the figure above.

Table A-2: Example Compression memory

	Memory Address
	Memory Content
	Note

	0x0000
	zeros
	Unused Memory

	0x0001
	zeros
	Unused Memory

	0x0002
	
	oldest content

	0x0003
	
	

	…
	
	

	addr3
	Matched data block #3: 9 bytes
	addr3 is the address of the first Octet in the matched data block.

	…
	
	

	addr5
	Matched data block #5: 11 bytes
	addr5 is the address of the first Octet in the matched data block.

	…
	
	

	addr1
	Matched data block #1: 7 bytes
	addr1 is the address of the first Octet in the matched data block.

	…
	
	

	maxMemEndAddr
	
	newest content. maxMemEndAddr is the address of the current end of compression memory and the maximum compression memory size.

Step 2: There are two header formats, PMCR and CPCR, to represent the matched and mismatched data blocks. The overhead of PMCR and CPCR can be different for different packets, due to the different patterns of matched and mismatched data blocks in different packets. It is up to the implementation to decide which header is best suitable for a given matched or mismatched data block. In Step 2a and Step 2b, we illustrate how to represent the example matched and mismatched data blocks above into PMCR and CPCR headers, respectively.

Step 2a (using CPCR header): The Table A-3 below illustrates the procedure to represent the packet in Table A-1 into CPCR header format.

Table A-3: Compressed data using CPCR header

	
	Field name
	Value/Content in the Field
	Note

	APDC CPCR header Fields
	Number of matches
	3
	

	
	Distance to pointer
	0
	Describes Matched data block #1

	
	Lookback length
	(maxMemEndAddr - addr1) in Words
	

	
	Length
	7
	

	
	Distance to pointer
	1 (due to Mismatched data block #2)
	Describes Matched data block #3

	
	Lookback length
	(maxMemEndAddr - addr3) in Words
	

	
	Length
	9
	

	
	Distance to pointer
	2 (due to Mismatched data block #4)
	Describes Matched data block #5

	
	Lookback length
	(maxMemEndAddr - addr5) in Words
	

	
	Length
	11
	

	Uncompressed mismatched data blocks
	 N/A
	Content of Mismatched data block #2: 1 byte
	uncompressed data block

	
	 N/A
	Content of Mismatched data block #4: 2 bytes
	uncompressed data block

	
	 N/A
	Content of Mismatched data block #6: 3 bytes
	uncompressed data block

Step 2a (using PMCR header): The Table A-4 below illustrates the procedure to represent the packet in Table A-1 into PMCR header format.

Table A-4: Compressed data using PMCR header

	
	Field name
	Value/Content in the Field
	Note

	APDC PMCR header Fields
	Lookback length
	(maxMemEndAddr - addr1) in Words
	PMCR common header

	
	Number of matches
	3
	

	
	Length
	7+1+9+2+11+3
	

	
	Matched Length
	7
	Describes data block #1 and #2

	
	Mismatched Length
	1
	

	
	Matched Length
	9
	Describes data block #3 and #4

	
	Mismatched Length
	2
	

	
	Matched Length
	11
	Describes data block #5 and #6

	
	Mismatched Length
	3
	

	Uncompressed mismatched data blocks
	N/A
	Content of Mismatched data block #2: 1 bytes
	uncompressed data block

	
	N/A
	Content of Mismatched data block #4: 2 bytes
	uncompressed data block

	
	N/A
	Content of Mismatched data block #6: 3 bytes
	uncompressed data block

For simplicity, the examples in this subsection show the values only for some fields of the compressed data. The detail examples in Annex B show the exact values of every field of the compressed data.

Based on the APDC headers, the decompressor copies data blocks from the compression memory to generate uncompressed packets. The decompressor examines the UL compressed packet to determine if the packet is compressed. If the packet is not compressed, it removes the header byte. If the packet is compressed, it performs decompression on the packet. An example decompressor as shown in the below figure A-2:

[image: image27.emf]Pkt Action !=

‘000’

Pkt Action =

‘001’

Yes

Yes

No

No

Update UL Comp

Memory with entire

packet

Start

Pkt Action =

‘010’?

Remove first

byte

Remove first

byte

Yes

End

Input : UL Comp

Packet

Output : Decompressed Packet

Packet

checksum

valid?

Yes

Error Handing

No

Pkt Action =

‘100’

Pkt Action =

‘100’

Yes

No (Pkt Action

= ‘101’)

Reset UL Comp

Memory with all

zeros

Remove first

byte

Update UL Comp

Memory with entire

packet

No (Only CPCR

header present)

Yes (PMCR header

present)

E= 1 in UDC

common

header?

Remove first 4

bytes

Remove first 2

bytes

Decompress

according to

PMCR header

E = 1 in PMCR

header?

Remove next 1

byte

Decompress

according to

CPCR header

Yes (CPCR header

present)

No

Packet_action

_010_011

Packet_action_010

_011

Start

End

No

Update UL Comp

Memory with packet

header

Pkt Action =

‘011’?

Update UDC header

Memory with UDC

header

Update UDC header

Memory with UDC

header

Packet_action

_010_011

Update UL Comp

Memory with entire

packet

Update UDC header

Memory with UDC

header

Update UDC header

Memory with UDC

header

Replace UDC header

with contents of UDC

header memory

Replace UDC header

with contents of UDC

header memory

Is previous

pkt Action =

‘010’?

Is previous

pkt Action =

‘010’?

Yes

No

No

Yes

Figure A-2: Example Decompressor Algorithm Flow Chart

Annex B:
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	New

	2017-04
	R2#97bis
	R2-1703223
	-
	-
	Skeleton TR proposal
	0.0.1

	2017-04
	R2#97bis
	R2-1704697
	-
	-
	Capturing agreements from R2#97bis
	0.0.2

	2017-05
	R2#98
	R2-1706191
	-
	-
	Capturing agreements from R2#98
	1.0.0

	2017-06
	RAN#76
	
	
	
	Approved and upgraded to Rel-15
	15.0.0

_1558796978.vsd
�

�

Compressed data bits

Dynmic
/Static

LAST

7

6

5

4

3

2

1

0

Byte

Compressed data bits ……

END

0

_1558796980.vsd
�

Number of Mismatches

Match length

Mismatch length

Option

Lookback length

Lookback length

Length

Num of mismatch

E

Packet action

Checksum

E

Bit 1

Distance to pointer

Distance to pointer

Lookback length

Lookback length

Lookback length

Length

...

Bit 2

Distance to pointer

Distance to pointer

Lookback length

Lookback length

Lookback length

Length

Bit 3

Match length

Mismatch length

...

Bit 4

Number of matches

Bit 5

Bit 6

:
Uncompressed data bytes
:

Bit 7

...

Bit 8

PMCR header

CPCR header metadata

PMCR header metadata

UDC header

CPCR header

UDC Common header

CPCR common header

PMCR common header

_1558796983.vsd
�

Text

�

Step 2a – PMCR: If decided to use PMCR to represent the consecutive data block(s) that start from the first byte of the uncompressed packet, represent each matched and mismatched data block using PMCR header metadata (there is at most one PMCR header); Append mismatched data blocks to the compressed packet payload in their original order. See examples.

_1563795957.vsd
Compression Entity

Packet to be compressed

b

a

b

c

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

_1558796984.vsd
�

�

�

Text

�

�

�

_1558796982.vsd
UE

eNB

8. Packet with packet action = 101

_1558796979.vsd
...

Reserved

Oct 1

F

Checksum

_1558796975.vsd
�

Zlib-based compressor with configurable buffer size (8K or 32K)

Source packet

Compressed packet in Zlib data format

_1558796977.vsd
Compression Entity

Compressed Packet

b

B110011

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

_1558796974.vsd

