Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN#63
TDoc RP-140246
Fukuoka, Japan, 3rd – 6th March 2014
Agenda Item:
20
Source:
Ericsson
Title:
Agile Standardization
Document for:
Discussion
1 Introduction

At RAN-62 in December it was discussed how to improve the release handling. In this paper we analyse primarily the RAN2 aspects and try to find ways for improving stability of the specifications, to reduce the workload due to maintenance issues and to lower the burden of bulk ASN.1 review at the end of a release.

We think that the proposals made in the remainder of the paper would primarily impact RAN2 while having limited impact to other RAN WGs and no impact outside of TSG RAN.
2 Situation Analysis
Traditionally, releases have been used to group a set of features. UEs implemented according to that release were expected to implement those features. Over the years, many features were agreed to be optional in order to allow implementing the individual features sequentially in accordance with market requirements. For the mandatory features, so-called IOT bits have been specified by which the NW is made aware whether the feature has been properly tested and can actually be used. One can observe that networks and UEs do not implement entire 3GPP releases but rather selected features in accordance with market demands.
3GPP TSGs discuss for each release which features to study and specify. While specification of some features can be completed quickly, others require a lot of work and discussions. However, the current release- and CR- handling prevents implementing all features until the functionality and the signalling (ASN.1) of the release are considered frozen.
In RAN2 we postpone the effort of reviewing signalling and other details until all features are considered ready and then do a bulk review which requires lots of efforts, is complex and therefore error prone. As seen in Figure 1, different kinds of correction phases can be distinguished. Errors are usually introduced in specifications when early versions of CRs are implemented towards the end of a release. This applies in particular for features which are functionally not mature upon the upcoming release freeze date. Most of these errors get fortunately fixed during the final reviews and during the ASN.1 review (which often fixes more than just ASN.1 errors). Then, RAN plenary declares a release to be ASN.1 frozen. We usually have a substantial amount of corrections after the ASN.1 freeze for a couple of meeting cycles.
As a result of this we typically have a number of specification versions on the public 3GPP servers that are technically incorrect, broken and not implementable. This applies basically to all specification versions created prior to the ASN.1 freeze. No network or UE shall be implemented according to any of these specifications since non-backwards compatible changes may still occur. However, as of today, this is not visible from the actual specifications (word documents) that are available on the 3GPP server. We consider this as bad practice and would prefer that any publically released specification version is considered stable and implementable (at least if it has a version number that indicates completeness such as e.g. “11.1.0”).

Further corrections are usually proposed and agreed when vendors actually start implementing the feature and observe issues. Luckily, most of the related CRs are clarifications rather than corrections and hardly any of them require non-backward compatible changes. If RAN4/5 tests as well as IOT had good test coverage, the errors are usually fixed before any UE entered the market with the corresponding capability/IOT signalling enabled. Therefore, it is still possible to fix the error/ambiguity from the release in which the feature was implemented and in all subsequent releases by shadow CRs. However, if a feature was not deployed for many years (e.g. some inter-RAT related functionality specified in Rel-8), we often decide in WGs to correct the feature only from a later release. This does not seem to be due to a desire not to interfere with earlier UE implementations, as those did not exist anyway, but rather to avoid touching a “deep frozen” release.
[image: image1.emf]Rel-8 ASN.1 freeze

Rel-9 ASN.1 freeze

Rel-10 ASN.1 freeze**

Rel-8 freeze

Rel-9 freeze

Rel-10 freeze

Rel-11 freeze

Rel-11 ASN.1 freeze

total = UTRA (<REL-9) + REL-8 LTE + REL-9/10/11/12 (LTE&UTRA)

0

50

100

150

200

250

300

350

400

#37 #38 #39 #40 #41 #42 #43 #44 #45 #46 #47 #48 #49 #50 #51 #52 #53 #54 #55 #56 #57 #58 #59 #60 #61 #62

total CRs (all cat., all REL) REL-8 LTE WI CRs REL-9 CRs (incl. cat.A) UTRA CRs (<REL-9)

REL-10 CRs (incl. cat.A) REL-11 CRs (incl. cat.A) REL-12 CRs (incl. cat.A)

Figure 1: Number of RAN2 CRs per release

Not only corrections and clarifications but also functional modifications and completely new functionality are added to older releases. This is usually done for enhancements that are considered particularly important or urgent. We think that this is to some extent the consequence of the way we are handling the “current” release: As elaborated above, the specifications of the “current” release are usually not implementable until after the ASN.1 freeze. Therefore, urgent enhancements are often added to an older release. Nevertheless, enhancements of some features are not introduced to the release where the original feature was introduced but to an intermediate release. And sometimes we add a magic sentence to the specification indicating that also UEs of a release earlier than the one where we introduce it, may support the functionality. It should be apparent that this way of spreading features, enhancements and corrections over multiple releases is cumbersome, time consuming and error prone. And it becomes even more difficult when features that have a strong interrelation to each other are introduced in different releases.

It has recently been proposed to enforce shorter release cycles (e.g. 18 or 12 months) and to include only the features that are considered stable and ready to freeze at the end of such a cycle. Features that are not yet ready would slip to the next release. While this approach alone could possibly reduce the delay experienced by (early) features, it still requires reviewing the functionality and ASN.1 of all features finalized during the release in a block. Another drawback is that shorter releases will also increase the number of legacy CRs and hence the number of shadow CRs. Finally, it would not address the issue of late additions to frozen releases.
3 Lessons learned in software development
Traditionally, software was developed in long release cycles. Based on an existing code base, designers developed new functionality autonomously from each other and decoupled from the baseline which evolved e.g. due to error corrections. During a long development phase, huge amounts of new but usually untested functionality piled up which then had to be merged with each other and with the most recent baseline (trunk) and tested in its entirety… referred to as "integration hell".
To overcome these problems, a modern and widely applied principle of software development is to commit small changes often (see e.g. an article on Continuous Integration). However, even though changes are released frequently, the “trunk” must always compile and be error free.
In the following we make an attempt to translate such well-established software development paradigms to 3GPP specifications and release handling.

4 Agile Standardization
4.1 Paradigms
Taking into account the currently observed issues and in accordance with well-established software development paradigms we propose to discuss the following release- and feature handling.

One of the basic principles of software development is that “the trunk must always compile and be error free”. We believe that 3GPP should adopt this concept in the following way:

Proposal 1 The latest set of specifications of the current release shall at any point in time be technically correct, consistent and implementable (including ASN.1) and must not be subject to non-backwards compatible changes.

This applies even for a new release. When the first set of specifications belonging to a new release are introduced and published on the 3GPP server, they shall be implementable. This may imply that, compared to the latest version of the previous release, nothing but the release number on the cover page or e.g. a release indicator in ASN.1 has been incremented. Optionally, new functionality may be added.
In order to achieve Proposal 1, it is vital that new functionality is added only if it is complete and verified before being added to the specifications including ASN.1 signalling. To achieve that we propose the following:
Proposal 2 For each new feature the working groups create and maintain running CRs for the affected specifications and ensure that they are updated every quarter according to the latest approved version of the specifications and with the latest agreements for the particular feature.
Proposal 3 Only when all running CRs of all working groups including ASN.1 are considered stable and error free, the WI is considered complete and the CRs are approved by RAN plenary and implemented in specifications.
This review- and approval process is expected and desired to happen asynchronously for different work items. That means, some features are completed early and can be implemented and “released” early whereas others are released late.
We consider it a clear advantage that functionality can be implemented as soon as a feature is stable rather than having to postpone the product development until after a bulk ASN.1 freeze at the end of the release.

As discussed in section 2, the handling of multiple parallel releases and the introduction of new functionality to frozen releases is cumbersome and error prone both for working groups as well as for product design. It would therefore be desirable to avoid this overhead. When ensuring that the latest set of specifications is always consistent and implementable (see Proposal 1), it is possible to implement products according to that version. Consequently, there is no need to add new functionality to an older release so that we propose the following:
Proposal 4 Modifications, new functionality and clarifications are only added to the current release.
And going a bit further, even most corrections could be applied only to the current release and not to legacy releases. Product units would then (only) need to follow the latest version of the current release of the specification rather than all releases. However, in some rare cases it may be preferable to add corrections to legacy releases. It obviously results in less workload as there are no or at least significantly less shadow CRs and consequently less specification documents to be maintained.

Proposal 5 Only essential Corrections may be considered for legacy releases.
When applying the proposals above, one could argue that the concept of 3GPP releases is no longer needed at all. We actually argued in that way in [1]. However, we also realize that 3GPP is very much used to introducing new functionality in releases and we see benefits in that as well. Therefore, we focus in this document on ways to ease the specification- and CR- handling from a WG perspective without affecting the well-established release cycles.

Further details on the impact and realization of these proposals are provided in section 7.

5 Conclusion

Based on the discussion above we suggest discussing and evaluating whether it would be feasible and desirable to adopt the following principles:

Proposal 1
The latest set of specifications of the current release shall at any point in time be technically correct, consistent and implementable (including ASN.1) and must not be subject to non-backwards compatible changes.
Proposal 2
For each new feature the working groups create and maintain running CRs for the affected specifications and ensure that they are updated every quarter according to the latest approved version of the specifications and with the latest agreements for the particular feature.
Proposal 3
Only when all running CRs of all working groups including ASN.1 are considered stable and error free, the WI is considered complete and the CRs are approved by RAN plenary and implemented in specifications.
Proposal 4
Modifications, new functionality and clarifications are only added to the current release.
Proposal 5
Only essential Corrections may be considered for legacy releases.

We think that these proposals could help to overcome the issues outlined in section 2. Proposal 2 and Proposal 3 will help to enable Proposal 1 and consequently also Proposal 4 and Proposal 5 which will in turn reduce the effort spent on legacy releases.

We would also like to point out that the proposals are compatible with and do not impact the release handling in 3GPP. However, Proposal 2 and Proposal 3 allow implementing features into specifications and products as soon as they are ready and not only by the end of the release.

We think that the approach would primarily impact RAN2 while having limited impact to other RAN WGs and no impact outside of TSG RAN.
The intention of this document is not to agree to the proposed approach at this meeting but rather to trigger discussions and to collect valuable feedback.
6 References
[1] RP-132032, “The never-ending release”, Ericsson, RAN-62, Busan, Korea, December 2014

7 Annex: Practical realization

In this section we provide further details on the practical realization of the proposals above.
7.1 Upgrading products to the latest release

By adding new functionality and modifications only to the latest release of the specification, the maintenance effort in RAN2 will be reduced as explained in section 4.1. However, it will have an impact on the implementation of those changes in products as will be illustrated in the following example: MFBI was introduced in Rel-8 for LTE in July 2012 (36.331 v8.17.0). In order to support MFBI, UEs and networks had to implement the newly introduced Rel-8 signalling and of course all the related functionality and procedures.

In the same plenary meeting the release 11 specifications were created (36.331 v11.0.0). Following Proposal 4, MFBI would have been introduced either in Rel-10 (which was still the “current” release) or into Rel-11 specifications which were created in that meeting. An implementation would consequently need to support ASN.1 up to Rel-10 or Rel-11 in order to implement MFBI. At a first glance this might be considered an issue. But taking into account that MFBI is about to enter the market today, it seems feasible to support ASN.1 as defined in July 2012.

For this particular example one should note that MFBI was added to Rel-8 as lateNonCriticalExtensions to SIBs. If this had been done in Rel-10/11 specifications, the UE would not need to indicate Rel-10/11 compliance in its UE capabilities in order to support MFBI. We therefore think that the concept of lateNonCriticalExtensions could still be used on a case by case basis where considered appropriate and beneficial.

In general, upgrading a UE to Rel-10 or Rel-11 also requires implementing the mandatory features of that release. As mentioned in section 2, most features are optional today. And even for most of the mandatory features we defined FGI bits (up to Rel-10) or Capability/IOT bits (Rel-11) so that a UE vendor that could not yet perform IOT can indicate this to the NW. Nevertheless, there are a couple of mandatory features in Rel-10 and 11 for which there is no IOT signalling (e.g. in MAC). This is acceptable if the NW does not need to know whether or not a UE supports the functionality since it is transparent for the NW. But for all other cases we would encourage introducing explicitly capability signalling in the future… no matter whether the proposals in section 4.1 are adopted or not. This ensures that a NW can verify whether a UE was properly IOTed for a mandatory feature or not.
7.2 CR Handling

The approach outlined in this document would be more compliant with the 3GPP working methods defined in TR21.900 - especially the parts describing the Change Request (CR) handling. 21.900 distinguishes frozen and non-frozen releases. According to TR21.900 Table 4A, CRs of category B (Addition or deletion of feature), category C (Functional modification of feature) and category D (Editorial modification) are not permitted for a frozen release. However, as of today this rule is ignored each time we add new functionality or modify existing functionality in frozen releases.

With the approach outlined in section 4.1, only essential corrections would be applied in frozen releases as required by 21.900. Furthermore, the current version of the specification would be stable and not be subject to non-backwards compatible changes. However, the current release is not frozen and therefore new functionality may be added (Proposal 4) until the point in time when the specifications of the following release are created. Therefore, we think that the approach would be fully in-line with the working methods defined in 21.900.
7.3 UE Capability signalling
As already practiced today, it is vital to have capability/IOT indicators per feature. This allows the network to apply (dedicated) signalling which the UE is able to comprehend even if new functionality is added continuously to a release.

It is also essential that UEs set those capability bits to true only after performing sufficient testing. This ensures that possible errors or ambiguities in specifications are discovered and corrected before terminals claiming support entered the market. In the hopefully unlikely case that such “broken” UEs have entered the market and cannot be updated over the air, it might be required to distinguish these from UEs implemented according to the corrected specifications. If the correction is done in a later release, it is possible to do this distinction by the release indicator. However, it may be considered cleaner to introduce a new capability indicator for the same feature by which the NW can identify UE implemented according to the corrected specification.

If a critical extension is introduced, the eNB needs to know whether the UE supports the critically extended (DL) message or not. Today, such extensions are usually introduced during ASN.1 freeze. The eNB can determine support for the extension based on the release indicator provided by the UE. If critical extensions are introduced in the middle of a release, the eNB needs to know which UE of that release supports it. If the critical extension is introduced exclusively as part of a new feature, the capability signalling of that feature might be sufficient for the eNB to understand whether the UE supports that critical extension or not. However, when the critical extension affects multiple features, some kind of capability indication would be needed. This could be a version number that is basically incremented in each quarter or a capability bit indicating support for the critical extension as such.

It is also worth noting that the paradigm proposed in section 4.1 would not prevent 3GPP from mandating selected features. As already done for Rel-11, this does not have an impact on the actual capability signalling, but only requires a corresponding statement in 36.306.

7.4 Inter-eNB signalling

Another aspect to consider is the handling of the ue-ConfigRelease contained in the HandoverPreparationInformation. According to 36.331, this field “indicates the RRC protocol release applicable for the current UE configuration” and it “could be used by target eNB to decide if the full configuration approach should be used”. If new functionality is added continuously to a release, this field might no longer serve its purpose: an eNB implementing an older version of the release might not comprehend the RRC configuration (as-Config) generated by another eNB of the same release but newer version. One could require the target eNB to verify autonomously whether it can comprehend the incoming HandoverPreparationInformation and if it cannot, to apply a full configuration. However, a cleaner approach seems to be to add a version (ue-ConfigVersion) which is incremented with every version (not release) of e.g. 36.331.

7.5 ASN.1 signalling

Another aspect that should be investigated is the impact on the ASN.1 message size if new information elements can be added in each quarter. Each NCE container causes a certain overhead in the encoding due to ASN.1-internal length indicators - typically something like 12 to 16 bits. Extension addition groups ([[]]) are used today to reduce the number of ASN.1 internal length indicators and thereby the signalling overhead. If features and the corresponding signalling are added asynchronously, there will be less possibilities for reducing overhead by using extension addition groups. Absence of extension addition groups (as RAN2 has used them so far) therefore increases the encoding overhead. However, as evaluated in R2-131676, the main part of overhead (caused by wrappers) belongs to different types of lists and it turned out that 90% of the overhead was in lists. Therefore, one should avoid using extension markers (i.e. wrappers) in lists if overhead is deemed to be an issue. On the other hand, the slightly reduced benefit of reducing overhead by means of extension addition groups does not seem to be an issue. One should nevertheless maintain the habit of adding double-brackets for extensions because they have been used already from the beginning and they still contain some information for the reader.
It should also be discussed how to deal with late non-critical extensions. So far there is a late NCE container in all messages (except for RRCConnectionRequest and RRCConnectionReestablishmentRequest) and they are supposed to be used very seldom. We assume that the same late NCEs can still be used and the intention should also be to use it rarely in important cases.

4/6

