3GPP TS 29.198-5 V.6.5.0 (2006-06)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;
Open Service Access (OSA);

Application Programming Interface (API);

Part 5: User interaction Service Capability Feature (SCF)

(Release 6)

[image: image1.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

7Foreword

Introduction
7
1
Scope
9
2
References
9
3
Definitions and abbreviations
10
3.1
Definitions
10
3.2
Abbreviations
10
4
Generic and Call User Interaction and Administration SCF
10
4.1
Generic and Call User Interaction SCF
10
4.2
Generic User Interaction Administration SCF
11
4.3
Generic User Interaction SCF Design Aspects
11
4.4
General requirements on support of methods
12
5
Sequence Diagrams
12
5.1
Generic and Call User Interaction Sequence Diagrams
12
5.1.1
Alarm Call
12
5.1.2
Call Barring 1
14
5.1.3
Network Controlled Notifications
15
5.1.4
Prepaid
17
5.1.5
Pre-Paid with Advice of Charge (AoC)
19
5.2
Generic User Interaction Administration Sequence Diagrams
22
5.2.1
Message Administration
22
6
Class Diagrams
23
6.1
Generic and Call User Interaction Class Diagrams
23
6.2
Generic User Interaction Administration Class Diagrams
24
7
The Service Interface Specifications
26
7.1
Interface Specification Format
26
7.1.1
Interface Class
26
7.1.2
Method descriptions
26
7.1.3
Parameter descriptions
26
7.1.4
State Model
26
7.2
Base Interface
27
7.2.1
Interface Class IpInterface
27
7.3
Service Interfaces
27
7.3.1
Overview
27
7.4
Generic Service Interface
27
7.4.1
Interface Class IpService
27
7.4.1.1
Method setCallback()
27
7.4.1.2
Method setCallbackWithSessionID()
28
8
Generic User Interaction Interface Classes
28
8.1
Generic and Call User Interaction Interface Classes
28
8.1.1
Interface Class IpUIManager
28
8.1.1.1
Method createUI()
29
8.1.1.2
Method createUICall()
29
8.1.1.3
Method createNotification()
30
8.1.1.4
Method destroyNotification()
31
8.1.1.5
Method changeNotification()
31
8.1.1.6
Method getNotification()
31
8.1.1.7
Method enableNotifications()
32
8.1.1.8
Method disableNotifications()
32
8.1.2
Interface Class IpAppUIManager
33
8.1.2.1
Method userInteractionAborted()
33
8.1.2.2
Method userInteractionNotificationInterrupted()
33
8.1.2.3
Method userInteractionNotificationContinued()
33
8.1.2.4
Method reportEventNotification()
34
8.1.2.5
Method <<new>> abortMultipleUserInteractions()
34
8.1.3
Interface Class IpUI
34
8.1.3.1
Method sendInfoReq()
35
8.1.3.2
Method sendInfoAndCollectReq()
36
8.1.3.3
Method release()
37
8.1.3.4
Method <<new>> setOriginatingAddress()
37
8.1.3.5
Method <<new>> getOriginatingAddress()
38
8.1.4
Interface Class IpAppUI
38
8.1.4.1
Method sendInfoRes()
39
8.1.4.2
Method sendInfoErr()
39
8.1.4.3
Method sendInfoAndCollectRes()
39
8.1.4.4
Method sendInfoAndCollectErr()
40
8.1.4.5
Method userInteractionFaultDetected()
40
8.1.5
Interface Class IpUICall
40
8.1.5.1
Method recordMessageReq()
41
8.1.5.2
Method deleteMessageReq()
41
8.1.5.3
Method abortActionReq()
42
8.1.5.4
Method <<new>> getMessageReq()
42
8.1.6
Interface Class IpAppUICall
43
8.1.6.1
Method recordMessageRes()
43
8.1.6.2
Method recordMessageErr()
44
8.1.6.3
Method deleteMessageRes()
44
8.1.6.4
Method deleteMessageErr()
44
8.1.6.5
Method abortActionRes()
44
8.1.6.6
Method abortActionErr()
45
8.1.6.7
Method <<new>> getMessageRes()
45
8.1.6.8
Method <<new>> getMessageErr()
45
8.2
Generic User Interaction Administration Interface Classes
46
8.2.1
Interface Class IpUIAdminManager
46
8.2.1.1
Method <<new>> getMessageReq()
46
8.2.1.2
Method <<new>> putMessageReq()
46
8.2.1.3
Method <<new>> deleteMessageReq()
47
8.2.1.4
Method <<new>> getMessageListReq()
47
8.2.2
Interface Class IpAppUIAdminManager
48
8.2.2.1
Method <<new>> getMessageRes()
48
8.2.2.2
Method <<new>> getMessageErr()
49
8.2.2.3
Method <<new>> deleteMessageRes()
49
8.2.2.4
Method <<new>> deleteMessageErr()
49
8.2.2.5
Method <<new>> putMessageRes()
49
8.2.2.6
Method <<new>> putMessageErr()
50
8.2.2.7
Method <<new>> getMessageListRes()
50
8.2.2.8
Method <<new>> getMessageListErr()
50
9
State Transition Diagrams
50
9.1
Generic and Call User Interaction State Transition Diagrams
50
9.1.1
State Transition Diagrams for IpUIManager
50
9.1.1.1
Active State
51
9.1.1.2
Notification Terminated State
51
9.1.2
State Transition Diagrams for IpUI
51
9.1.2.1
Active State
52
9.1.2.2
Release Pending State
52
9.1.2.3
Finished State
52
9.1.3
State Transition Diagrams for IpUICall
52
9.1.3.1
Active State
53
9.1.3.2
Release Pending State
53
9.1.3.3
Finished State
53
9.2
Generic User Interaction Administration State Transition Diagrams
54
9.2.1
State Transition Diagrams for IpUIAdminManager
54
9.2.1.1
Active State
54
10
Service Properties
55
10.1
User Interaction Service Properties
55
11
Data Definitions
55
11.1
TpUIFault
55
11.2
IpUI
55
11.3
IpUIRef
56
11.4
IpAppUI
56
11.5
IpAppUIRef
56
11.6
IpAppUIManager
56
11.7
IpAppUIManagerRef
56
11.8
TpUICallIdentifier
56
11.9
TpUICollectCriteria
56
11.10
TpUIError
58
11.11
TpUIEventCriteria
58
11.12
TpUIEventCriteriaResultSet
58
11.13
TpUIEventCriteriaResult
58
11.14
TpUIEventInfoDataType
59
11.15
TpUIIdentifier
59
11.16
TpUIIdentifierSet
59
11.17
TpUIInfo
59
11.18
TpUIInfoType
60
11.19
TpUIMessageCriteria
60
11.20
TpUIReport
61
11.21
TpUIResponseRequest
61
11.22
TpUITargetObjectType
61
11.23
TpUITargetObject
62
11.24
TpUIVariableInfo
62
11.25
TpUIVariableInfoSet
62
11.26
TpUIVariablePartType
62
11.27
TpUIEventNotificationInfo
63
11.28
TpUISynthesisInfoData
63
11.29
TpUISynthesisGender
63
11.30
TpUISynthesisAge
63
11.31
TpUISynthesisRate
64
11.32
TpUISynthesisRange
64
11.33
TpUIWordOverrideSet
64
11.34
TpUIWordOverride
64
11.35
TpUIPronounceType
64
11.36
TpUICollectMode
65
11.37
TpUIRecognitionCriteria
65
11.38
TpUIRecognitionSpeakerID
65
11.39
TpUIRecognitionPropertySet
65
11.40
TpUIRecognitionProperty
65
11.41
TpUIRecognitionGrammar
66
11.42
TpMessageIDList
67
12
Exception Classes
67
Annex A (normative):
OMG IDL Description of User Interaction SCF
68
Annex B (informative):
WSDL Description of User Interaction SCF
69
Annex C (informative):
Java™ API Description of the User Interaction SCF
70
Annex D (informative):
Description of Generic User Interaction SCF for 3GPP2 cdma2000 networks
71
D.1
General Exceptions
71
D.2
Specific Exceptions
71
D.2.1
Clause 1: Scope
71
D.2.2
Clause 2: References
71
D.2.3
Clause 3: Definitions and abbreviations
71
D.2.4
Clause 4: Generic and Call User Interaction SCF
71
D.2.5
Clause 5: Class Diagrams
71
D.2.6
Clause 6: Class Diagrams
72
D.2.7
Clause 7: The Service Interface Specifications
72
D.2.8
Clause 8: Generic User Interaction Interface Classes Definitions
72
D.2.9
Clause 9: State Transition Diagrams
72
D.2.10
Clause 10: Service Properties
72
D.2.11
Clause 11: Data Definitions
72
D.2.12
Clause 12: Exception Classes
72
D.2.13
Annex A (normative): OMG IDL Description of Generic User Interaction SCF
72
D.2.14
Annex B (informative): W3C WSDL Description of Generic User Interaction SCF
72
D.2.15
Annex C (informative): Java™ API Description of Generic User Interaction SCF
72
Annex E (informative):
Change history
73

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 5 of a multi-part TS covering the 3rd Generation Partnership Project: Technical Specification Group Core Network and Terminals; Open Service Access (OSA); Application Programming Interface (API), as identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1:
"Overview";

Part 2:
"Common Data Definitions";

Part 3:
"Framework";

Part 4:
"Call Control";

Sub-part 1: "Call Control Common Definitions";

Sub-part 2: "Generic Call Control SCF";

Sub-part 3: "Multi-Party Call Control SCF";

Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF";
(not part of 3GPP Release 6)

Part 5:
"User Interaction SCF";

Part 6:
"Mobility SCF";

Part 7:
"Terminal Capabilities SCF";

Part 8:
"Data Session Control SCF";

Part 9:
"Generic Messaging SCF";
(not part of 3GPP Release 6)

Part 10:
"Connectivity Manager SCF";
(not part of 3GPP Release 6)

Part 11:
"Account Management SCF";

Part 12:
"Charging SCF".

Part 13:
"Policy Management SCF";

Part 14:
"Presence and Availability Management SCF";

Part 15:
"Multi Media Messaging SCF".

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above. A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

	OSA API specifications 29.198-family
	OSA API Mapping - 29.998-family

	29.198-01
	Overview
	29.998-01
	Overview

	29.198-02
	Common Data Definitions
	29.998-02
	Not Applicable

	29.198-03
	Framework
	29.998-03
	Not Applicable

	Call Control (CC) SCF
	29.198-04-1

Common CC data definitions
	29.198-04-2

Generic CC SCF
	29.198-04-3

Multi-Party CC SCF
	29.198-04-4

Multi-media CC SCF
	29.998-04-1
	Generic Call Control – CAP mapping

	
	
	
	
	
	29.998-04-2
	Generic Call Control – INAP mapping

	
	
	
	
	
	29.998-04-3
	Generic Call Control – Megaco mapping

	
	
	
	
	
	29.998-04-4
	Multiparty Call Control – ISC mapping

	29.198-05
	User Interaction SCF
	29.998-05-1
	User Interaction – CAP mapping

	
	
	29.998-05-2
	User Interaction – INAP mapping

	
	
	29.998-05-3
	User Interaction – Megaco mapping

	
	
	29.998-05-4
	User Interaction – SMS mapping

	29.198-06
	Mobility SCF
	29.998-06
	User Status and User Location – MAP mapping

	29.198-07
	Terminal Capabilities SCF
	29.998-07
	Not Applicable

	29.198-08
	Data Session Control SCF
	29.998-08
	Data Session Control – CAP mapping

	29.198-09
	Generic Messaging SCF
	29.998-09
	Not Applicable

	29.198-10
	Connectivity Manager SCF
	29.998-10
	Not Applicable

	29.198-11
	Account Management SCF
	29.998-11
	Not Applicable

	29.198-12
	Charging SCF
	29.998-12
	Not Applicable

	29.198-13
	Policy Management SCF
	29.998-13
	Not Applicable

	29.198-14
	Presence & Availability Management SCF
	29.998-14
	Not Applicable

	29.198-15
	Multi Media MessagingSCF
	29.998-15
	Not Applicable

1
Scope
This document is Part 5 of the Stage 3 specification for an Application Programming Interface (API) for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the User Interaction (UI) Service Capability Feature (SCF) aspects of the interface. All aspects of the User Interaction SCF are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

· IDL Description of the interfaces

· WSDL Description of the interfaces

· Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and the Parlay Group, in co-operation with a number of JAIN™ Community member companies.

2
References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

[2]
3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3]
3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4]
Speech Recognition Grammar Specification Version 1: http://www.w3.org/TR/2004/REC-speech-grammar-20040316/
3
Definitions and abbreviations
3.1
Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2
Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4
Generic and Call User Interaction and Administration SCF

4.1
Generic and Call User Interaction SCF

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of three interfaces:

1)
User Interaction Manager, containing management functions for User Interaction related issues.

2)
Generic User Interaction, containing methods to interact with an end-user.

3)
Call User Interaction, containing methods to interact with an end-user engaged in a call.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods belong.

Table 1: Overview of Generic User Interaction interfaces and their methods

	User Interaction Manager
	Generic User Interaction

	createUI
	sendInfoReq

	createUICall
	sendInfoRes

	createNotification
	sendInfoErr

	destroyUINotification
	sendInfoAndCollectReq

	reportEventNotification
	sendInfoAndCollectRes

	userInteractionAborted
	sendInfoAndCollectErr

	userInteractionNotificationInterrupted
	release

	userInteractionNotificationContinued
	userInteractionFaultDetected

	changeNotification
	

	getNotification
	

	enableNotifications
	

	disableNotifications
	

	abortMultipleUserInteractions
	

The following table gives an overview of the Call User Interaction methods and to which interfaces these methods belong.

Table 2: Overview of Call User Interaction interfaces and their methods

	User Interaction Manager
	Call User Interaction

	As defined for the Generic User Interaction SCF
	Inherits from Generic User Interaction and adds:

	
	recordMessageReq

	
	recordMessageRes

	
	recordMessageErr

	
	deleteMessageReq

	
	deleteMessageRes

	
	deleteMessageErr

	
	abortActionReq

	
	abortActionRes

	
	abortActionErr

	
	getMessageReq

	
	getMessageRes

	
	getMessageErr

The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.

4.2
Generic User Interaction Administration SCF

The Generic User Interaction Administration service capability feature is used by application to interact with the service to manage the user announcement and recorded messages. It consists of one interface:

1) User Interaction Administration Manager, containing message management functions for User Interaction.

Table 3: Overview of Generic User Interaction Administration interfaces and their methods

	User Interaction Administration Manager

	getMessageReq

	putMessageReq

	deleteMessageReq

	getMessageListReq

4.3
Generic User Interaction SCF Design Aspects

The following clauses describe each aspect of the Generic User Interaction and Generic User Interaction Administration Service Capability Features (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the SCFs is implemented.

· The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part. This clause also includes Call User interaction.

· The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The Data Definitions clause shows a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

4.4
General requirements on support of methods

An implementation of this API which supports or implements a method described in the present document, shall support or implement the functionality described for that method, for at least one valid set of values for the parameters of that method.

Where a method is not supported by an implementation of a Service interface, the exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where a method is not supported by an implementation of an Application interface, a call to that method shall be possible, and no exception shall be returned.

5
Sequence Diagrams

5.1
Generic and Call User Interaction Sequence Diagrams

5.1.1
Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image2.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 : IpUIManager

 :

IpAppUICall

 : (Logical

View::IpAppLogic)

5: routeRes()

10: sendInfoRes()

1: new()

2: createCall()

3: new()

4: routeReq()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

11: 'forward event'

12: release()

13: release()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met it is created.

4:
This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'.

5:
This message passes the result of the call being answered to its callback object.

6:
This message is used to forward the previous message to the IpAppLogic.

7:
The application requests a new UICall object that is associated with the call object.

8:
Assuming all criteria are met, a new UICall object is created by the service.

9:
This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10:
When the announcement ends this is reported to the call back interface.

11:
The event is forwarded to the application logic.

12:
The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played.

13:
The application releases the call and all associated parties.

5.1.2
Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image3.wmf] : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

1: new()

13: routeRes()

14: 'forward event'

12: routeReq()

15: callEnded()

16: "forward event"

17: deassignCall()

8: sendInfoAndCollectReq()

11: release()

6: createUICall()

7: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

9: sendInfoAndCollectRes()

10: 'forward event'

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives, a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7:
Provided all the criteria are fulfilled, a new UICall object is created.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
This message releases the UICall object.

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party.

13:
This message passes the result of the call being answered to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly.

16:
The event is forwarded to the application.

17:
The application must free the call related resources in the gateway by calling deassignCall.

5.1.3
Network Controlled Notifications

The following sequence diagram shows how an application can receive notifications that have not been created by the application, but are provisioned from within the network.

[image: image4.wmf]AppLogic

 : IpAppUIManager

 : IpUIManager

1: new ()

2: enableNotifications()

3: reportNotification()

4: 'forward event'

5: reportNotification()

6: 'forward event'

7: disableNotifications()

1:
The application is started. The application creates a new IpAppUIManager to handle callbacks.

2:
The enableNotifications method is invoked on the IpUIManager interface to indicate that the application is ready to receive notifications that are created in the network. For illustrative purposes we assume notifications of type "B" are created in the network.

3:
When a network created trigger occurs the application is notified on the callback interface.

4:
The event is forwarded to the application.

5:
When a network created trigger occurs the application is notified on the callback interface.

6:
The event is forwarded to the application.

7:
When the application does not want to receive notifications created in the network anymore, it invokes disableNotifications on the IpMultiPartyCallConrolManager interface. From now on the gateway will not send any notifications to the application that are created in the network.

5.1.4
Prepaid

This sequence shows a Pre-paid application. The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image5.wmf]Prepaid : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

7: routeReq()

10: superviseCallReq()

13: superviseCallReq()

6: superviseCallReq()

21: superviseCallReq()

24: release()

17: sendInfoReq()

20: release()

16: createUICall()

18: sendInfoRes()

19: "forward event"

5: new()

8: superviseCallRes()

9: "forward event"

11: superviseCallRes()

12: "forward event"

14: superviseCallRes()

15: "forward event"

22: superviseCallRes()

23: "forward event:

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Generic Call object is created.

6:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7:
Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8:
At the end of each supervision period the application is informed and a new period is started.

9:
The message is forwarded to the application.

10:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11:
At the end of each supervision period the application is informed and a new period is started.

12:
The message is forwarded to the application.

13:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it will indicate that the user is almost out of credit.

14:
When the user is almost out of credit the application is informed.

15:
The message is forwarded to the application.

16:
The application decides to play an announcement to the parties in this call. A new UICall object is created and associated with the call.

17:
An announcement is played informing the user about the near-expiration of his credit limit.

18:
When the announcement is completed the application is informed.

19:
The message is forwarded to the application.

20:
The application releases the UICall object.

21:
The user does not terminate so the application terminates the call after the next supervision period.

22:
The supervision period ends.

23:
The event is forwarded to the logic.

24:
The application terminates the call. Since the user interaction is already explicitly terminated no userInteractionFaultDetected is sent to the application.

5.1.5
Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature. The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note that the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image6.wmf]Prepaid : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

6: setAdviceOfCharge()

21: sendInfoReq()

19: createUICall()

20: new()

22: sendInfoRes()

23: "forward event"

28: userInteractionFaultDetected()

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

18: new()

25: superviseCallRes()

26: "forward event:

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Call object is created

6:
The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g. 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8:
The application requests to route the call to the destination address.

9:
At the end of each supervision period the application is informed and a new period is started.

10:
The message is forwarded to the application.

11:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12:
At the end of each supervision period the application is informed and a new period is started.

13:
The message is forwarded to the application.

14:
Before the next tariff switch (e.g. 19:00 hours) the application sends a new AOC with the tariff switch time. Again, at the tariff switch time, the network will send AoC information to the end-user.

15:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it will indicate that the user is almost out of credit.

16:
When the user is almost out of credit the application is informed.

17:
The message is forwarded to the application.

18:
The application creates a new call back interface for the User interaction messages.

19:
A new UI Call object that will handle playing of the announcement needs to be created

20:
The Gateway creates a new UI call object that will handle playing of the announcement.

21:
With this message the announcement is played to the parties in the call.

22:
The user indicates that the call should continue.

23:
The message is forwarded to the application.

24:
The user does not terminate so the application terminates the call after the next supervision period.

25:
The user is out of credit and the application is informed.

26:
The message is forwarded to the application.

27:
With this message the application requests to release the call.

28:
Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The UICall object is terminated in the gateway and no further communication is possible between the UICall and the application.

5.2
Generic User Interaction Administration Sequence Diagrams

5.2.1
Message Administration

The following sequence diagram shows how an application can manage the user announcement and recorded messages.

[image: image7.wmf]AppLogic

 :

IpAppUIAdminManager

 :

IpUIAdminManager

1: new()

2: putMessageReq...

3: putMessageRes(...

4: 'forward event'

5: getMessageReq...

6: getMessageRes(...

7: 'forward event'

1:
The application is started. The application creates a new IpAppUIAdminManager to handle callbacks.

2:
The putMessageReq method is invoked on the IpUIAdminManager interface to create a new pre-defined message for use by sending to the user.

3:
The putMessageRes response notifies the application of the messageID on the callback interface.

4:
The response is forwarded to the application logic.

5:
The getMessageReq method is invoked on the IpUIAdminManager interface to retrieve the contents of a user announcement or recorded message.

6:
The getMessageRes response notifies the application of the contents of a message.

7:
The event is forwarded to the application.

6
Class Diagrams

6.1
Generic and Call User Interaction Class Diagrams

The application generic user interaction service package consists of one IpAppUIManager interface, zero or more IpAppUI interfaces and zero or more IpAppUICall interfaces.
The generic user interaction service package consists of one IpUIManager interface, zero or more IpUI interfaces and zero or more IpUICall interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user interaction service package and the generic user interaction service package. Communication between these packages is done via the <<uses>> relationships.
The IpUICall implements call related user interaction and it inherits from the non call related IpUI interface. The same holds for the corresponding application interfaces.

[image: image8.wmf]IpInterface

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppUIManager

userInteractionAborted()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

reportEventNotification()

<<new>> abortMultipleUserInteractions()

<<Interface>>

IpUIManager

createUI()

createUICall()

createNotification()

destroyNotification()

changeNotification()

getNotification()

enableNotifications()

disableNotifications()

<<Interface>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<new>> setOriginatingAddress()

<<new>> getOriginatingAddress()

<<Interface>>

IpAppUICall

recordMessageRes()

recordMessageErr()

deleteMessageRes()

deleteMessageErr()

abortActionRes()

abortActionErr()

<<new>> getMessageRes()

<<new>> getMessageErr()

<<Interface>>

IpUICall

recordMessageReq()

deleteMessageReq()

abortActionReq()

<<new>> getMessageReq()

<<Interface>>

<<uses>>

<<uses>>

<<uses>>

Figure: Generic User Interaction Package Overview
6.2
Generic User Interaction Administration Class Diagrams

The application generic user administration service package consists of one IpAppUIAdminManager interface and one IpUIAdminManager interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user administration service package. Communication between these packages is done via the <<uses>> relationships.

[image: image9.wmf]IpInterface

(from csapi)

<<Interface>>

IpAppUIAdminManager

<<new>> getMessageRes()

<<new>> getMessageErr()

<<new>> deleteMessageRes()

<<new>> deleteMessageErr()

<<new>> putMessageRes()

<<new>> putMessageErr()

<<new>> getMessageListRes()

<<new>> getMessageListErr()

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

(from csapi)

<<Interface>>

IpUIAdminManager

<<new>> getMessageReq()

<<new>> putMessageReq()

<<new>> deleteMessageReq()

<<new>> getMessageListReq()

<<Interface>>

<<uses>>

Figure: Generic User Administration Package Overview
7
The Service Interface Specifications

7.1
Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1
Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

7.1.2
Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3
Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4
State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2
Base Interface

7.2.1
Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

7.3
Service Interfaces

7.3.1
Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4
Generic Service Interface

7.4.1
Interface Class IpService

Inherits from: IpInterface.
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1
Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2
Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

8
Generic User Interaction Interface Classes

8.1
Generic and Call User Interaction Interface Classes

The Generic User Interaction Service interface (GUIS) is used by applications to interact with end users. The GUIS is represented by the IpUIManager, IpUI and IpUICall interfaces that interface to services provided by the network. To handle responses and reports, the developer must implement IpAppUIManager and IpAppUI interfaces to provide the callback mechanism.
8.1.1
Interface Class IpUIManager

Inherits from: IpService.
This interface is the 'service manager' interface for the Generic User Interaction Service and provides the management functions to the Generic User Interaction Service.

This interface shall be implemented by a Generic User Interaction SCF. The createUI() method, or the createUICall() method, or both the createNotification() and destroyNotification methods, or both the enableNotifications() and disableNotifications() methods shall be implemented as a minimum requirement.

	<<Interface>>

IpUIManager

	

	createUI (appUI : in IpAppUIRef, userAddress : in TpAddress) : TpUIIdentifier

createUICall (appUI : in IpAppUICallRef, uiTargetObject : in TpUITargetObject) : TpUICallIdentifier

createNotification (appUIManager : in IpAppUIManagerRef, eventCriteria : in TpUIEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpUIEventCriteria) : void

getNotification () : TpUIEventCriteriaResultSet

enableNotifications (appUIManager : in IpAppUIManagerRef) : TpAssignmentID

disableNotifications () : void

8.1.1.1
Method createUI()

This method is used to create a new user interaction object for non-call related purposes

Results: userInteraction

Specifies the interface and sessionID of the user interaction created.

Parameters

appUI : in IpAppUIRef

Specifies the application interface for callbacks from the user interaction created.
userAddress : in TpAddress

Indicates the end-user with whom to interact.
Returns

TpUIIdentifier

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_INTERFACE_TYPE
8.1.1.2
Method createUICall()

This method is used to create a new user interaction object for call related purposes.

The user interaction can take place to the specified party or to all parties in a call. Note that for certain implementation user interaction can only be performed towards the controlling call party, which shall be the only party in the call.

Returns: userInteraction.

Specifies the interface and sessionID of the user interaction created.

Parameters

appUI : in IpAppUICallRef

Specifies the application interface for callbacks from the user interaction created.
uiTargetObject : in TpUITargetObject

Specifies the object on which to perform the user interaction. This can either be a Call, Multi-party Call or call leg object.
Returns

TpUICallIdentifier

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_INVALID_INTERFACE_TYPE
8.1.1.3
Method createNotification()

This method is used by the application to install specified notification criteria, for which the reporting is implicitly activated. If some application already requested notifications with criteria that overlap the specified criteria, or the specified criteria overlap with criteria already present in the network (when provisioned from within the network), the request is refused with P_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same servicecode is used.

If the same application invokes this method multiple times with exactly the same criteria but with different callback references, then these shall be treated as additional callback references. Each such notification request shall share the same assignmentID. The gateway shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction manager interface for this newly installed notification criteria.

Parameters

appUIManager : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpUIEventCriteria

Specifies the event specific criteria used by the application to define the event required, like user address and service code.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE
8.1.1.4
Method destroyNotification()

This method is used by the application to destroy previously installed notification criteria via the createNotification method.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic user interaction manager interface when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
8.1.1.5
Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification method. Any stored notification request associated with the specified assignmentID will be replaced with the specified events requested.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.
eventCriteria : in TpUIEventCriteria

Specifies the new set of event criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA
8.1.1.6
Method getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns: eventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.

Parameters

No Parameters were identified for this method.

Returns

TpUIEventCriteriaResultSet

Raises

TpCommonExceptions
8.1.1.7
Method enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management system). If notifications provisioned for this application are created or changed, the application is unaware of this until the notification is reported.

If the same application invokes this method multiple times with different IpAppUIManager references, then these shall be treated as additional callback references. Each such notification request shall share the same assignmentID. The gateway shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned in the network and enabled using enableNotifications(). These only apply to notifications created using createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in any reportEventNotification() that relates to notifications provisioned from within the network.

Parameters

appUIManager : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
Returns

TpAssignmentID

Raises

TpCommonExceptions
8.1.1.8
Method disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.1.2
Interface Class IpAppUIManager

Inherits from: IpInterface.
The Generic User Interaction Service manager application interface provides the application callback functions to the Generic User Interaction Service.

	<<Interface>>

IpAppUIManager

	

	userInteractionAborted (userInteraction : in TpUIIdentifier) : void

userInteractionNotificationInterrupted () : void

userInteractionNotificationContinued () : void

reportEventNotification (userInteraction : in TpUIIdentifier, eventNotificationInfo : in TpUIEventNotificationInfo, assignmentID : in TpAssignmentID) : IpAppUIRef

<<new>> abortMultipleUserInteractions (userInteractionSet : in TpUIIdentifierSet) : void

8.1.2.1
Method userInteractionAborted()

This method indicates to the application that the User Interaction service instance has terminated or closed abnormally. No further communication will be possible between the User Interaction service instance and application.

Parameters

userInteraction : in TpUIIdentifier

Specifies the interface and sessionID of the user interaction service that has terminated.
8.1.2.2
Method userInteractionNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due to faults detected). Note that more permanent failures are reported via the Framework (integrity management).

Parameters

No Parameters were identified for this method.

8.1.2.3
Method userInteractionNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters

No Parameters were identified for this method.

8.1.2.4
Method reportEventNotification()

This method notifies the application of an occurred network event which matches the criteria installed by the createNotification method.

Returns: appUI.

Specifies a reference to the application interface, which implements the callback interface for the new user interaction.

If the application has previously explicitly passed a reference to the IpAppUI interface using a setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided during the setCallbackWithSessionID().

Parameters

userInteraction : in TpUIIdentifier

Specifies the reference to the interface and the sessionID to which the notification relates.
eventNotificationInfo : in TpUIEventNotificationInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Returns

IpAppUIRef

8.1.2.5
Method <<new>> abortMultipleUserInteractions()

The service may invoke this method on the IpAppUIManager interface to indicate that a number of ongoing user interaction sessions have aborted or terminated abnormally. No further communication will be possible between the application and the user interaction sessions. This may be used for example in the event of service failure and recovery in order to instruct the application that a number of sessions have failed. The service shall provide a set of TpUIIdentifiers, indicating to the application the interface references and sessionsIDs of the user interaction sessions that have aborted. In the case that the service invokes this method and provides an empty set of TpUIIdentifiers, this shall be used to indicate that all user interaction sessions previously active on the IpUIManager interface have been aborted.

Parameters

userInteractionSet : in TpUIIdentifierSet

Specifies the set of interfaces and sessionIDs of the user interaction sessions that have aborted or terminated abnormally. The empty set shall be used to indicate that all user interactions have aborted.
8.1.3
Interface Class IpUI

Inherits from: IpService.
The User Interaction Service Interface provides functions to send information to, or gather information from the user. An application can use the User Interaction Service Interface independently of other services.

This interface, or the IpUICall interface, shall be implemented by a Generic User Interaction SCF as a minimum requirement. The release() method, and at least one of the sendInfoReq() or the sendInfoAndCollectReq() methods shall be implemented as a minimum requirement.

	<<Interface>>

IpUI

	

	sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in TpUIResponseRequest) : TpAssignmentID

sendInfoAndCollectReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage, variableInfo : in TpUIVariableInfoSet, criteria : in TpUICollectCriteria, responseRequested : in TpUIResponseRequest) : TpAssignmentID

release (userInteractionSessionID : in TpSessionID) : void

<<new>> setOriginatingAddress (userInteractionSessionID : in TpSessionID, origin : in TpString) : void

<<new>> getOriginatingAddress (userInteractionSessionID : in TpSessionID) : TpString

8.1.3.1
Method sendInfoReq()

This asynchronous method plays an announcement or sends other information to the user.

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the information to send to the user. This information can be:
- an infoID, identifying pre-defined information to be sent (announcement and/or text);
- a string, defining the text to be sent;
- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal. A URL enables the application to utilize dynamic multi-media content by reference;
- Binary Data, identifying pre-defined information or data to be sent to or downloaded into the terminal. Binary data enables the application to utilize dynamic multi-media content directly;
- a VXML string defines the Voice XML page to execute on the server and interact with the end-user. The VXML page execution continues until an <exit/> tag is encountered, which results in a sendInfoRes() callback;
- a SynthesisInfo structure defines the text to synthesize and how the synthesis should be done.
language : in TpLanguage

Specifies the Language of the information to be sent to the user.
variableInfo : in TpUIVariableInfoSet

 Defines the variable part of the information to send to the user.
repeatIndicator : in TpInt32

Defines how many times the information shall be sent to the end-user. A value of zero (0) indicates that the announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.
responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_ILLEGAL_ID, P_ID_NOT_FOUND
8.1.3.2
Method sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and collects some information from the user. The announcement usually prompts for a number of characters (for example, these are digits or text strings such as "YES" if the user's terminal device is a phone).

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the ID of the information to send to the user. This information can be:
- an infoID, identifying pre-defined information to be sent (announcement and/or text);
- a string, defining the text to be sent;
- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal. A URL enables the application to utilize dynamic multi-media content by reference;
- Binary Data, identifying pre-defined information or data to be sent to or downloaded into the terminal. Binary data enables the application to utilize dynamic multi-media content directly;
- a VXML string defines the Voice XML page to execute on the server and interact with the end-user. The VXML page execution continues until an <exit/> tag is encountered, which results in a sendInfoAndCollectRes() callback with the value of the expr= attribute;
- a SynthesisInfo structure defines the text to synthesize and how the synthesis should be done.
language : in TpLanguage

Specifies the Language of the information to be sent to the user.
variableInfo : in TpUIVariableInfoSet

Defines the variable part of the information to send to the user.
criteria : in TpUICollectCriteria

Specifies additional properties for the collection of information, such as the maximum and minimum number of characters, end character, first character timeout and inter-character timeout. This parameter also specifies whether voice recognition would be used.
responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take. For this case it can especially be used to indicate e.g. the final request. If P_UI_RESPONSE_REQUIRED is not enabled by the application request, the user interaction shall nevertheless return either a sendInfoAndCollectRes or sendInfoAndCollectErr method to the application in response to this method invocation.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_ILLEGAL_ID, P_ID_NOT_FOUND, P_ILLEGAL_RANGE, P_INVALID_COLLECTION_CRITERIA
8.1.3.3
Method release()

This method requests that the relationship between the application and the user interaction object be released. It causes the release of the used user interaction resources and interrupts any ongoing user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction created.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
8.1.3.4
Method <<new>> setOriginatingAddress()

This method sets the originating address property on the user interaction session to be used when sending information to the user.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
origin : in TpString

Specifies the originating address. The originating address description is sent as a TpString. However this field may contain E.164 addresses that the receiving terminal can use to reply to the message. The coding of such an E.164 address can either be local numbers or international numbers, according to the standard E.164. Examples for a local number is "0702106181" and for an international number "+46702106181".
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_INVALID_ADDRESS
8.1.3.5
Method <<new>> getOriginatingAddress()

This method gets the originating address property on the user interaction session to be used when sending information to the user. If not set with setOriginatingAddress(), the getOriginatingAddress() returns the description that would be displayed on the terminal device as the originating address when a message is sent with sendInfoReq() or sendInfoAndCollectReq().

Returns: TpString.

The address that will be used for a sendInfoReq() or sendInfoAndCollectReq() for the originating address.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
Returns

TpString

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
8.1.4
Interface Class IpAppUI

Inherits from: IpInterface.
The User Interaction Application Interface is implemented by the client application developer and is used to handle generic user interaction request responses and reports.

	<<Interface>>

IpAppUI

	

	sendInfoRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport) : void

sendInfoErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

sendInfoAndCollectRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, collectedInfo : in TpString) : void

sendInfoAndCollectErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

userInteractionFaultDetected (userInteractionSessionID : in TpSessionID, fault : in TpUIFault) : void

8.1.4.1
Method sendInfoRes()

This asynchronous method informs the application about the completion of a sendInfoReq(). This response is called only if the responseRequested parameter of the sendInfoReq() method was set to P_UI_RESPONSE_REQUIRED.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the user.
8.1.4.2
Method sendInfoErr()

This asynchronous method indicates that the request to send information was unsuccessful. This response is called only if the responseRequested parameter of the sendInfoReq() method was set to P_UI_RESPONSE_REQUIRED. In the event that a response was not requested and the user interaction was unsuccessful the implementation of the service capability must handle the network error, however the error shall not be reported to the application as it requested no response.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.1.4.3
Method sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the user.
collectedInfo : in TpString

Specifies the information collected from the user.
8.1.4.4
Method sendInfoAndCollectErr()

This asynchronous method indicates that the request to send information and collect a response was unsuccessful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.1.4.5
Method userInteractionFaultDetected()

This method indicates to the application that a fault has been detected in the user interaction.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the interface and sessionID of the user interaction service in which the fault has been detected.
fault : in TpUIFault

Specifies the fault that has been detected.
8.1.5
Interface Class IpUICall

Inherits from: IpUI.
The Call User Interaction Service Interface provides functions to send information to, or gather information from the user (or call party) to which a call leg is connected. An application can use the Call User Interaction Service Interface only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability.

This interface, or the IpUI interface, shall be implemented by a Generic User Interaction SCF as a minimum requirement. The minimum required methods of interface IpUI shall be implemented.

	<<Interface>>

IpUICall

	

	recordMessageReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, criteria : in TpUIMessageCriteria) : TpAssignmentID

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

abortActionReq (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

<<new>> getMessageReq (userInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

8.1.5.1
Method recordMessageReq()

This asynchronous method allows the application to send user interaction content to the user followed by the recording of a subsequent user input. The recorded message can be played back at a later time with the sendInfoReq() method. If the info parameter is not populated the resource will simply invoke recording at that point in the dialogue.

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).
criteria : in TpUIMessageCriteria

 Defines the criteria for recording of messages.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_ILLEGAL_ID, P_ID_NOT_FOUND, P_INVALID_CRITERIA
8.1.5.2
Method deleteMessageReq()

This asynchronous method allows to delete a recorded message.

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_ILLEGAL_ID, P_ID_NOT_FOUND
8.1.5.3
Method abortActionReq()

This asynchronous method aborts a user interaction operation, e.g. a sendInfoReq(), from the specified call leg. The call and call leg are otherwise unaffected. The user interaction call service interrupts the current action on the specified leg.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the user interaction request to be cancelled.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ASSIGNMENT_ID
8.1.5.4
Method <<new>> getMessageReq()

This asynchronous method allows retrieving the recorded message content from the gateway. This method is applicable only to recorded messages.

Returns: assignmentID.

Specifies the ID assigned by the user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, P_ILLEGAL_ID, P_ID_NOT_FOUND
8.1.6
Interface Class IpAppUICall

Inherits from: IpAppUI.
The Call User Interaction Application Interface is implemented by the client application developer and is used to handle call user interaction request responses and reports.

	<<Interface>>

IpAppUICall

	

	recordMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, messageID : in TpInt32) : void

recordMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in TpAssignmentID) : void

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in TpAssignmentID) : void

abortActionRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

abortActionErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

<<new>> getMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, message : in TpUIInfo) : void

<<new>> getMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

8.1.6.1
Method recordMessageRes()

This method returns whether the message is successfully recorded or not. In case the message is recorded, the ID of the message is returned.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
response : in TpUIReport

Specifies the type of response received from the device where the message is stored.
messageID : in TpInt32

Specifies the ID that was assigned to the message by the device where the message is stored.
8.1.6.2
Method recordMessageErr()

This method indicates that the request for recording of a message was not successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.1.6.3
Method deleteMessageRes()

This method returns whether the message is successfully deleted or not.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
response : in TpUIReport

Specifies the type of response received from the device where the message was stored.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
8.1.6.4
Method deleteMessageErr()

This method indicates that the request for deleting a message was not successful.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
error : in TpUIError

Specifies the error which led to the original request failing.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
8.1.6.5
Method abortActionRes()

This asynchronous method confirms that the request to abort a user interaction operation on a call leg was successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
8.1.6.6
Method abortActionErr()

This asynchronous method indicates that the request to abort a user interaction operation on a call leg resulted in an error.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the call user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.1.6.7
Method <<new>> getMessageRes()

This method returns the message content if the message was retrieved successfully.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
message : in TpUIInfo

Specifies the UI Information containing the message content information.
8.1.6.8
Method <<new>> getMessageErr()

This method indicates that the request to retrieve a message was not successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.2
Generic User Interaction Administration Interface Classes

8.2.1
Interface Class IpUIAdminManager

Inherits from: IpService.
The Generic User Interaction Administration Manager Service interface is used by applications to manage user announcement and recorded messages on the gateway. This Service is represented by the IpUIAdminManager interface that interfaces to the service provided by the network. To handle responses and reports, the developer must implement IpAppUIAdminManager interface to provide the callback mechanism.

The application context will ensure that one application does not interfere with the messages of another application.
The User Interaction Administration Manager Service Interface provides functions to manage the messages.

	<<Interface>>

IpUIAdminManager

	

	<<new>> getMessageReq (messageID : in TpInt32) : TpAssignmentID

<<new>> putMessageReq (info : in TpUIInfo) : TpAssignmentID

<<new>> deleteMessageReq (messageID : in TpInt32) : TpAssignmentID

<<new>> getMessageListReq (reset : in TpBoolean) : TpAssignmentID

8.2.1.1
Method <<new>> getMessageReq()

This asynchronous method allows retrieving the user announcement or recorded message content from the gateway.

Returns: assignmentID.

Specifies the ID assigned by the user interaction administration manager interface for a user interaction request.

Parameters

messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE, P_ILLEGAL_ID, P_ID_NOT_FOUND
8.2.1.2
Method <<new>> putMessageReq()

This asynchronous method allows putting a user announcement message content onto the gateway. The gateway will allocate the messageID and return it to the application on the putMessageRes() confirmation.

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction administration manager interface for a user interaction request.

Parameters

info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ILLEGAL_ID, P_ID_NOT_FOUND
8.2.1.3
Method <<new>> deleteMessageReq()

This asynchronous method allows deleting a user announcement or recorded message.

Returns: assignmentID.

Specifies the ID assigned by the generic user interaction administration manager interface for a user interaction request.

Parameters

messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ILLEGAL_ID, P_ID_NOT_FOUND
8.2.1.4
Method <<new>> getMessageListReq()

This synchronous method allows the application to retrieve a list of Message Ids for all its recorded messages or user announcements.

Returns: assignmentID.

Specifies the ID assigned by the user interaction administration manager interface in order to correlate the response.

Parameters

reset : in TpBoolean

TRUE: Indicates that the application intends to obtain the list of messages starting from the beginning.
FALSE: Indicates that the application requests the next part of the list that has not (yet) been obtained since the last call to this method with this parameter set to TRUE.
The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in the getMessageListRes(), for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may be thrown if these conditions are not met.
The state information for returning the list will be stored relative to the application context, therefore only one enumeration per application context can be active at a time.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_NETWORK_STATE
8.2.2
Interface Class IpAppUIAdminManager

Inherits from: IpInterface.
The User Interaction Administration Manager Application Interface is implemented by the client application and is used to handle administration user interaction request responses and reports.

	<<Interface>>

IpAppUIAdminManager

	

	<<new>> getMessageRes (assignmentID : in TpAssignmentID, message : in TpUIInfo) : void

<<new>> getMessageErr (assignmentID : in TpAssignmentID, error : in TpUIError) : void

<<new>> deleteMessageRes (response : in TpUIReport, assignmentID : in TpAssignmentID) : void

<<new>> deleteMessageErr (error : in TpUIError, assignmentID : in TpAssignmentID) : void

<<new>> putMessageRes (assignmentID : in TpAssignmentID, messageID : in TpInt32) : void

<<new>> putMessageErr (assignmentID : in TpAssignmentID, error : in TpUIError) : void

<<new>> getMessageListRes (assignmentID : in TpAssignmentID, messageIDList : in TpMessageIDList, final : in TpBoolean) : void

<<new>> getMessageListErr (assignmentID : in TpAssignmentID, error : in TpUIError) : void

8.2.2.1
Method <<new>> getMessageRes()

This method returns the message content if the message was retrieved successfully.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface for a user interaction request.
message : in TpUIInfo

Specifies the UI Information containing the message content information.
8.2.2.2
Method <<new>> getMessageErr()

This method indicates that the request to retrieve a message was not successful.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.2.2.3
Method <<new>> deleteMessageRes()

This method indicates that the request to delete a message was successful.

Parameters

response : in TpUIReport

Specifies the type of response received from the device where the message was stored.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface for a user interaction request.
8.2.2.4
Method <<new>> deleteMessageErr()

This method indicates that the request to delete a message was not successful.

Parameters

error : in TpUIError

Specifies the error which led to the original request failing.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface for a user interaction request.
8.2.2.5
Method <<new>> putMessageRes()

This asynchronous method confirms that the request to put the message content was successful.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface for a user interaction request.
messageID : in TpInt32

Specifies the message ID that was allocated by the gateway.
8.2.2.6
Method <<new>> putMessageErr()

This asynchronous method indicates that the request to put the message content resulted in an error.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.

8.2.2.7
Method <<new>> getMessageListRes()

This asynchronous method returns the result of a getMessageListReq() method. Whether there are still more messages that can be listed yet will be indicated with the final parameter.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface in order to correlate with the request.
messageIDList : in TpMessageIDList

Specifies the list of MessageIDs returned by the SCF.
final : in TpBoolean

Indication whether the returned list is the final part of the complete list (TRUE) or if there are still parts of the list to retrieve (FALSE).

8.2.2.8
Method <<new>> getMessageListErr()

This asynchronous method indicates that the request to list the messageIDs was not successful.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction administration manager interface in order to correlate with the request.
error : in TpUIError

Specifies the error which led to the original request failing.
9
State Transition Diagrams

9.1
Generic and Call User Interaction State Transition Diagrams

9.1.1
State Transition Diagrams for IpUIManager

[image: image10.wmf]Active

exit/ release UI objects

"new"

createNotification

destroyNotification

Creation of UIManager

by Service Instance

Lifecycle Manager

Notification

Terminated

destroyNotification

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^userInteractionNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 ^userInteractionNotificationInterrupted

"arrival of user initiated request for user interaction"[notification active for this ui

event] / create a UI object ^IpAppUIManager.reportEventNotification

createUI / create UI object

createUICall / create UICall object

changeNotification

getNotification

enableNotifications

disableNotifications

enableNotifications

disableNotifications

Figure : Application view on the UI Manager

9.1.1.1
Active State

In this state a relation between the Application and a User Interaction Service Capability Feature (Generic User Interaction or Call User Interaction) has been established. The application is now able to request creation of UI and/or UICall objects.
9.1.1.2
Notification Terminated State

When the UI manager is in the Notification terminated state, events requested with createNotification()/enableNotifications() will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications than defined in the Service Level Agreement. Another example is that the SCS has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.
9.1.2
State Transition Diagrams for IpUI

The state transition diagram shows the application view on the User Interaction object.

[image: image11.wmf]Active

IpUIManager.createUI

IpAppUIManager.reportNotification

sendInfoReq

sendInfoAndCollectReq

Release

Pending

Finished

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

release

timeout ^userInteractionFaultDetected

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

"request to send message unsuccessful" ^sendInfoErr

"request to send info and collect a response

unsuccessful" ^sendInfoAndCollectErr

sendInfoReq[final request and response(s) outstanding]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

sendInfoReq[final request and no responses outstanding]

"requested message has been sent"[not final result] ^sendInfoRes

"user input received"[not final result] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final result] ^sendInfoErr

"request to send info and collect a response

unsuccessful"[not final result] ^sendInfoAndCollectErr

"fault detected in the user interaction" / report error

on outstanding user interaction

^userInteractionFaultDetected

release

"request to send message unsuccessful"[final

request] ^sendInfoErr

"request to send info and collect response unsuccessful"[

final request] ^sendInfoAndCollectErr

"user input received"[final result] ^sendInfoAndCollectRes

"requested message has been sent"[final result] ^sendInfoRes

Figure : Application view on the UI object

9.1.2.1
Active State

In this state the UI object is available for requesting messages to be sent to the network.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.1.2.2
Release Pending State

A transition to this state is made when the Application has indicated that after a certain message no further messages need to be sent to the end-user. There are, however, still a number of messages that are not yet completed. When the last message is sent or when the last user interaction has been obtained, the UI object is destroyed.
In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.1.2.3
Finished State

In this state the user interaction has ended. The application can only release the UI object. Note that the application has to release the object itself as good Object Oriented practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
9.1.3
State Transition Diagrams for IpUICall

The state transition diagram shows the application view on the Call User Interaction object.

[image: image12.wmf]Active

Release

Pending

Finished

IpUIManager.createUICall

release

abortActionReq / cancel the user interaction

abortActionReq[not the final request] / cancel the

user interaction

Already requested announcements

will continue, even when

application releases the object.

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

timeout ^userInteractionFaultDetected

Already requested

announcements will

continue

sendInfoAndCollectReq

sendInfoReq

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

sendInfoReq[final request and response(s) outstanding]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error on all outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"request to send info and collect response unsuccessful"

 ^sendInfoAndCollectErr

"request to send message unsuccessful" ^sendInfoErr

sendInfoReq[final request and no responses outstanding]

"requested message has been sent"[not final result] ^sendInfoRes

"user input received"[not final result] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final result] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not

final result] ^sendInfoAndCollectErr

"fault detected in the user interaction" / report error on outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"request to send message unsuccessful"[

final request] ^sendInfoErr

"request to send info and collect response

unsuccessful"[final request] ^sendInfoAndCollectErr

abortActionReq[final request is cancelled]

/ cancel the user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"user input received"[final result] ^sendInfoAndCollectReq

"requested message has been sent"[final result] ^sendInfoRes

Figure : Application view on the UICall object

9.1.3.1
Active State

In this state a UICall object is available for announcements to be played to an end-user or obtaining information from the end-user.
When the application de-assigns the related Call or CallLeg object, a transition is made to the Finished state. However, all requested announcements will continue, even when the application releases the UICall object.
When the related call or call leg is terminated due to some reason, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.1.3.2
Release Pending State

A transition to this state is made when the Application has indicated that after a certain announcement no further announcements need to be played to the end-user. There are, however, still a number of announcements that are not yet completed. When the last announcement is played or when the last user interaction has been obtained, the UICall object is destroyed. In case the final request failed or the application requested to abort the final request, a transition is made back to the Active state.
When the application de-assigns the related Call or CallLeg object, the UICall object is destroyed. However, all requested announcements will continue.
When the related call or call leg is terminated due to some reason, a transition is made to the Finished state, the operation userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
In case a fault is detected on the user interaction (e.g. a link failure to the IVR system), userInteractionFaultDetected() will be invoked on the application and an error will be reported on all outstanding requests.
9.1.3.3
Finished State

In this state the user interaction has ended. The application can only release the UICall object. Note that the application has to release the object itself as good Object Oriented practice requires that when an object is created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
9.2
Generic User Interaction Administration State Transition Diagrams

9.2.1
State Transition Diagrams for IpUIAdminManager

[image: image13.wmf]Active

"new"

Creation of GUI

Administration by Service

Instance Lifecycle Manager

terminateServiceAgreement

getMessageReq

putMessageReq

deleteMessageReq

getMessageListReq

Figure : State Transition Diagram for User Interaction Administration

9.2.1.1
Active State

In this state, a relation between the Application and the Generic User Interaction Administration Service Capability Feature has been established. It allows the application to make specific requests of the service.
10
Service Properties

10.1
User Interaction Service Properties

The following table lists properties relevant for the User Interaction API.

	Property
	Type
	Description

	P_INFO_TYPE
	INTEGER_SET
	Specifies whether the UI SCS supports text or URLs etc. Allowed values are defined by TpUIInfoType.

	P_SPEECH_RECOGNITION_SUPPORTED
	BOOLEAN
	Value: TRUE when the speech recognition features are supported.

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the SCS.

	Property
	Type
	Description

	P_SERVICE_CODE
	INTEGER_SET
	Specifies the service codes that may be used for notification requests.

	P_NOTIFICATION_ADDRESS_RANGES
	XML_ADDRESS_RANGE_SET
	Indicates for which numbers notifications may be set. More than one range may be present.

	P_PRIORITY
	INTEGER_SET
	This data type defines the probability of communication completion with the media resource (under network congestion). A list of values may be offered by the SCF. A value of 0 indicates no special treatment (default). The other values of this data type are region specific. For example, a priority value between 1, 2, 3, ..., n indicates special treatment, where 1 may be the highest priority and n the lowest priority other than no special treatment.

11
Data Definitions

The following data types referenced in this clause are defined in 3GPP TS 29.198-4:

TpCallIdentifier
TpMultiPartyCallIdentifier
TpCallLegIdentifier

All other data types referenced but not defined in this clause are common data definitions which may be found in 3GPP TS 29.198-2.

11.1
TpUIFault

Defines the cause of the UI fault detected.

	Name
	Value
	Description

	P_UI_FAULT_UNDEFINED
	0
	Undefined

	P_UI_CALL_ENDED
	1
	The related Call object has been terminated. Therefore, the UICall object is also terminated. No further interaction is possible with this object.

11.2
IpUI

Defines the address of an IpUI Interface.

11.3
IpUIRef

Defines a Reference to type IpUI.

11.4
IpAppUI

Defines the address of an IpAppUI Interface.

11.5
IpAppUIRef

Defines a Reference to type IpAppUI.

11.6
IpAppUIManager

Defines the address of an IpAppUIManager Interface.

11.7
IpAppUIManagerRef

Defines a Reference to type IpAppUIManager.
11.8
TpUICallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UICall object.

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UICallRef
	IpUICallRef
	This element specifies the interface reference for the UICall object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the User Interaction session ID.

11.9
TpUICollectCriteria

Defines the Sequence of Data Elements that specify the additional properties for the collection of information, such as the end character, first character timeout, inter-character timeout, and maximum interaction time. The CollectMode element defines the type of data that is to be collected. DTMF and Voice Recognition can be used separately or in combination. The P_SPEECH_RECOGNITION_SUPPORTED property defines whether the voice recognition features are supported.

	Structure Element Name
	Structure Element Type

	MinLength
	TpInt32

	MaxLength
	TpInt32

	EndSequence
	TpString

	StartTimeout
	TpDuration

	InterCharTimeout
	TpDuration

	CollectMode
	TpUICollectMode

	RecognitionCriteria
	TpUIRecognitionCriteria

The structure elements specify the following criteria:

MinLength:
Defines the minimum number of characters (e.g. digits) to collect. Applies to DTMF collection and voice recognition.

MaxLength:
Defines the maximum number of characters (e.g. digits) to collect. Applies to DTMF collection and voice recognition.

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phone numbers. Applies to DTMF collection only.

StartTimeout:
specifies the value for the first character time-out timer. The timer is started when the announcement has been completed or has been interrupted. The user should enter the start of the response (e.g. first digit) before the timer expires. If the start of the response is not entered before the timer expires, the input is regarded to be erroneous. After receipt of the start of the response, which may be valid or invalid, the timer is stopped. Applies to DTMF collection and voice recognition.

InterCharTimeOut:
specifies the value for the inter-character time-out timer. The timer is started when a response (e.g. digit) is received, and is reset and restarted when a subsequent response is received. The responses may be valid or invalid. the announcement has been completed or has been interrupted. Applies to DTMF collection only.

CollectMode:
Defines the type of collection to do. Applies to DTMF collection and voice recognition. The default is DTMF collection only.

RecognitionCriteria:
Defines the criteria for voice recognition.

Input is considered successful if the following applies:

If the EndSequence is not present (i.e. an empty string):

· when the InterCharTimeOut timer expires; or

· when the number of valid digits received equals the MaxLength.

If the EndSequence is present:

· when the InterCharTimeOut timer expires; or

· when the EndSequence is received; or

· when the number of valid digits received equals the MaxLength.

In the case the number of valid characters received is less than the MinLength when the InterCharTimeOut timer expires or when the EndSequence is received, the input is considered erroneous.

The collected characters (including the EndSequence) are sent to the client application when input has been successful.

11.10
TpUIError

Defines the UI error codes.

	Name
	Value
	Description

	P_UI_ERROR_UNDEFINED
	0
	Undefined error.

	P_UI_ERROR_ILLEGAL_INFO
	1
	The specified information (InfoId, InfoData, or InfoAddress) is invalid.

	P_UI_ERROR_ID_NOT_FOUND
	2
	A legal InfoId is not known to the User Interaction service.

	P_UI_ERROR_RESOURCE_UNAVAILABLE
	3
	The information resources used by the User Interaction service are unavailable, e.g. due to an overload situation.

	P_UI_ERROR_ILLEGAL_RANGE
	4
	The values for minimum and maximum collection length are out of range.

	P_UI_ERROR_IMPROPER_USER_RESPONSE
	5
	Improper user response.

	P_UI_ERROR_ABANDON
	6
	The specified leg is disconnected before the send information completed.

	P_UI_ERROR_NO_OPERATION_ACTIVE
	7
	There is no active User Interaction for the specified leg. Either the application did not start any User Interaction or the User Interaction was already finished when the abortActionReq() was called.

	P_UI_ERROR_NO_SPACE_AVAILABLE
	8
	There is no more storage capacity to record the message when the recordMessageReq() operation was called.

	P_UI_ERROR_RESOURCE_TIMEOUT
	9
	The request has been accepted by the resource but it did not report a result.

The call User Interaction object will be automatically de-assigned if the error P_UI_ERROR_ABANDON is reported, as a corresponding call or call leg object no longer exists.

11.11
TpUIEventCriteria

Defines the Sequence of Data Elements that specify the additional criteria for receiving a UI notification

	Structure Element

Name
	Structure Element

Type
	Description

	OriginatingAddress
	TpAddressRange
	Defines the originating address for which the notification is requested.

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested.

	ServiceCode
	TpString
	Defines a 2-digit code indicating the UI to be triggered. The value is operator specific.

11.12
TpUIEventCriteriaResultSet

Defines a set of TpUIEventCriteriaResult.

11.13
TpUIEventCriteriaResult

Defines a sequence of data elements that specify a requested event notification criteria with the associated assignmentID.

	Structure Element Name
	Structure Element Type
	Structure Element Description

	EventCriteria
	TpUIEventCriteria
	The event criteria that were specified by the application.

	AssignmentID
	TpInt32
	The associated assignmentID. This can be used to disable the notification.

11.14
TpUIEventInfoDataType

Defines the type of the dataString parameter in the method userInteractionEventNotify.

	Name
	Value
	Description

	P_UI_EVENT_DATA_TYPE_UNDEFINED
	0
	Undefined (e.g. binary data)

	P_UI_EVENT_DATA_TYPE_UNSPECIFIED
	1
	Unspecified data

	P_UI_EVENT_DATA_TYPE_TEXT
	2
	Text

	P_UI_EVENT_DATA_TYPE_USSD_DATA
	3
	USSD data starting with coding scheme

11.15
TpUIIdentifier

Defines the Sequence of Data Elements that unambiguously specify the UI object

	Structure Element Name
	Structure Element Type
	Structure Element Description

	UIRef
	IpUIRef
	This element specifies the interface reference for the UI object.

	UserInteractionSessionID
	TpSessionID
	This element specifies the User Interaction session ID.

11.16
TpUIIdentifierSet

Defines a Numbered Set of Data Elements of TpUIIdentifier.

11.17
TpUIInfo

Defines the Tagged Choice of Data Elements that specify the information to send to the user.

	
	Tag Element Type
	

	
	TpUIInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_INFO_ID
	TpInt32
	InfoId

	P_UI_INFO_DATA
	TpString
	InfoData

	P_UI_INFO_ADDRESS
	TpURL
	InfoAddress

	P_UI_INFO_BIN_DATA
	TpOctetSet
	InfoBinData

	P_UI_INFO_UUENCODED
	TpString
	InfoUUEncData

	P_UI_INFO_MIME
	TpOctetSet
	InfoMimeData

	P_UI_INFO_WAVE
	TpOctetSet
	InfoWaveData

	P_UI_INFO_AU
	TpOctetSet
	InfoAuData

	P_UI_INFO_VXML
	TpString
	InfoVXMLData

	P_UI_INFO_SYNTHESIS
	TpUISynthesisInfoData
	InfoSynthData

The choice elements represent the following:

InfoID:
defines the ID of the user information script or stream to send to an end-user. The values of this data type are operator specific.

InfoData:
defines the data to be sent to an end-user's terminal. The data is free-format and the encoding is depending on the resources being used..

InfoAddress:
defines the URL of the text, voice application script or stream to be either sent to an end-user’s terminal or invoked in the network in order to carry out the interaction dialogue.

InfoBinData:
defines the binary data to be sent to an end-user's terminal. The data is a free-format, 8-bit quantity that is guaranteed not to undergo any conversion when transmitted.

InfoUUEncData:
defines the UUEncoded data to be sent to an end-user's terminal.

InfoMimeData:
defines the MIME data to be sent to an end-user's terminal.

InfoWaveData:
defines the WAVE data to be sent to an end-user's terminal.

InfoAuData:
defines the AU data to be sent to an end-user's terminal.

InfoVXMLData:
defines the TpString that describes the VXML (Voice XML) page that is sent to the server for execution and interaction with the end-user. See http://www.w3.org/TR/2000/NOTE-voicexml-20000505/ for more information.

InfoSynthData:
defines the TpUISynthesisInfoData that describes the content and how the speech synthesis will be done.

InfoSynthData allows the application to utilize the fundamental speech synthesis capabilities of the server without dependency VXML, while InfoVXMLData allows the application to send a complex VXML program (including call control, flow control, dynamic content, menuing, etc) to the server for execution with little change to the OSA application itself.

11.18
TpUIInfoType

Defines the type of the information to be sent to the user.

	Name
	Value
	Description

	P_UI_INFO_ID
	0
	The information to be send to an end-user consists of an ID

	P_UI_INFO_DATA
	1
	The information to be send to an end-user consists of a data string

	P_UI_INFO_ADDRESS
	2
	The information to be send to an end-user consists of a URL.

	P_UI_INFO_BIN_DATA
	3
	The information to be sent to an end-user consists of an 8 bit binary data set.

	P_UI_INFO_UUENCODED
	4
	The information to be sent to an end-user consists of UUEncoded data.

	P_UI_INFO_MIME
	5
	The information to be sent to the end-user consists of MIME encoded data.

	P_UI_INFO_WAVE
	6
	The information to be sent to the end-user is .wav waveform data.

	P_UI_INFO_AU
	7
	The information to be sent to the end-user is .au audio data.

	P_UI_INFO_VXML
	8
	The information to be sent to the end-user is controlled by this VXML.

	P_UI_INFO_SYNTHESIS
	9
	The information to be sent to an end-user is synthesized from text.

11.19
TpUIMessageCriteria

Defines the Sequence of Data Elements that specify the additional properties for the recording of a message.

	Structure Element Name
	Structure Element Type

	EndSequence
	TpString

	MaxMessageTime
	TpDuration

	MaxMessageSize
	TpInt32

The structure elements specify the following criteria:

EndSequence:
Defines the character or characters which terminate an input of variable length, e.g. phone numbers.

MaxMessageTime:
specifies the maximum duration in seconds of the message that is to be recorded.

MaxMessageSize:
If this parameter is non-zero, it specifies the maximum size in bytes of the message that is to be recorded.

11.20
TpUIReport

Defines the UI reports if a response was requested.

	Name
	Value
	Description

	P_UI_REPORT_UNDEFINED
	0
	Undefined report

	P_UI_REPORT_INFO_SENT
	1
	Confirmation that the information has been sent

	P_UI_REPORT_INFO_COLLECTED
	2
	Information collected., meeting the specified criteria.

	P_UI_REPORT_NO_INPUT
	3
	No information collected. The user immediately entered the delimiter character.
No valid information has been returned

	P_UI_REPORT_TIMEOUT

	4
	No information collected. The user did not input any response before the input timeout expired

	P_UI_REPORT_MESSAGE_STORED
	5
	A message has been stored successfully

	P_UI_REPORT_MESSAGE_NOT_STORED
	6
	The message has not been stored successfully

	P_UI_REPORT_MESSAGE_DELETED
	7
	A message has been deleted successfully

	P_UI_REPORT_MESSAGE_NOT_DELETED
	8
	A message has not been deleted successfully

11.21
TpUIResponseRequest

Defines the situations for which a response is expected following the User Interaction.

	Name
	Value
	Description

	P_UI_RESPONSE_REQUIRED
	1
	The User Interaction Call shall send a response when the request has completed.

	P_UI_LAST_ANNOUNCEMENT_IN_A_ROW
	2
	This is the final announcement within a sequence. It might, however, be that additional announcements will be requested at a later moment. The User Interaction Call service may release any used resources in the network. The UI object will not be released.

	P_UI_FINAL_REQUEST
	4
	This is the final request. The UI object will be released after the information has been presented to the user.

This parameter represents a so-called bitmask, i.e. the values can be added to derived the final meaning.

11.22
TpUITargetObjectType

Defines the type of object where User Interaction should be performed upon.

	Name
	Value
	Description

	P_UI_TARGET_OBJECT_CALL
	0
	User-interaction will be performed on a complete Call.

	P_UI_TARGET_OBJECT_MULTI_PARTY_CALL
	1
	User-interaction will be performed on a complete Multi-party Call.

	P_UI_TARGET_OBJECT_CALL_LEG
	2
	User-interaction will be performed on a single Call Leg.
The media of this call leg should be detached at the moment any user interaction is done.

11.23
TpUITargetObject

Defines the Tagged Choice of Data Elements that specify the object to perform User Interaction on.

	
	Tag Element Type
	

	
	TpUITargetObjectType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_TARGET_OBJECT_CALL
	TpCallIdentifier
	Call

	P_UI_TARGET_OBJECT_MULTI_PARTY_CALL
	TpMultiPartyCallIdentifier
	MultiPartyCall

	P_UI_TARGET_OBJECT_CALL_LEG
	TpCallLegIdentifier
	CallLeg

11.24
TpUIVariableInfo

Defines the Tagged Choice of Data Elements that specify the variable parts in the information to send to the user.

	
	Tag Element Type
	

	
	TpUIVariablePartType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_VARIABLE_PART_INT
	TpInt32
	VariablePartInteger

	P_UI_VARIABLE_PART_ADDRESS
	TpString
	VariablePartAddress

	P_UI_VARIABLE_PART_TIME
	TpTime
	VariablePartTime

	P_UI_VARIABLE_PART_DATE
	TpDate
	VariablePartDate

	P_UI_VARIABLE_PART_PRICE
	TpPrice
	VariablePartPrice

11.25
TpUIVariableInfoSet

Defines a Numbered Set of Data Elements of TpUIVariableInfo.

11.26
TpUIVariablePartType

Defines the type of the variable parts in the information to send to the user.

	Name
	Value
	Description

	P_UI_VARIABLE_PART_INT
	0
	Variable part is of type integer

	P_UI_VARIABLE_PART_ADDRESS
	1
	Variable part is of type address

	P_UI_VARIABLE_PART_TIME
	2
	Variable part is of type time

	P_UI_VARIABLE_PART_DATE
	3
	Variable part is of type date

	P_UI_VARIABLE_PART_PRICE
	4
	Variable part is of type price

11.27
TpUIEventNotificationInfo

Defines the Sequence of Data Elements that specify a UI event notification.

	Structure Element Name
	Structure Element Type
	Structure Element Description

	OriginatingAddress
	TpAddress
	Defines the originating address.

	DestinationAddress
	TpAddress
	Defines the destination address.

	ServiceCode
	TpString
	Defines a 2-digit code indicating the UI to be triggered.
The value is operator specific.

	DataTypeIndication
	TpUIEventInfoDataType
	Identifies the type of contents in UIEventData

	UIEventData
	TpOctetSet
	Freely defined data according to the network policy.
e.g 7 bit USSD encoded

11.28
TpUISynthesisInfoData

Defines the Sequence of Data Elements that specify the information to use in generating the desired effects on the generated voice. The speech synthesis parameters or processing tags will be interpreted as hints and may be ignored by the speech synthesis engine. Note that the language is specified on the sendInfoReq() and sendInfoAndCollectReq() method calls.

The TextData field may contain the following tags to affect the processing of the text. The <break> tag specifies a timing pause. The <emp> tag specifies an emphasis on a word or phrase.

<break size="milliseconds">
 // specifies a timing pause in the

 // middle of the text in milliseconds

<emp>A word</emp>

// apply emphasis to a word or words

	Structure Element Name
	Structure Element Type
	Structure Element Description

	SpeakerGender
	TpUISynthesisGender
	Defines the gender of the speaker.

	SpeakerAge
	TpUISynthesisAge
	Defines the age of the speaker.

	SpeakerRate
	TpUISynthesisRate
	Defines the rate of the speaker.

	SpeakerRange
	TpUISynthesisRange
	Defines the range of the speaker.

	TextData
	TpString
	Defines the text to synthesize into speech.

	WordOverrideSet
	TpUIWordOverrideSet
	Defines the pronunciation overrides.

11.29
TpUISynthesisGender

Defines the UI reports if a response was requested.

	Name
	Value
	Description

	P_UI_GENDER_MALE
	0
	Male

	P_UI_GENDER_FEMALE
	1
	Female

11.30
TpUISynthesisAge

Defines the UI reports if a response was requested.

	Name
	Value
	Description

	P_UI_AGE_CHILD
	0
	Child voice

	P_UI_AGE_YOUNG_ADULT
	1
	Young adults voice

	P_UI_AGE_ADULT
	2
	Adult voice

	P_UI_AGE_OLDER_ADULT
	3
	Older adult voice

11.31
TpUISynthesisRate

Defines the rate of the speech.

	Name
	Value
	Description

	P_UI_RATE_SLOW
	0
	Slow speech rate

	P_UI_RATE_AVERAGE
	1
	Average speech rate

	P_UI_RATE_FAST
	2
	Fast speech rate

11.32
TpUISynthesisRange

Defines the range or liveliness of the speech.

	Name
	Value
	Description

	P_UI_RANGE_CALMER
	0
	Very Calm or monotone speech

	P_UI_RANGE_CALM
	1
	Moderately calm speech

	P_UI_RANGE_AVERAGE
	2
	Average speech

	P_UI_RANGE_EXCITED
	3
	Moderately excited or lively speech

	P_UI_RANGE_MORE_EXCITED
	4
	Excited or lively speech

11.33
TpUIWordOverrideSet

Defines a Numbered Set of Data Elements of TpUIWordOverride.

11.34
TpUIWordOverride

Defines the Sequence of Data Elements that specify the information to use in overriding the default pronunciation of a word.

	Structure Element Name
	Structure Element Type
	Structure Element Description

	Spelling
	TpString
	Defines the spelling of the word override.

	PronounceType
	TpUIPronounceType
	Defines the type of pronunciation syntax.

	PronounceAs
	TpString
	Defines how the spelling field should be pronounced.

11.35
TpUIPronounceType

Defines the pronunciation type.

The International Phonetic Alphabet (IPA) representation can be used to specify pronunciations. For more information see:

http://www2.arts.gla.ac.uk/IPA/ipachart.html

http://www.unicode.org/charts/PDF/U0250.pdf
Also, simple sound-alike replacements can be used, such as “I triple E” for IEEE.

	Name
	Value
	Description

	P_UI_PRONOUNCE_IPA
	0
	The IPA pronunciation type

	P_UI_PRONOUNCE_SOUNDSLIKE
	1
	The simple sounds like replacement type

11.36
TpUICollectMode

Defines the type of collection.

	Name
	Value
	Description

	P_UI_COLLECT_MODE_DTMF
	0
	Collect DTMF digits only

	P_UI_COLLECT_MODE_VOICE
	1
	Collect Voice recognized data

	P_UI_COLLECT_MODE_DTMFANDVOICE
	2
	Collect both DTMF digits and voice recognized data

11.37
TpUIRecognitionCriteria

Defines the Sequence of Data Elements that specify the additional properties for the collection of information in the form of voice recognition according to the specified grammar.

	Structure Element Name
	Structure Element Type

	SpeakerID
	TpUIRecognitionSpeakerID

	Properties
	TpUIRecognitionPropertySet

	Grammar
	TpUIRecognitionGrammar

The structure elements specify the following criteria:

SpeakerID:

Defines the user identifier associating a user with a speech profile known to the recognition engine, which provides a hint for better quality.

Properties:

Defines the properties set for additional information to the speech recognition engine.

Grammar:

Defines the syntax of the language to be recognized.

11.38
TpUIRecognitionSpeakerID

Defines a user identifier string that identifies the speaker and is a hint to whose voice is to be recognized.

11.39
TpUIRecognitionPropertySet

Defines a Numbered Set of Data Elements of TpUIRecognitionProperty.

11.40
TpUIRecognitionProperty

Defines the Sequence of Data Elements that specify the additional properties for the recognition engine. The TpUIRecognitionProperty is a hint to the recognition engine on how it should interpret the input.

	Structure Element Name
	Structure Element Type

	PropertyName
	TpString

	PropertyValue
	TpString

The structure elements specify the following criteria:

PropertyName:

Defines the name of the property.

PropertyValue:

Defines the value of the property.

The defined properties are:

P_RECOGNITION_PROPERTY_CONFIDENCE_LEVEL - The speech recognition confidence level, a float value in the range of 0.0 to 1.0. Results are rejected when the recognitions engine's confidence in its interpretation is below this threshold. A value of 0.0 means minimum confidence is needed for a recognition, and a value of 1.0 requires maximum confidence. The default value is 0.5.

P_RECOGNITION_PROPERTY_SENSITIVITY - Set the sensitivity level. A value of 1.0 means that it is highly sensitive to quiet input. A value of 0.0 means it is least sensitive to noise. The default value is 0.5.

P_RECOGNITION_PROPERTY_SPEEDVSACCURACY - A hint specifying the desired balance between speed vs. accuracy. A value of 0.0 means fastest recognition. A value of 1.0 means best accuracy. The default is value 0.5.

P_RECOGNITION_PROPERTY_COMPLETE_TIMEOUT - The speech timeout value to use when an active grammar is matched.

11.41
TpUIRecognitionGrammar

Defines a string that consists of an inline grammar that specifies the syntax of the speech to be recognized. The format of this string is based on a subset of the Voice XML 1.0 grammar element tag. The in-line grammar text must be enclosed within <grammar> ...</grammar> element tags. The contents of the grammar specifies the allowable input that the voice recognition will accept. The Voice XML grammar specifies the set of utterances that a user may speak to perform an action and specifies the corresponding string value for the result.

The following table describes the features that provide a language for describing context-free grammars.

Feature

Purpose

word or words

(terminals, tokens) need not be quoted

[x]

optional x

(...)

Grouping

x {value text}

arbitrary value text may be associated with x

x*

0 or more occurrences of x

x+

1 or more occurrences of x

x y z ...

a sequence of x then y then z then ...

x | y | z | ...

a set of alternatives of x or y or z or ...

<rule>

rule names (non-terminals) are enclosed in <>

<rule> = x;

a private rule definition

public <rule> = x;
a public rule definition

The format of the grammar tag is:

<grammar> grammar content </grammar>

The grammar defines a possible set of utterances. The text of the utterance itself is used as the value, if the value text is not explicitly specified with {value}.

This form is particularly convenient for expressing simple lists of alternative ways of saying the same thing, for example:

<grammar>

 [please] help [me] [please] | [please] I (need | want) help [please]

</grammar>

<grammar>

hamburger | burger {hamburger} | (chicken [sandwich]) {chicken}

</grammar>

In the first example, any of the ways of saying "help" result in a valid response. In the second example, the user may say "hamburger" or "burger" and the response will be given the value "hamburger", or the user may say "chicken" or "chicken sandwich" and the result will be given the value "chicken".

If the grammar can not be matched, then a sendInfoAndCollectErr will result, with a P_IMPROPER_USER_RESPONSE.

For a better description and further examples of in-line grammar creation see [4].

11.42
TpMessageIDList

This data type defines a Numbered List of Data Elements of type TpInt32.

12
Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ILLEGAL_ID
	Information id specified is invalid

	P_ID_NOT_FOUND
	Information id is unknown

	P_ILLEGAL_RANGE
	The values for minimum and maximum collection length are out of range.

	P_INVALID_COLLECTION_CRITERIA
	Invalid collection criteria specified

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

Annex A (normative):
OMG IDL Description of User Interaction SCF

The OMG IDL representation of this interface specification is contained in text files (ui_data.idl and ui_interfaces.idl contained in archive 2919805V650IDL.ZIP) which accompany the present document.

Annex B (informative):
WSDL Description of User Interaction SCF

The W3C WSDL representation of this interface specification is contained in zip file 2919805V650WSDL.ZIP, which accompanies the present document.

Annex C (informative):
Java™ API Description of the User Interaction SCF

The Java™ API realisation of this interface specification is produced in accordance with the Java™ Realisation rules defined in Part 1 of this specification series. These rules aim to deliver for Java™, a developer API, provided as a realisation, supporting a Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and J2EE™ versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™ Code, contained in archive 2919805V650J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this interface specification is provided as Java™ Code, contained in archive 2919805V650J2EE.ZIP that accompanies the present document.
Annex D (informative):
Description of Generic User Interaction SCF for 3GPP2 cdma2000 networks

This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1]
3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, September 2000.

[2]
3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems", Version 2.0, May 14, 2002.

[3]
3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP Release 6 specification.
The information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP OSA specifications.

D.1
General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used (3GPP TR 21.905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2
Specific Exceptions

D.2.1
Clause 1: Scope

There are no additions or exclusions.

D.2.2
Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3
Clause 3: Definitions and abbreviations
There are no additions or exclusions.
D.2.4
Clause 4: Generic and Call User Interaction SCF

There are no additions or exclusions.

D.2.5
Clause 5: Class Diagrams
The sequence diagrams are included as implementation examples. Individual specifications for the sequences for Alarm Call, Call Barring 1, Network Controlled Notifications, Prepaid and Pre-Paid with Advice of Charge (AoC) have yet to be specified. In particular, there are specifications for Call Barring, Prepaid and Pre-Paid with AoC that are implemented in cdma2000 networks differently than shown in these sequence diagrams. These are for further study and are not part of this release. There are no additions or exclusions to this section except the Caveat stated above.

D.2.6
Clause 6: Class Diagrams

There are no additions or exclusions.

D.2.7
Clause 7: The Service Interface Specifications

There are no additions or exclusions.

D.2.8
Clause 8: Generic User Interaction Interface Classes Definitions

There are no additions or exclusions.

D.2.9
Clause 9: State Transition Diagrams

There are no additions or exclusions.

D.2.10
Clause 10: Service Properties

There are no additions or exclusions.

D.2.11
Clause 11: Data Definitions

There are no additions or exclusions.

D.2.12
Clause 12: Exception Classes

There are no additions or exclusions.

D.2.13
Annex A (normative): OMG IDL Description of Generic User Interaction SCF
There are no additions or exclusions.

D.2.14
Annex B (informative): W3C WSDL Description of Generic User Interaction SCF
There are no additions or exclusions.

D.2.15
Annex C (informative): Java™ API Description of Generic User Interaction SCF

There are no additions or exclusions.

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	0047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	0001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010468
	0002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010598
	0003
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	0004
	--
	Correction of description of sendInfoRes()
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	0005
	--
	Correction to handling of deassign on related object
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	0006
	--
	Correction to Exceptions Raised in UI
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	0007
	--
	Correction to values of TpUIInfoType
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020107
	0008
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020181
	0009
	--
	Addition of support for Java API technology realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	0010
	--
	Improve the vague description of P_ID_NOT_FOUND
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	0011
	--
	Addition of support for WSDL realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	0012
	--
	Detach call leg before playing announcement or collecting digits
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	0013
	--
	Delete P_INVALID_CRITERIA from sendInfoAndCollectReq()
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020183
	0014
	--
	Addition of Support for Network Controlled Notifications UI
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	0015
	--
	Correcting erroneous description of UI behaviour in call control
	4.4.0
	5.0.0

	Sep 2002
	CN_17
	NP-020432
	0018
	--
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020432
	0019
	--
	Correction on use of NULL in User Interaction API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020432
	0020
	--
	Correction to TpUIInfo data type to support binary data for SMS services
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	0021
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030021
	0023
	--
	Correction to User Interaction Prepaid Sequence Diagrams
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	0025
	--
	Correction to getNotification to remove P_INVALID_CRITERIA exception
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	0028
	--
	Addition of status of methods to User Interaction interfaces
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	0031
	--
	Corrections to User Interaction
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	0033
	--
	Correction of User Interaction Event Notification to support non text encodings
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030033
	0029
	--
	Inconsistent description of use of secondary callback
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030238
	0035
	--
	Correction of the description for callEventNotify & reportNotification
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030244
	0036
	--
	Clarify IpUI sendInfoReq()
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030244
	0037
	--
	Update TpUIInfo for consistency with GMS capabilities
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030299
	0038
	1
	Specifying the origin of a GUI message
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	0039
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	Dec 2003
	CN_22
	NP-030545
	0041
	--
	Correction to UI service responseRequested logic
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030553
	0042
	--
	Add OSA API support for 3GPP2 networks
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	0043
	--
	Improve User Interaction message management functions
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030555
	0044
	--
	Add speech recognition/synthesis capability to the Generic User Interaction
	5.5.0
	6.0.0

	Feb 2004
	--
	--
	--
	--
	Added Java code attachment 2919805J2EE.zip which was delivered late by outside developers. See Annex C.
	6.0.0
	6.0.1

	Jun 2004
	CN_24
	NP-040269
	0046
	--
	Correct List vs Set semantics in User Interaction
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040256
	0049
	--
	Correct the P_TRIGGERING_ADDRESSES service property
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040273
	0050
	--
	Remove the <> stereotype from methods which are no longer new
	6.0.1
	6.1.0

	Sep 2004
	CN_25
	NP-040355
	0052
	--
	Correct J2EE source
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040356
	0053
	--
	Remove unused Deprecated items
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040357
	0054
	--
	Add getMessageListReq() within the IpUIAdminManager interface
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040357
	0055
	--
	Change description of InfoAddress within TpUIInfo
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040357
	0056
	--
	Changes to the TpUIRecognitionGrammer parameter
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040358
	0057
	--
	Additional GUI Feature to support HA
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040358
	0058
	--
	Support High Availability at API Level
	6.1.0
	6.2.0

	Dec 2004
	CN_26
	NP-040485
	0063
	--
	Removal of OSA API SCFs description in W3C WSDL
	6.2.0
	6.3.0

	Dec 2004
	--
	--
	--
	--
	Added missing code attachments
	6.3.0
	6.3.1

	Jun 2005
	CT_28
	CP-050155
	0065
	--
	Support for Emergency Telecommunications Service
	6.3.1
	6.4.0

	Jun 2005
	CT_28
	CP-050157
	0066
	--
	Correct UIAdmin interface for sessionID problem
	6.3.1
	6.4.0

	Jun 2005
	--
	--
	--
	--
	Java code attachments not available at TS delivery deadline
	6.3.1
	6.4.0

	Jul 2005
	--
	--
	--
	--
	Added the missing Java code attachments
	6.4.0
	6.4.1

	Jun 2006
	CT_32
	CP-060195
	0068
	--
	Change reference to OSA Stage 2 from 23.127 to 23.198
	6.4.1
	6.5.0

	Jun 2006
	CT_32
	CP-060194
	0069
	--
	Resubmission of OSA API SCFs description in W3C WSDL
	6.4.1
	6.5.0

