3GPP TR 26.852 V14.1.0 (2016-06)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Multimedia Broadcast/Multicast Service (MBMS);

Extensions and profiling
(Release 14)

[image: image1.emf]

[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

MBMS, Profile
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

Introduction
6
1
Scope
7
2
References
7
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
8
4
Use Cases
9
4.1
Introduction
9
4.2
Service Announcement for Services in-venue and outside
9
4.2.1
Description
9
4.2.2
Characteristics
9
4.3
Service Announcement updates for live streaming
9
4.3.1
Description
9
4.3.2
Characteristics
9
4.4
Service Announcement updates for Non-Real Time services
10
4.4.1
Description
10
4.4.2
Characteristics
10
4.5
Application Update Use Case
10
4.5.1
Use Case
10
4.5.2
Implication on Profile
10
4.6
Delivery of Live DASH Service over eMBMS
11
4.6.0
General
11
4.6.1
Download Delivery Characteristics of Live DASH services:
11
4.6.2
Relevant/Necessary Tools
11
4.7
Scores and Statistics Service
12
4.7.0
General
12
4.7.1
Download Delivery Characteristics of the "Scores & Statistics" Service
12
4.7.2
Relevant/Necessary Tools
12
4.8
Digital Signage Service
12
4.8.0
General
12
4.8.1
Download Delivery Characteristics of the Digital Signage Service
13
4.8.2
Relevant/Necessary Tools:
13
5
Profile Definition
13
5.1
Introduction
13
5.2
Delivery Profile
14
5.2.1
FDT Attributes and Elements
14
5.2.1.1
Introduction
14
5.2.1.2
Common FDT-Instance and File Attributes
14
5.2.1.3
FDT-Instance specific Attributes and Elements
14
5.2.1.4
FDT File specific Attributes and Elements
14
5.2.2
Version and Delimiter Schema
17
5.2.3
RTSP Control of FLUTE Sessions
17
5.2.4
Other Aspects of FLUTE Delivery
17
6
MBMS as a Transport Protocol
18
6.1
URL Handling Interface
18
6.2
URL Scheme Variants
18
6.2.1
Self-contained URL (No resolution/USD)
18
6.2.2
URL Scheme with ServiceID
19
6.2.2.1
Overall Form
19
6.2.2.2
Example
19
6.2.2.3
Operation of the URL Handler
19
6.2.3
Non-restricted MBMS URL Scheme
20
6.2.3.1
MBMS URL Scheme Syntax and Semantics
20
6.2.3.2
Address Resolution
20
6.3
DNS Resolution of MBMS URLs
21
6.3.1
URL structure and definition
21
6.3.1.1
Structure
21
6.3.1.2
Prefix
21
6.3.1.3
Mid-part
21
6.3.1.4
Suffix
21
6.3.1.5
Query and fragment parts
22
6.3.1.6
Relative URIs
22
6.3.2
URL Processing
22
6.3.2.1
Pre-flighting
22
6.3.2.2
Initializing the service
22
6.3.2.2.1
Introduction
22
6.3.2.2.2
Signalling Channel Initialization
22
6.3.2.2.3
In-band initialization
22
6.3.2.3
Retrieving and returning the resource
23
6.3.2.4
Caching and keep-alive
23
6.3.3
Example
23
7
Application Programming Interface (API) Aspects
24
7.1
Architectures
24
7.1.1
Service Layer Architecture and Scope
24
7.1.2
Client Architecture
24
7.1.3
Deployment Scenarios
25
7.2
Use Cases and Scenarios
26
7.2.1
Overview
26
7.2.2
Service Discovery and Bootstrapping
26
7.2.3
DASH-based streaming content and service change
27
7.2.4
File Download Service
28
7.2.5
Other services and Scenarios
29
7.2.6
Supported Use cases
29
7.2.7
Approach 1
30
7.2.7.1
Introduction
30
7.2.7.2
Network Architecture
31
7.2.7.3
Modules
31
7.2.7.4
Use Cases and Message Flows
31
7.2.7.4.1
Streaming application
31
7.2.7.4.2
File Delivery application
36
7.2.7.4.3
App – Top 10 videos
37
7.2.8
Approach2
42
7.2.8.1
Basic Principle
42
7.2.8.2
MBMS Protocol
42
7.2.8.2.1
Introduction
42
7.2.8.2.2
General APIs
42
7.2.8.2.3
DASH service APIs
42
7.2.8.2.4
Download service APIs
43
7.2.8.2.5
Event listener APIs
43
7.2.8.2.6
Event List
43
7.3
User Plane APIs
43
7.3.1
Introduction
43
7.3.2
Regular object delivery and Partial File Handling
44
7.3.3
Cache Status
44
7.3.3.1
Revision of the Key Use Case
44
7.3.3.2
Potential Solutions
45
7.3.4
Unicast Broadcast Handoff
45
7.3.5
Adjustment of AvailabilityStartTime
45
7.3.6
Other Functionalities
45
8
MBMS Reception Reporting of DASH QoE Metrics
45
8.1
Current QoE Reporting Behaviour
45
8.2
Desired QoE Reporting Optimization
46
8.3
Current QoE Metrics and Reporting Formats
47
8.3.1
DASH QoE Metrics in the MPD
47
8.3.2
DASH QoE Report Format and Protocol
50
8.3.3
Similarities and Differences between DASH QoE and MBMS Reception Reporting
52
8.4
Potential Solutions
52
8.4.1
Modifications to the ADPD
52
8.4.1.1
Method 1 – New Attributes Under postReceptionReport Element
52
8.4.1.2
Method 2 – New Element Under postReceptionReport Element
53
8.4.2
Synchronization of DASH QoE Reporting with Reception Reporting
53
8.4.3
Aggregation of DASH QoE Reports with Reception Reports
54
8.4.4
Modification to MPD
54
8.5
Client Identifier Access via MBMS API
55
8.5.1
Introduction
55
8.5.2
Methods and Considerations for Accessing clientID Information
55
8.5.3
clientID Access via MBMS API
55
8.5.4
Considerations on clientID Access via the MBMS API
56
9
Conclusions and Recommendations
57
Annex A:
Change history
58

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document has been created as part of the MEPRO work item to identify relevant profiles for the MBMS user services, study the feasibility of MBMS as a transport enabler, and identify relevant APIs that can offered to applications to enable usage of MBMS user services.
1
Scope

The present document identifies a set of profiles for based on the most relevant use cases for the usage of MBMS. It also studies the feasibility of using MBMS as a regular transport enabler through the definition of an MBMS URL scheme and the procedures to resolve such URL schemes. In addition, it identifies a set of APIs for controlling MBMS user service reception and retrieving resources that are delivered over MBMS. Finally, the present document also addresses the issue of defining QoE reporting for DASH over MBMS.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TR 41.001: "GSM Release specifications".

[3]
3GPP TR 21 912 (V3.1.0): "Example 2, using fixed text".

[4]
3GPP TS 26.346: " Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".

[5]
IETF RFC 5052: "Forward Error Correction (FEC) Building Block".

[6]
IETF RFC 5053: "Raptor Forward Error Correction Scheme for Object Delivery".

[7]
IETF RFC 3695: "Compact Forward Error Correction (FEC) Schemes".

[8]
IETF RFC 5053: "Raptor Forward Error Correction Scheme for Object Delivery".

[9]
3GPP TS 26.247: "Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".

[10]
IETF RFC 2616: " Hypertext Transfer Protocol -- HTTP/1.1".

[11]
3GPP TS 26.946: "Multimedia Broadcast/Multicast Service (MBMS) user service guidelines"

[12]
ISO/IEC 23009-1:2014: "Information technology -- Dynamic adaptive streaming over HTTP (DASH) -- Part 1: Media presentation description and segment formats".
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Multimedia Broadcast/Multicast Service (MBMS): See 3GPP TS 26.346 [4].
MBMS user services: See 3GPP TS 26.346 [4].

MBMS user service discovery/announcement: user service discovery refers to methods for the UE to obtain the list of available MBMS user services along with information on the user service
The user service announcement refers to methods for the MBMS service provider to make the list of available MBMS user services along with information on the user service available to the UE.

MBMS delivery method: mechanism used by a MBMS user service to deliver content
There are three MBMS delivery method instances: group communication, download and streaming.
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
ADPD
Associated Delivery Procedure Description

BM-SC
Broadcast-Multicast - Service Centre

DANE
DASH Aware Network Element

DASH
Dynamic Adaptive Streaming over HTTP

ERT
Expected Residual Time

FDT
File Delivery Table

FLUTE
File deLivery over Unidirectional Transport

LCT
Layered Coding Transport

MIME
Multipurpose Internet Mail Extensions

PSS
Packet Switch Streaming

SAND
Server and Network Assisted DASH

SCT
Sender Current Time

TMGI
Temporary Mobile Group Identity

TOI
Transport Object Identifier

TSI
Transport Session Identifier
4
Use Cases

4.1
Introduction

This clause identifies the most relevant use cases for the usage of MBMS user services that server as the reference for identifying the key functions to be considered in profile definition.

4.2
Service Announcement for Services in-venue and outside

4.2.1
Description

An operator wants to offer a set of MBMS user services depending on the interest in areas. Typically, the interest is high inside of venues. Live coverage of the event is also of interest outside of the venue.

The operator may want to offer some Live Video services during events inside of the venue and also outside of the venue. An example for a Live Video Service is a camera feed from the match.

In-Venue events are typically advertised in advance so that the audience has a chance to buy tickets. Services and offerings are also planned and scheduled in advance. Devices are desired to have all relevant service access information locally available as required via broadcast, in order to limit / avoid dependency on the unicast.

4.2.2
Characteristics

-
Several MBMS User Services are offered inside of a venue (together with other venue specific services) and out side

-
Devices receive service announcement information prior to an event and keep the information until end of validity

-
All UEs are informed of all services all the time and devices filter the list. The list of services advertised in a given area could be limited (location-based) or nationwide if the number of services is not large.

-
The operator may activate reception reporting (for QoE reporting) for the Live DASH service. An appropriate Associated Delivery Procedure Description (ADPD) Fragment is provided to that effect.
4.3
Service Announcement updates for live streaming

4.3.1
Description

Sub Case 1: An operator wants to update already announced MBMS user services. For instance, the football match final was planned to include penalty shooting, but one team was a clear winner after the regular match duration. The operator wants to update the service announcement and provide the correct service end-time. A more precisely defined schedule information and MPD@mediaPresentationDuration allows for a more graceful shut down of the presentation playback.

Sub Case 2: Another example, which requires service announcement updates for live streaming services is ad-insertion: The operator may insert an advertisement into the DASH stream and therefore needs to update the MPD containing an new period.

4.3.2
Characteristics

-
The operator needs to send service announcement updates to all devices, which are currently not consuming the content. The devices should have the correct access information when activating the reception.
-
Devices need to frequently check for all service announcement updates, even if only consuming content for one of the services. This reduces the latency in acquiring a new service since the relevant MBMS metadata fragments are locally cached.

-
The operator needs to send updated service announcement information quickly to those devices that are currently consuming the service.

-
Devices are not required to monitor the SDCH while receiving content on another bearer. However, user experience may improve, when the UE supports reception of multiple MBMS bearers simultaneously.
-
Updating all devices with the latest service announcement information depends on the device SDCH checking frequency.
4.4
Service Announcement updates for Non-Real Time services

4.4.1
Description

Sub Case 1: The operator has scheduled a file delivery service such as an Digital Signage Service. The operator realizes prior to the event but after first service announcement, that the delivered NRT content is larger than initially planned. The broadcast session duration should be updated and the operator provides new schedule information.

Sub Case 2: The operator has initially scheduled the file delivery service for a certain time slot. Due to another, higher priority service, the operator needs to change the schedule for the NRT file delivery service by updating the schedule.

4.4.2
Characteristics

The operator needs to send service announcement updates to all devices, which are currently not consuming the content. The devices should have the correct access information when activating the reception.

4.5
Application Update Use Case

4.5.1
Use Case

The user is interested in software updates for his smartphone or some of the applications in his smartphone. Because those applications are very popular, the operator wants to avoid that a significant amount of downloads of the same resource occur at the same time over the unicast channel. Updates to applications are usually made available within an app store by application providers. Firmware updates are usually notified to a UE user via a dedicated tool. As such multiple management authorities may be managing a subset of the device. In the case that (one or all the) Management Authorities are interested in leveraging a 3rd party MBMS platforms from an operator or service provider, the updated resources can be delivered over MBMS for more economical resource usage. The UEs are informed about file updates of interest to them. The UEs then join the dedicated MBMS service to receive these updates.

4.5.2
Implication on Profile

The profile on file download should contain the following tools for the support of the app update use case:

-
Pre-configured USD for keep-updated service

-
Registration/de-registration for keep updated service

-
Notification using OMA PUSH about upcoming file distribution

-
OMA DM Client Authority Delegation to authorize retrieval and access to the app and firmware updates

In addition, it is recommended that API functionality should be studied to support the use case. The usage of OMA DM Client API Framework 1.0 should also be considered to allow applications and services to use management objects installed on the device.

4.6
Delivery of Live DASH Service over eMBMS

4.6.0
General

A mobile network operator, as the eMBMS service provider, offers a variety of live sports events delivered as DASH-over-eMBMS services that can potentially be accessed by a large end-user population. For a given Live DASH service, the availability times of Segments depend on the position of the Segment in the Media Presentation timeline.

4.6.1
Download Delivery Characteristics of Live DASH services:

Key characteristics, pertaining to download delivery, of implementations of Live DASH services delivered over eMBMS include the following:

-
A single MBMS Download Delivery Session (aka FLUTE session) is used to carry all media components of the DASH Media Presentation, which comprises either as a single, multiplexed Representation, or separate Representations, each carrying a different media type.

-
Although the segment URLs may be known from a segment template in the MPD, these files cannot be fully described in an FDT Instances until they are available for broadcast transport on the BM-SC.

-
File repair is not supported for Live DASH services due to stringent playout delay requirements, and as such, minimizes the amount of time that incomplete files have to be retained in the device.

-
Service announcement metadata fragments which may be dynamically updated are delivered inband with the Media Segments on the same MBMS download delivery session, and potentially broadcast throughout the service session.

-
The session schedule of the Schedule Description fragment is used to signal the nominal broadcast delivery window of the live event.
4.6.2
Relevant/Necessary Tools

The following MBMS and 3GP-DASH mechanisms as specified in TS 26.346 and TS 26.247 are necessary to support the required capabilities for the above use case. These represent key aspects of the download delivery profile to be defined and aspects of use that needs profiling.

-
MBMS download delivery method to carry the Media Segments of the Live DASH service, in either multiplexed or non-multiplexed form as defined in TS 26.247.

-
Use of the Schedule Description metadata fragment to convey the planned broadcast delivery window of the associated service event.

-
Use of new FDT Instances describing new Segments as the Segment become available.

-
Use of the FDT Instance's Expires attribute to indicate when individual Segment transmission is expected to end.

-
Use of interleaved vs. sequential transmission of separate Media Segments (e.g., audio and video).

-
Use of inband metadata fragments (Schedule Description, MPD, and ADPD fragments) transmitted in interleaved fashion with Media Segments.

-
Use of new FDT instances to describe new in-band metadata fragment updates.

-
Use of the FDT's Expires attribute to indicate that inband fragments are transmitted through end of the session.
4.7
Scores and Statistics Service

4.7.0
General

eMBMS service provider 'Hoopster.com' offers NBA basketball scores and statistics information as an eMBMS download delivery service. During the regular NBA season, and across evening hours and weekend afternoons, files containing live scores and other statistical information on players and teams are broadcast on this service. The size of a given file ranges from 10 kB to 25 kB, with average size of 20 kB.

Based on contractual agreement between Hoopster.com and the NBA (the content owner) to support fast and up-to-date service acquisition, regardless of when the subscriber chooses to monitor the service, the latest version of service files is transmitted repeatedly, back-to-back, on the allocated MBMS bearer. Files are nominally updated every 120 seconds, although dynamic changes may occur at any time, for example to provide real-time announcement of final scores of games and leading scorer information as these transpire. The nominal update interval of the content delivered by the service is delivered to the UE. The MBMS client monitors the delivered content at that nominal update interval.

4.7.1
Download Delivery Characteristics of the "Scores & Statistics" Service

Key characteristics of eMBMS download delivery of the "Scores & Statistics" (S&S) Service include the following:

-
The Sports Scores and Statistics service is an example of the back-to-back (carousel) Datacasting service. Its contents are associated with a nominal update period but for which dynamic changes may occur at any time and are delivered immediately on the dedicated FLUTE session.

-
This service may be always-on, meaning that content is continuously/repeatedly delivered on the assigned MBMS Download Delivery session of the service, or it may be active during certain times of the day or week, i.e. represented by one or more delivery sessions each of which is associated with a transmission window. In the latter case, the duration of each active delivery session is defined by the difference between the start and stop elements of the sessionSchedule of the Schedule Description fragment.
-
The Schedule Description fragment for the service describes when the service is active, and the frequency of file updates.
4.7.2
Relevant/Necessary Tools

The following MBMS mechanisms as specified in TS 26.346 are necessary to support the required capabilities for the above use case. These represent key aspects of the download delivery profile to be defined and aspects of use that needs profiling.

-
MBMS download delivery method to carry the content components of the S&S service.

-
Use of different FDT Instances to describe file changes by using the same file name for different content vs. the use of different file names for the different content.
-
Use of different FDT Instances to describe the different file versions for the same file URL (i.e. Content-Location), with respect to the FDT Instances' Expires attribute for each instance.
-
Capability of the Schedule Description fragment to define nominal periodicity of updates on the S&S service to enable more battery power efficient means of consuming this service.
4.8
Digital Signage Service

4.8.0
General

eMBMS service provider 'DigSign' deploys digital displays of advertisements and other types of information throughout the city. These are targeted to fixed-location digital display signs which contain LTE Broadcast receivers with limited memory. Files contain a sequence of images that make up an ad. Each file can be up to 1 MB in size. DigSign updates two times a day a set of 10 ad files being displayed and uses the mobile operator "BigFriendly Wireless" eMBMS service to deliver these updates.

4.8.1
Download Delivery Characteristics of the Digital Signage Service

Key characteristics of eMBMS download delivery of the Digital Signage service include the following:

-
The Digital Signage service ("DigiSign") is an example of a "sent-once" delivery, where a sequence of files is sent during a delivery session. Each file is broadcast exactly once during a delivery session. In this use case, there are two delivery sessions per day.

-
The Schedule Description fragment for the service describes when the service is active, and the frequency of file updates.

-
MBMS receivers determine from the Schedule Description fragment the precise start and stop times of each delivery session from the sessionSchedule element.

-
MBMS receivers determine the delivery interval of upcoming files and whether a certain file should be picked up or not based on the fileSchedule element, whose deliveryInfo child element defines the reception window.
4.8.2
Relevant/Necessary Tools:

The following MBMS mechanisms as specified in TS 26.346 are necessary to support the required capabilities for the above use case.

-
MBMS download delivery method to carry the content components of the DigSign service.

-
Use of different FDT Instances to describe file updates by using the same file name for different content vs. the use of different file names for the different content.
-
Use of different FDT Instances to describe the different file versions for the same file URL (i.e. Content-Location), with respect to the FDT Instances' Expires attribute for each instance.
-
Capability of the Schedule Description fragment to define delivery session duration. This enables the MBMS receiver to power-off between delivery sessions for battery savings.
-
Capability of the Schedule Description fragment to provide file URLs and define a file schedule for each file. That enables a device to efficiently filter content based on the file URL (e.g. the file URL may contain some application defined semantics like http://example.com/service-1/image.png) and file schedule.
5
Profile Definition

5.1
Introduction

The following criteria are considered when defining a profile:

-
A profile should be backed by one or more use cases

-
A profile should refer only to features and behaviours that are already defined in TS 26.346 [4].
5.2
Delivery Profile

5.2.1
FDT Attributes and Elements

5.2.1.1
Introduction

Characterization of the relevant FDT attributes and elements of the Download Delivery Profile is described in this clause. FDT attributes and elements are categorized at the FDT-Instance level (i.e. the FDT-Instance element of the FDT) and at the File level (i.e. the File element of the FDT).

5.2.1.2
Common FDT-Instance and File Attributes

The following FDT attributes, defined at both the FDT-Instance and File levels, should be carried in the FDT sent by the FLUTE sender, under either the File-Instance or File element, and should be supported by the FLUTE receiver:

-
Content-Type

-
FEC-OTI-FEC-Encoding-ID

-
FEC-OTI-Maximum-Source-Block-Length

-
FEC-OTI-Encoding-Symbol-Length

-
FEC-OTI-Scheme-Specific-Info

The following FDT parameters, defined at both the FDT-Instance and File levels, should not be carried in the FDT sent by the FLUTE sender, in either the File-Instance or File element, and are optional to support by the FLUTE receiver:

-
Content-Encoding attribute

-
FEC-OTI-FEC-Instance-ID attribute (not applicable to Rel-9 FEC schemes)

-
FEC-OTI-Max-Number-of-Encoding-Symbols attribute (not applicable to Rel-9 FEC schemes)

-
Group element
5.2.1.3
FDT-Instance specific Attributes and Elements

The following parameters, defined at the FDT-Instance level, should not be carried in the FDT sent by the FLUTE sender, and are optional to support by the FLUTE receiver:

-
Complete attribute

-
mbms2008:FullFDT attribute

-
mbms2012:Base-URL-1 element

-
mbms2012:Base-URL-2 element

-
MBMS-Session-Identity-Expiry element
5.2.1.4
FDT File specific Attributes and Elements

The following attributes, defined at the File level, should be carried in the FDT sent by the FLUTE sender, and should be supported by the FLUTE receiver, subject to the qualifications indicated below:

-
Content-Location

-
The value of this attribute should not contain "//", except when used as part of the URL format (i.e. following "scheme" concatenated with ":" (e.g. http://). In addition, FLUTE sender apply URL safe encoding by proper escaping/encoding of reserved characters to generate a well-formed URL.
-
TOI

-
Content-Length

-
Content-MD5

-
Should not be included for DASH-formatted services.
The following element may be carried in the FDT sent by the FLUTE sender, and should be supported by the FLUTE receiver:

-
mbms2007:Cache-Control
The following attributes may be carried in the FDT sent by the FLUTE sender, and should be supported by the FLUTE receiver. These attributes should only be present for the purpose of replacing/overriding corresponding attributes at the FDT-Instance level.

-
Content-Type

-
FEC-OTI-FEC-Encoding-ID

-
FEC-OTI-Maximum-Source-Block-Length

-
FEC-OTI-Encoding-Symbol-Length

-
FEC-OTI-Scheme-Specific-Info

The following attributes should not be carried in the FDT sent by the FLUTE sender, and are optional to support by the FLUTE receiver:

Transfer-Length

-
mbms2009:Decryption-KEY-URI

-
mbms2012:FEC-Redundancy-Level

-
mbms2012:Alternate-Content-Location-1

-
mbms2012:Alternate-Content-Location-2

-
MBMS-Session-Identity

Figure 1 illustrates the 3GPP FLUTE FDT Schema for which the specified usage for the Download Delivery Profile is described in this clause.

[image: image3.emf]

Figure 1: 3GPP FLUTE FDT Schema

5.2.2
Version and Delimiter Schema

The present document defines two XML Schema elements necessary for the UE and the network side to maintain forward and backward compatibility: schemaVersion and delimiter. These elements are used by the following schemas: USBD, Schedule Description, Filter Description and FDT. This Download Delivery Profile supports schemaVersion = "1" for the FDT. The supported delimiter element has value = "0" as set by the network, and the element content should be ignored by the UE.

5.2.3
RTSP Control of FLUTE Sessions

"FLUTE session setup and control with RTSP" as specified in clause 7.5 of the present document is optional to support by the UE.

5.2.4
Other Aspects of FLUTE Delivery

Regarding Application Layer FEC support, the two FEC schemes referenced in the present document, the Compact No-Code FEC scheme as specified in RFC 5052 [5], and the Raptor FEC scheme as specified in RFC 5053 [6] are optional to implement by the BM-SC and mandatory to support by the UE. File fragmentation into blocks is supported. In the case of the Compact No-Code FEC scheme, the blocking algorithm as defined in RFC 3695 [7] should be used. For the Raptor FEC scheme, specification of the blocking algorithm should comply with the recommendations on the derivation of the relevant parameters as defined in RFC 5053 [8].

As indicated in clause 7.2.4 of the present document, congestion control is not used for FLUTE delivery in MBMS, and therefore, FLUTE channelization should be provided by a single FLUTE channel with single rate transport.

Regarding FLUTE session description, an instance of Session Description fragment, comprising an SDP file, will contain all parameters as defined in clause 7.3 of the present document.

The LCT Header Extension "EXT_FTI" as defined by ALC in [10], for the purpose of communicating FEC Object Transmission Information, should be used in FLUTE packets that carry symbols of FDT Instance(s). FEC Object Transmission Information in FLUTE packets which carry symbols of content files should be conveyed by the FEC-OTI parameters in the FDT, and for which the expectations on network usage and UE support are specified in clauses 5.2.1.1 and 5.2.1.2.

The means to signal the end of the FLUTE session or the end of individual file transmissions is provided by the Schedule Description fragment, via the session schedule and file schedule elements. The LCT header's 'Close Session' flag (A) and 'Close Object' flag (B) should be set by the network to "0", and the UE should ignore these flags.

Timing related fields in LCT corresponding to Sender Current Time (SCT) and Expected Residual Time (ERT), either in the form of the T and R flags in the LCT header, or carried in the LCT Extension Header 'EXT_TIME', are not used in the Download Delivery Profile. The network should set these flags/fields to zero, and the UE should ignore them.
6
MBMS as a Transport Protocol

6.1
URL Handling Interface

The URL handling interface is described graphically by the diagram in Figure 2. All the boxes except for the yellow, bold, box are pre-existing and no change is needed. An application might, for example, be written to use MBMS services using the MBMS API (left side of the diagram). Or, it may be written to support URLs that address 'file' resources, and use a generic operating system URL resolution library ('URL Dispatch' in the diagram) to return the identified resource when it encounters one. The "file" resource may be an entry point to a service and it may be the case that there is a default file defined for a service (just as done today if you use http to access a web site). That library, in turn, identifies the specific protocol handler from the URL scheme name (e.g. "http:", "mbms:"), and invokes the appropriate protocol-specific handler. The interface to that handler is determined by the operating system also; internally, the MBMS handler picks apart the URL form, and, possibly using the existing MBMS APIs, initiates the acquisition of the MBMS service that permits access to the identified resource, and acquisition of the indicated 'file' resource from that session, and returns that resource. Note that the MBMS function may also act as an MBMS URL handler.

[image: image4.emf]

Application Application

URL Dispatch

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Figure 2: MBMS URL Handler

6.2
URL Scheme Variants

6.2.1
Self-contained URL (No resolution/USD)

(Note that the use of "&" here is not part of a query or fragment, as there is no preceding "?" or "#". "&" is in the main body of URLs where it is a legal character.)

The mid-part has three elements, each optional.

1)
The start-time of the viability of the URL, indicated by the string "&start=" and a decimal value.

2)
The end-time of the viability of the URL, indicated by the string "&end=" and a decimal value.

3)
Possibly only in the case of the first variant, zero or more indicators of the networks on which the resource is available, indicated by the string "&plmn=" followed by the PLMN-Id of a network expressed as 6 hexadecimal characters.

The start and end times are each optional and if present are expressed exactly as in SDP (see the "t=" value), i.e. as the decimal representation of Network Time Protocol (NTP) time values in seconds since 1900.

The suffix consists of the string "&label=" followed by the content-label of a resource, expressed as its URI, without any escaping.

If the suffix is absent, then the MPD included in the USD is returned. [[Ed: We do not have to do this defaulting, and it would have been cleaner if the USD had identified the root or default resource in general, rather than having special handling for DASH MPDs; then, for example, a web session could have identified the root HTML file as the default.]]

Note that the suffix may include a fragment or query identifier (preceded by "#" or "?" respectively), although query identifiers are not really relevant to the service.

Note that the "//" means that the MBMS scheme is hierarchical and that relative URLs are permitted, and that they would be effectively composed against the label part. This means that, for example, an explicit or implied base URL in an MPD may be an MBMS URL, and that relative URLs in the MPD can be composed against that base.

[[Ed: the 'defaulting' to the included MPD, above, means that relative URLs may get messed up; needs study.]]

6.2.2
URL Scheme with ServiceID

6.2.2.1
Overall Form

The form described here uses a URN in the prefix part; if only this form is adopted, parsers check for the existence of "urn:" and cease parsing if it is absent. [[Ed: it might need an explicit indication of this variant, e.g. by saying "serviceID=" after the "//" and before the URN]]. This URN form relies on the terminal reception of USD files over the MBMS signaling channel.

The prefix consists of the scheme name "mbms", followed by a colon character and two slashes, and a URN. The prefix terminates either at the end of the URL, or at the first character not permitted in a URN (an 'excluded character' from the URN RFC, such as "&").

The URN is formatted the same as the value of the serviceID attribute in a USD, and will be matched to a serviceID. (Note that TS 26.346 explicitly describes this as a URN, not a URI, so a URL is not permitted.)

example:

mbms://urn:uuid:6e8bc430-9c3a-11d9-9669-0800200c9a66

6.2.2.2
Example

mbms://urn:uuid:6e8bc430-9c3a-11d9-9669-0800200c9a66&plmn=3a06de&label=http://www.example.com/content.mpd

6.2.2.3
Operation of the URL Handler

When the terminal initializes, or at some time preceding the first request to the MBMS URL Handler, the terminal's MBMS function opens the SACH signalling channel and receives, and caches, the USDs that are sent on that channel. In those USDs it finds the unique serviceID attribute value, defined to be a URN by TS 26.346, and indexes the received USDs by this serviceID URN value. (This channel is REQUIRED for variant 1, but not for variant two.)

Each URL is passed to the MBMS URL handler for resolution.

First:

-
the handler checks the start and end times, if present, as above;
-
if the URL has one or more PLMN mid-part values, and the PLMN-ID of the current network is operating matches none of them, it returns with error (400, Bad Request?). If there are no PLMN-Ids in the URL, then the URL handler should continue and assume the resource/session are generally available, or that other means have been used to assure that the URL is only passed to terminals able to use it.

If these checks pass, the MBMS URL handler then checks to see if the serviceID of the URL matches one of the services it is already receiving (it has already initiated reception e.g. through the API). If it is already being received, it moves ahead to return the resource at the time when the resource is available.

Otherwise, since the MBMS service described by the USD is not currently open, it causes the USD with the matching ServiceID to be opened (again, possibly using the API; if a match cannot be found, it returns with error (404? Service Unavailable?).

Note, this assumes that all USDs have arrived before any URL request is made for them.

If it can be found, it causes the session to be opened. The terminal therefore starts to receive the contents of that session, particularly the FDT and the files described by it, and the terminal caches the included files as they arrive (see below for more discussion of caching).

6.2.3
Non-restricted MBMS URL Scheme

6.2.3.1
MBMS URL Scheme Syntax and Semantics

An MBMS URL cannot put any restrictions on the authority, path, or query parts of the URL according to the IETF guidelines. This will avoid collisions, dilution, and rigidity of the URL and thus increase its utility drastically.

In order to support unicast fallback, The MBMS URL includes an indication of the URL of the resource that is accessible over unicast. This is done by mapping the unicast URL scheme to the MBMS URL scheme and keeping the rest of the URL intact.

Finally, this MBMS URL scheme supports MooD by enabling redirection to the unicast location of the requested resource.

The MBMS URL has the following ABNF syntax:

 scheme = mbms-scheme "://" host [":" port] "/" path
 mbms-scheme = "mbms-http" | "mbms-https" | "mbms-rtsp"
The scheme part of the URL contains the unicast protocol scheme that should replace the MBMS URL scheme when unicast fetching is required.

The authority part of the URL is exactly the same as that of original unicast URL. The authority part of the URL including <host> and <port> is specified in RFC3986.

For example, a resource that has the following URL over unicast: https://www.example.com/resource.mpd would have the following MBMS URL:

mbms-https://www.example.com/resource.mpd

6.2.3.2
Address Resolution

Upon receiving a request for an MBMS URI, the MBMS scheme handler first resolve the address to locate it.

The address resolution procedure consists of the following steps:

-
Operating system/browser launches the MBMS protocol handler with the requested MBMS URL

-
MBMS protocol handler checks local cache for already received resource with MBMS URL or the corresponding unicast URL and if found returns the resource to the receiver

-
If the resource is not located in the local cache, the MBMS protocol handler checks its cached USDs and Schedule Description Metadata fragments for the occurrence of the URL as part of a fileSchedule or an appService. If found, the MBMS protocol handler will check for the scheduled time of delivery of the resource/stream and if suitable/acceptable for the application, it will schedule reception of the resource/stream over broadcast.

-
If the resource is not found, the MBMS URL scheme handler will revert to MooD for receiving the resource/stream. It sends the request using the unicast URL to the MooD proxy server, which will either retrieve the resource over unicast or redirect the receiver to MBMS reception.

Note:
An appropriate API for passing the requested resources and error handling is considered as part of the API work.

6.3
DNS Resolution of MBMS URLs

6.3.1
URL structure and definition

6.3.1.1
Structure

The URL is composed of a prefix, mid-part, and suffix.
6.3.1.2
Prefix

The prefix consists of the string mbms:// followed by a hostname, or an explicit IP4 or IPv6 address, followed by a “:” and a portnumber. The use of explicit IP addresses enables a DNS step to be avoided; however, the use of DNS enables the same URL to serve on many networks, resolving on each to the correct TMGI, so the explicit address form is less flexible. The default port number may be defined in TS 26.346; no default is currently defined and it needs to be supplied explicitly.

Explicit IP addresses may be used only if it can be assured that the URLs will only be served to terminals that can use them. Both the IPv4 forms (e.g. mbms://225.34.12.9.77:56852/) and the IPv6 form using “[“ and “]” may be used (e.g. mbms:://[2001:db8::7]:65432/).
6.3.1.3
Mid-part

The mid-part has three elements, each optional.

1) The start-time of the viability of the URL, indicated by the string “&start=” and a decimal value.

2) The end-time of the viability of the URL, indicated by the string “&end=” and a decimal value.

3) Zero or more indicators of the networks on which the resource is available, indicated by the string “&plmn=” followed by one or more PLMN-Ids of a network each expressed as 6 hexadecimal characters and separated by "+".

The start and end times are each optional and if present are expressed exactly as in SDP (see the “t=” value in [[ref needed: SDP: Session Description Protocol, RFC 4566]]), i.e. as the decimal representation of Network Time Protocol (NTP) time values in seconds since 1900. The default start time is the indefinite past; the default end time is the indefinite future.

(Note that the use of “&” here is not part of a query or fragment, as there is no preceding “?” or “#”. “&” is in the main body of URLs where it is a legal character.)

6.3.1.4
Suffix

The suffix consists of the string “&label=” followed by the content-label of a resource, expressed as its URI, without any escaping.

If the suffix is absent, then implied label is the filename identified as the default by the USD.

The suffix is terminated by a fragment or query identifier (preceded by “#” or “?” respectively), if present, or by the end of the URL if they are absent.

6.3.1.5
Query and fragment parts

A query may be present, after the suffix, identified by its initial "?". However, there is no processing defined for queries.

Similarly, a fragment may be present, identified by its initial "#". Fragments are processed according to the definitions for the provided resource.

6.3.1.6
Relative URIs

Note that the “//” means that the MBMS scheme is hierarchical and that relative URLs are permitted, and that they are effectively composed against the label part. This means that, for example, an explicit or implied base URL in an MPD may be an MBMS URL, and that relative URLs in the MPD can be composed against that base.

6.3.2
URL Processing

6.3.2.1
Pre-flighting

The MBMS URL handler, on receipt of a request for a resource identified by a URL, performs the following pre-flight checks:
a) if the URL has a start mid-part value, and the value is in the future, it returns an error (503, service unavailable)

b) if the URL has an end mid-part value, and the value is in the past, it returns with error (503, service unavailable)

c) if the URL has a plmn mid-part value, and the terminal is operating on a network that is not in the list of PLMN-Ids, it returns an error (400, bad request)

6.3.2.2
Initializing the service

6.3.2.2.1
Introduction

Initialization of the service involves locating and processing the USD. This may be done in one of two ways. If the service has already been initialized (see below under Caching and Keep-alive) then this step is skipped.

The service filename is indicated by the prefix part of the URL, without any port-number.

The USD would need to be available on either or both (a) the signalling channel or (b) in-band in the channel it describes. The USD would preferably always be made available in-band.

6.3.2.2.2
Signalling Channel Initialization

If the terminal has been configured to use the SACH (signalling channel), then the USD is first sought by matching the prefix part of the URL (the initial part preceding the first "&", with any explicit port number removed) with the filenames received on the signalling channel. If a match is found, that USD is retrieved and the session initialized from it.

If no matching filename is found, the handler may wait for it to arrive, or may proceed to use in-band initialization.

6.3.2.2.3
In-band initialization
If the terminal does not use signaling channel initialization, or the USD is not found there or not found in time, then in-band initialization would preferably be attempted.

If an explicit address is not used (IPv4 or IPv6), then the hostname is resolved to a multicast IP address using standards DNS lookup. The domain name server used to resolve the name to an address has to be ‘sensitive’ to the network on which the terminal resides, i.e. return a result that is valid for that network. If the MBMS session is not available on the network, the DNS query has to either fail or return all zeroes in the lower part of the returned IP address.
In the case of IPv4, the address is of the form 0xE1xxxxxx where xxxxxx is the 24 bits MBMS Service ID. Since the name resolution detected and used the information as to what network the terminal is on, this is an MBMS Service ID valid for the PLMN-ID (MNC/MCC) of that network; the TMGI is therefore the terminal’s known PLMN-ID and this MBMS Service ID.

Similarly in the case of IPv6 the MBMS Service ID is embedded in the lowest 24 bits of the IPv6 multicast address; the entire address, including the other 104 bits need to be a valid IPv6 multicast address.

The channel identified by the composed TMGI is opened and FLUTE reception initiated. The FDT is scanned for a resource whose filename is identified by the URL prefix (just as for the signaling channel). If no such file is found, the handler returns a suitable error (404, not found). Otherwise, the USD that has a filename equal to the prefix part of the URL is retrieved and the session initialized.

If no FDT can be found on either the signaling channel or in-band, within a timeout period, then an error is returned (408, timeout).
6.3.2.3
Retrieving and returning the resource

The label part of the URL identifies the desired resource.

If it is missing the default label is the file identified by the USD. This label is returned by the MBMS handler in the same manner as an HTTP redirect would be returned from an HTTP handler. The application would normally then request this resource, and also use this URL as the basis for relative URL resolution.

If the label does not match any content-location entry in the FDT, the resource is not available on that session and the handler returns an error (404, not found).

Otherwise, the handler waits until the MBMS handler has received the file with the given content-location (it may be already cached, whereupon no wait is required), and returns it with the content-type, content-encoding, etc. as indicated in the FDT.

If the API request for the MBMS URL indicated a time-out, and the requested resource has not arrived in the time-out period, then an error is returned (408, timeout).

6.3.2.4
Caching and keep-alive

The MBMS URL handler maintains the session open for a keep-alive time after each request determined by the implementation, expecting further requests for other files from the same session.

The files identified in the FDT are cached. Each such file is described by a content-location, which is a URI. If that content-location URI form uses the scheme-name of another protocol (e.g. “http:”) then the resource is ideally cached in a cache shared between the MBMS URL handler and that other protocol. In this way, after the session is initiated, it is possible that, for example, a request to the HTTP URL handler for a resource can be satisfied by a file that has arrived and been cached by the MBMS URL handler.

When operating in an environment that permits arrival notifications (e.g. web push or other events), as each file arrives a notification may be sent.

6.3.3
Example

Example:
mbms://soapopera.example.com:8054/episode1.usd&start=X&label=http://example.com/tv/episode3.mpd

DNS on soapopera.example.com yields a multicast address 0xE1xxxxxx where xxxxxx is the TMGI, and is combined by the terminal with the currently PLMN-ID (MCC/MNC) to form the MBMS Service ID. The port number is supplied explicitly here (8054).
The label of the USD is mbms://soapopera.example.com: 8054/episode1.usd
The label of the desired resource is http://example.com/tv/episode3.mpd
7
Application Programming Interface (API) Aspects

7.1
Architectures

7.1.1
Service Layer Architecture and Scope

Figure 3 shows a service architecture for DASH-based streaming services over MBMS. This use case is explained exemplary, but considered also as the most relevant one. On the network side, a content provider uses DASH formats and provides these formats to a BM-SC. The BM-SC is controlled by an eMBMS provisioning system. The lower layers support the physical delivery of the data through regular LTE unicast as well as MBMS broadcast bearers. The MBMS client receivers the data and provides the data to the DASH client, but also communicates with an application in the device. The application may for example be a dedicated app or a common browser and the application is controlled by JavaScript. The MBMS client provides the information to the DASH client.

Today TS 26.346 defines the interface between the BMSC and the MBMS client for both unicast and broadcast related services and functions. The interface between the MBMS client and the application are not specified. The focus of TRAPO and API are the interfaces between the application and the MBMS client as well as the mapping of the methods and API calls to the transport protocol between the MBMS client and the BMSC.

The DASH client may be viewed as part of the application, or it may be considered as a separate entity. As 3GPP defines interfaces into a DASH client in TS 26.247 [9] it is proposed to separate the DASH client function in the architecture.

[image: image5.emf]

Figure 3: Service Architecture for DASH-over-MBMS

7.1.2
Client Architecture

A more refined client architecture is provided below in Figure 4 and two functions are provided, the streaming application and the file download application.

Different high-level functions are defined:

-
An application function that includes a streaming and/or file download application.

-
The multimedia subsystem that includes a DASH client (as well as codecs and other associated functions).

-
The DRM agent for providing secure processing of content.

-
Underlying eMBMS transport function.

-
The MBMS client that includes different functions according to TS 26.346.

[image: image6.emf]

Figure 4: MBMS Client Architecture

The specific interfaces MBMS-API and HTTP may be considered in scope of TRAPO and API, but HTTP is mostly defined by TS 26.247 and possibly new work in the SAND work in MPEG.

Therefore, the most relevant interfaces for the MEPRO work is MBMS-API in order to get access to the MBMS service layer functions in a simple manner.

7.1.3
Deployment Scenarios

Different use cases and deployment scenarios may be considered:

1)
The application and DASH client are on the same device as the MBMS client and the LTE modem.

2)
The application and DASH client are on a different device than as the MBMS client and the LTE modem. The latter scenario is shown in Figure 5. In this case MBMS-API and HTTP will be supported as network protocols. Whereas for HTTP this already exists, for MBMS-API this is an open questions.

[image: image7.emf]

Figure 5: MBMS Client and Application in separate devices

7.2
Use Cases and Scenarios

7.2.1
Overview

In the following some use cases and scenarios that are considered relevant are provided. In particular, the focus of the presentation is on the interaction between application and MBMS client. Three different relevant use cases and scenarios are addressed, i.e.:

-
Service Discovery and Bootstrapping

-
DASH-based streaming content and service change

-
File download
7.2.2
Service Discovery and Bootstrapping

In the following service discovery and bootstrapping is discussed. The call flow in Figure 6 provides a call flow that includes the Application, the MBMS client, the lower layer eMBMS service and the BMSC. Assume an application is aware of an MBMS-based application and it registers with the MBMS client. The MBMS client will then activate and download all User Service Description information and informs the MBMS client about the available services. The service information is as follows:

-
Service Id (unique identifier assigned by BM-SC)

-
Service class

-
Service language

-
Service Availability

-
List of service names (language and name)

-
MPD URI (for DASH streaming services)

[image: image8.emf]Application Registration

Enable eMBMS

ApplicationMBMS ClientBM-SC

Retrieve user service definition(SDP) for service discovery -HTTP

eMBMS

Service

Persist service discovery

service definition

Activate TMGI

Open FLUTE session

(local multicast join) and receive file

service announcement MIME file

Deactivate TMGI

Close FLUTE session

Get eMBMS services listReturn list of eMBMS

services defined in

service announcement

Service discovery bootstrapping

Service discovery

Process service

announcement MIME

file and persist

SA storage

Periodic Service Discovery(based on configuration parameter)

Figure 6: Service Discovery and Bootstrapping

The relevant APIs for service announcement are the Application Registration and the available service list as indicated in bold and red.

7.2.3
DASH-based streaming content and service change

For the DASH-based streaming content a call flow is provided in Figure 6. It is assumed that the application has access to the service information including the service ID and the MPD URL.

The following steps are carried out according to Figure 7.

-
Start Streaming service based on the serviceID:
-
This triggers actions in the MBMS client and eMBMS service to open a FLUTE session.

-
Once completed, the application obtains a service start notification.
-
The application starts the service calling the DASH client with the appropriate MPD URL as known from the service announcement.

-
The MBMS client and DASH client act by providing and consuming MPDs and Segments for the DASH client.
-
The application may provide a stop message for the streaming service using the ID:
-
The MBMS client will process accordingly and terminate the session.

In summary the following notifications from the MBMS client to the Application may be provided:

-
Service started

-
Service stopped

-
Service error

-
Service stalled

[image: image9.emf]Application Registration

Enable eMBMS

ApplicationMBMS ClientBM-SC

Retrieve user service definition(SDP) for service discovery -HTTP

eMBMS

Service

Persist service discovery

service definition

Activate TMGI

Open FLUTE session

(local multicast join) and receive file

service announcement MIME file

Deactivate TMGI

Close FLUTE session

Get eMBMS services listReturn list of eMBMS

services defined in

service announcement

Service discovery bootstrapping

Service discovery

Process service

announcement MIME

file and persist

SA storage

Periodic Service Discovery(based on configuration parameter)

Figure 7: DASH Streaming Service with relevant APIs

7.2.4
File Download Service

For a file download service, a call flow is provided in Figure 8. It is assumed that the application has access to the service information according to the previous clause including the service ID and some file identifiers (URLs, directories, etc.).

The following steps are carried out according to Figure 8:

-
After service discovery, the Application would request the MBMS client to receive files. Examples include that the application is interested to receive files to show program guide or the application is interested to download a weekly/daily magazine:

-
The MBMS client initiates all the communication and setup and downloads the file, including ADPs.

-
The MBMS client provides a file download notification to the application.

[image: image10.emf]

Figure 8: File Download Service

7.2.5
Other services and Scenarios

Other services and scenarios may be considered on application level. This includes:

-
service updates (MBMS client sends a service update notification to the application)

-
information on broadcast coverage

-
Broadcast unicast handoffs

-
MooD redirections
7.2.6
Supported Use cases

In summary, the following use cases are considered in the above scenarios:

-
Play streaming service

-
Switching streaming service

-
Starting file download service

-
Receiving MPD updated notification

-
Receiving file available notification

-
Receiving service update notification

-
Receiving broadcast coverage notification

-
Receiving stalled notification

-
Configured service class

Two different approaches for the user plane APIs are documented in the present document. These APIs have a significant amount of synergies and are expected to be merged on a function basis to create the skeleton for the MBMS APIs.

7.2.7
Approach 1

7.2.7.1
Introduction

The API provides model and controller implementation for a typical application, for example a Java application on an Android™ platform. The envisaged architecture facilitates quick development of client Applications. The API lets application developers concentrate on creating great apps instead of worrying about the underlying Android™ Services and management of communication with those services.

Example services that may make use of service APIs are the following:

-
Firmware Over The Air (FOTA)

-
Weekly Magazine

-
Examples of streaming services

-
Live sports games

-
Live TV channels

The content associated with services is delivered in broadcast networks via IP packets and logical access network channels. The broadcast network also provides a service announcement function to describe the services available in the network. Apps do not have to be aware of how services are delivered in the network, but use the I-1 interface:

-
To discover available services

-
To request that the MBMS client to activate reception of data for the available services.

The MBMS client identifies each service by a Service ID. The app has to use the right service ID in any servicespecific request.

To use the API, the App should have the following information:.

-
App id – The unique ID of the app.

-
Service Class info – A set of services may be grouped together according to a common classification. This group is called a service class. For example, there could be a service class named "sports" which refers to all sports-related services.

The list of service classes that the app is interested in has to be given to the MBMS client while using the API. The MBMS client is able to give the data only for those services that belong to this set of service classes.

7.2.7.2
Network Architecture

From an overall network perspective, Figure 9 is an overview of network elements typically associated with sending data to an app.

[image: image11.emf]eNODE-B

BM-SC

Content

Provider

Modem

Application

DASH

Encoder

eMBMS Service

Layer

DASH

Client

eMBMS

Provisioning

system

Multimedia

Framework

UE

Figure 9: Overview of elements involved in sending data to the app running on UE

7.2.7.3
Modules

The following modules are:

-
Management Module

-
Streaming Module

-
File Delivery Module

-
Network Module

Depending on the use case, one or several of the above modules are involved.

7.2.7.4
Use Cases and Message Flows

7.2.7.4.1
Streaming application

A typical streaming app streams live videos to the user. The user typically sees a list of available streaming services, and based on the user selection, the app streams the video to the user.

The following use case call flow assumes that the user:

1)
Opens the app.

2)
Selects a streaming service from a list of services.

3)
Switches to another streaming service.

4)
Exits the app.

Figure 10 is the overview of the call flow for a typical streaming service app.

[image: image12.emf]App to MBMS ClientConnection Setup

(Management Module)

AppAPI

initializeMBMSClient()

initializeConfirmation()

addEventListener()

Listener

Initialize Parameters

getStreamingController()

return

Streaming Controller Object

getStreamingModel()

return

Streaming Model Object

Streaming Service Initialization

(Streaming Module)

initializeStreamingService()

streamingServiceInitializeConfirmation()

Listener

Streaming Service Initialize Parameters

Application Start-up

Initialize the

connection

Application Start-up

Initialize the

connection

addStreamingEventListener()

Figure 10a: Streaming – Typical call flow for a streaming service app (1 of 3)

[image: image13.emf]Streaming Service Management

(Streaming Module)

App

API

getStreamingServiceList()

startStreamingService()

Get the list of

Streaming Services

and corresponding

service id’s

User wants to start

Service 1 (with service

id S1)

Service Id = S1

return <Streaming Service List>

streamingServiceStarted()

Service Id = S1

User wants to switch to

another streaming

service –Service 2 (with

service id S2)

switchStreamingService()

From Service Id = S1

To Service id = S2

streamingServiceStopped()

Service Id = S1

streamingServiceStarted()

Service Id = S2

getPlaybackUrl()

Service Id = S1

return <URL of the MPD file>

return <URL of the MPD file>

getPlaybackUrl()

Service Id = 2

On the Media Player:

1. Set the MPD URL

2. Start the player

This notification can be

sent to the App before the

streamingServiceStopped()

notification also

Figure 10b: Streaming - Typical call flow for a streaming service app (2 of 3)

[image: image14.emf]App to MBMS ClientConnection Shutdown

(Management Module)

Streaming Service Shutdown

(Streaming Module)

AppAPI

stopStreamingService()

Service Id = S2

streamingServiceStopped()

Service Id = S2

terminateStreamingService ()

removeStreamingEventListener()

Listener

terminate()

Remove

EventListener()

Listener object

User wants to exit the

application

On the Media Player:

1. Stop the playback

2. Release the media

player

Terminate

Confirmation()

Figure 10c: Streaming – Typical call flow for a streaming service app (3 of 3)

The call flow in Figure 10 is supported by the following actions that map to communication of the MBMS client with the network. Those actions that map against protocol information are highlighted.

initializeMBMSClient()

The MBMS client acquires the MBMS service information from its bootstrap information, namely by accessing the USD Bundle

The MBMS client responds and acknowledge initialization

getStreamingController()

builds a framework

is internal to MBMS client and application

may be removed from the call flow

addStreamingEventListener()

provides communication channel for events

more an issue of implementation

may be removed from the call flow

initializeStreamingService(ServiceClass)

mapping against the USD attribute r7:serviceClass

[image: image15.png]
Figure 11: USD Fragment

-
getStreamingServiceList()

-
filter the USD for streaming services (including an MPD URL) and associated to service class

-
a list of service IDs is returned

-
startStreamingService(service ID)

-
access and start downloading the segments into local cache

-
streamingServiceStarted informs app about the start of the service, i.e. when the MPD is available

-
getPlaybackURL (serviceID)

-
returns MPD URL pointing to the local host

-
application can now start the DASH client

-
switchStreamingService(service S1, service S2)

-
starts and stops TMGI/FLUTE reception for S2 and S1

-
notifies app about the availability of the MPD for S2

-
stopStreamingService (serviceID)

-
stops TMGI/FLUTE reception for S2

-
removeStreamingEventListener()

-
stops the event listener

-
more an issue of implementation

-
may be removed from the call flow

-
terminateStreamingService()

-
internal

-
implementation issue

-
may be removed from the call flow
7.2.7.4.2
File Delivery application

Figure 12 is the typical overall call flow sequence of an app support file delivery service. Subsequent clauses include the call flow sequences for individual functions and other scenarios.

[image: image16.emf]App to MBMS Client Connection Setup(Management Module)AppAPIInitialize()initializeonfirmation()addEventListener()ListenerInitialize ParametersgetFileDeliveryController()returnFile Delivery Controller ObjectgetFileDeliveryModel()returnFile Delivery Model ObjectFile Delivery Service Initialization(File Delivery Module)initializeFileDeliveryService()fileDeliveryServiceInitializeConfirmation()ListenerFile Delivery Service Initialize ParametersApplication Start-upInitialize the connectionApplication Start-upInitialize the connectionaddFileDeliveryEventListener()

Figure 12a: FD – Typical call flow for a file delivery service app (1 of 2)

[image: image17.emf]File Delivery Service Management

(File Delivery Module)

App to MBMS ClientConnection Shutdown

(Management Module)

File Delivery Service Shutdown

(File Delivery Module)

AppAPI

terminateFileDeliveryService ()

removeFileDeliveryEventListener()

Listener

getFileDeliveryServiceList()

startFileCapture()

Get the list of File

Delivery Services and

corresponding

service id’s

User wants to start a

file delivery service

(with service id S1)

Service Id = S1, fileURI = U1

return <Map of File Delivery Services>

File download is

complete

fileAvailable()

Service Id = S1, FD File = F1

terminate ()

removeEventListener()

Listener object

terminateConfirmation()

Figure 12b: FD – Typical call flow for a file delivery service app (2 of 2)

The call flow in Figure 7 is supported by the following actions that map to communication of the MBMS client with the network. Those actions that map against protocol information are highlighted.

-
First steps see above (all in 6-1)

-
getFileDeliveryServiceList()

-
returns list to file delivery services that match service class

-
if there is a file schedule, then the list of file URLs will be added as well
-
startFileCapture(serviceID, file URI)

-
MBMS client hands file to application

-
The MBMS client will not store the file
7.2.7.4.3
App – Top 10 videos

In this clause, we look at a typical kind of app which downloads the top 10 videos of the day for the user. The following use case call flow assumes that the user:

1)
Opens the app.

2)
Sees the top 10 videos of the day (may play a few videos).

3)
Exits the app.

In this scenario, we look at how the app can avoid downloading videos over subsequent days if they have already been downloaded the previous day as part of that day's top 10 list. The unwanted older video files are also deleted from the device.

The scenario also assumes that the Top 10 video files are always broadcasted.

The key issue is that in this use case, the context of the file bundle is part of the application, only the application is aware that the set of files constitute the Top 10 files.

There may be other cases for which the "bundle" is in the MBMS delivery, but this is not the case in the below. Generally, such "bundling" of files should be carefully checked and avoided as it overloads the MBMS client with ESG-kind of data.

[image: image18.emf]App to MBMS ClientConnection Setup

AppAPI

initialize()

initializeConfirmation()

addEventListener()

Listener

Initialize Parameters

getFileDeliveryController()

return

File Delivery Controller Object

getFileDeliveryModel()

return

File Delivery Model Object

File Delivery Service Initialization

initializeFileDeliveryService()

fileDeliveryServiceInitializeConfirmation()

Listener

File Delivery Service Initialize Parameters

User opens the

application on Day 1

Initialize the

connectionto MBMS

Client

addFileDeliveryEventListener()

Initialize the connection

towards File delivery

Service with registration

time to live as 1 day

Day 1

Figure 13a: Top 10 videos application (1 of 4)

[image: image19.emf]File Delivery Service Shutdown

App to MBMS ClientConnection Shutdown

Top 10 Video download

Top 10 Catalog download

AppAPI

getFileDeliveryServiceList()

startFileCapture()

Get the list of File Delivery

Services and corresponding

service id’s

Service Id = S1, fileURI = Cat_U1

return <Map of File Delivery Services>

fileAvailable()

From the service list,

identify the service (say S1)

corresponding to Top 10

videos.

Download the Catalog file

which would give the order

of the top 10 videos

Catalog file download complete

startFileCapture()

Video no.1 capture complete

fileAvailable()

Service Id = S1, FDFile = F1

Start the download of all

the videos from the Top 10

video service.

Video no.2 capture complete

fileAvailable()

Service Id = S1, FDFile = F2

Video no.10 capture complete

fileAvailable()

Service Id = S1, FDFile = Cat_F1

Service Id = S1, fileURI = U1

Service Id = S1, FDFile = F10

terminateFileDeliveryService ()

removeFileDeliveryEventListener()

Listener

terminate ()

removeEventListener()

Listener object

Start Registration Time to Live -

Hold on the registration and do

service updates for up to 1 day

Day 1 (Continued)...

User closes the

application on Day 1

Figure 13b: Top 10 videos application (2 of 4)

[image: image20.emf]App to MBMS clientConnection Setup

AppAPI

initializeMSDC()

initializeConfirmation()

addEventListener()

Listener

Initialize Parameters

getFileDeliveryController()

return

File Delivery Controller Object

getFileDeliveryModel()

return

File Delivery Model Object

File Delivery Service Initialization

initializeFileDeliveryService()

fileDeliveryServiceInitializeConfirmation()

Listener

File Delivery Service Initialize Parameters

Initialize the

connection towards

MBMS Client

addFileDeliveryEventListener()

Initialize the connection

towards File derlivery

Service with registration

time to live as 1 day

Day 2

While the App is closed, MBMS

Clientcontinues to download the

updates of the Catalog file for one

day (Reg Time to Live).

User opens the

application on Day 2

Figure 13c: Top 10 videos application (3 of 4)

[image: image21.emf]File Delivery Service Shutdown

App to MBMS ClientConnection Shutdown

Top 10 New Video download

Top 10 Catalog file notification

AppAPI

getFileDeliveryServiceList()

return <Map of File Delivery Services>

Identify the service (say S1)

corresponding to Top 10

videos.

startFileCapture()

Video no.5 capture complete

fileAvailable()

Service Id = S1, FDFile = FF1

Video no.8 capture complete

fileAvailable()

Service Id = S1, FDFile = FF5

Video no.10 capture completefileAvailable()

Service Id = S1, fileURI = U1

Service Id = S1, FDFile = FF10

terminateFileDeliveryService ()

removeFileDeliveryEventListener()

Listener

terminate ()

removeEventListener()

Listener object

Start Registration Time to Live -

Hold on the registration and do

service updates for up to 1 day

Day 2 (Continued)...

Get latest predownloaded

Catalog file. The file gives:

-New Top 10 List

-List of new videos in Top10

-List of videos out of Top 10

App initiates download of

only new videos added to

Top 10 list –File no. 5, 8, 10

Delete the unwanted old videos

Delete the old files which

are no longer part of the

top 10 list. (Old video no.1,

3 and 9)

Service Id = S1, File URI = OldV1

deleteFile()

Delete Video no.1

deleteFile()

Delete Video no.9

getAvailableFileList()

<List of available files>

return

Service id = S1

Service Id = S1, File URI = OldV9

User closes the

application on Day 2

getAvailableFileList()

<List of available files>

return

Service id = S1

terminateConfirmation()

Figure 13d: Top 10 videos application (4 of 4)

The call flow in Figure 13 is supported by the following actions that map to communication of the MBMS client with the network. Those actions that map against protocol information are highlighted.

7.2.8
Approach2

7.2.8.1
Basic Principle

The APIs are separate in 3 main areas:

The mbms protocol allows the management of MBMS services. The following function may be defined:

-
get the list of a service,

-
start to download files of a service,

-
get the list of files,

-
get the manifest file of an eMBMS service.
The HTTP protocol can be used by an application to acquire the files downloaded in the cache. For instance a DASH client will acquire the AV segments downloaded by the Middleware.

The socket API can be used for RTP stream consumption.

HTTP protocol and Socket API are used in order to work with traditional players such as RTP player or DASH player.
7.2.8.2
MBMS Protocol

7.2.8.2.1
Introduction

This protocol allows the management of services (get the list of available services). Moreover, this protocol allows to open, close a service and download files carried in a service. A non-exhaustive list of possible APIs are proposed in this clause.

7.2.8.2.2
General APIs

Get the list of services (mbms://).

It returns the list of mbms services' URLs described in the Service Announcement.

Get the list of services (serviceClass).

It returns the list of mbms services' URLs described in the Service Announcement, filtered out by service class, i.e. the list of services whose serviceClass attribute, within the USD, is equals to the given parameter.

7.2.8.2.3
DASH service APIs

Open DASH service (mbmsServiceURL)

It starts the download of the segments

Close DASH service (mbmsServiceURL)

It stops the download of the segments and clears the cached segments

Get manifest (mbmsServiceURL)

It returns the local HTTP URL of the MPD.

In order to acquire files (mpd file, init segment and AV segment), the application should be able to use an HTTP server.

7.2.8.2.4
Download service APIs

Open service (mbmsServiceURL)

It starts the download of all available files. An event is sent to the eventListener when a file is cached.

Close service (mbmsServiceURL)

It stops the download of all available file and deletes the cached files

Get manifest (mbmsServiceURL)

It returns a list of available files' URLs for the given service.

Get file (fileURL)

If the file has already been cached, it delivers the file.

If the file can be downloaded/cached, it starts or schedules its acquisition. An event is sent to the eventListener when the file is cached.

If the file can't be downloaded, it returns HTTP 404 error.

7.2.8.2.5
Event listener APIs

Set Event Listener (eventListener)

Indicates to the middleware where its events to be thrown.

7.2.8.2.6
Event List

File cached : file successfully downloaded and available from the cache

File download failure: the file could not be downloaded. Body of the event provides details: service or file removed from the announcement, out of eMBMS service coverage…

7.3
User Plane APIs

7.3.1
Introduction

The following functionalities are considered relevant on the interface:

-
Regular object delivery

-
Unicast broadcast handoff

-
Adjustment of availability times

-
Partial file handling

-
Cache status

-
Others
As part of the study of the user plane API interface, the present document will:

-
address the relevant functionalities between the MBMS client and a generic user agent when HTTP is used as the API

consider reuse of existing functionalities as much as possible with the following preference:

-
Defined in 3GPP

-
Defined in IETF

-
Defined in MPEG SAND

7.3.2
Regular object delivery and Partial File Handling

For regular object delivery and partial file handling, TS 26.247 [4], clause 5.3.2 and 7.3.8 provide a possible solution.

Byte range requests and error handling are for further study.

7.3.3
Cache Status

7.3.3.1
Revision of the Key Use Case

The main use case of interest in in SAND is to create an interface that can handle DASH over MBMS including unicast. The DASH client needs to be steered from the broadcast information to the unicast information and vice versa. In an initial design this was accomplished by defining two BaseURLs in the MPD and the DASH client is basically told which BaseURLs are available and which ones not.

The assumed operational context is as follows:

-
A DASH-over-MBMS service with unicast fallback is provisioned;

-
The DASH client has obtained an MPD, from the MBMS client (received over FLUTE as a Media Presentation Description fragment), which declares the entirety of available Representations of the Media Presentations of the DASH-over-MBMS service, and whereby one or more Representations are delivered over the MBMS bearer(s) and one or more Representations are delivered over the unicast bearer; Note that the MBMS receiver may act as a DANE, i.e. a network entity that provides regular DASH content, but also does provide dynamic operational hints, assistance or enforcement for the DASH client.

-
In the MPD unicast and broadcast Representations are only differentiated by different URL patterns, most suitable by the use of different base URLs. In the simplest way, the different base URLs may be expressed by different BaseURL elements.

-
The USD (i.e. eMBMS service discovery framework) contains information that enables the MBMS client to determine the transport mode (broadcast and/or unicast) of any given Segment request from the DASH client, and the presence of identical or alternative version(s) of the requested content by transport mode.

In addition, it is assumed that the UE implements the HTTP/1.1 interface between the DASH client and the MBMS client, the latter entity containing a HTTP proxy/cache function. Such UE architecture is shown below in Figure 14, which is a duplicate of Figure 4.2.1-1 in TR 26.848.

[image: image22.emf]Encoding and

DASH formatting

DASH client

BM-SC and HTTP

server (e.g. proxy)

functions

MBMS client

(MBMS receiver +

FLUTE cache +

HTTP proxy server)

USD (pre Rel-12 MPD +

Rel-12 MPD)

Broadcast Segments over FLUTE

Unicast Segments

HTTP/1.1

TS 26.346-defined

interface

HTTP/1.1

Figure 14: UE architecture employing HTTP/1.1 interface between MBMS client and DASH client

7.3.3.2
Potential Solutions

A potential solution is expected to be provided by MPEG Server and Network Assisted DASH (SAND) using the DaneResourceStatus messages delivered from the DASH Aware Network Element (DANE) to the application. In this case, the MBMS client would act as a DANE.

7.3.4
Unicast Broadcast Handoff

Potential Solutions are:

-
The solution in clause 2.2 on DaneResourceStatus.

-
The usage of the ResourceStatus as documented in TR 26.946 [11] and also available in MPEG SAND.

-
The usage of identical and alternative content as available in TS 26.346 [9].

7.3.5
Adjustment of AvailabilityStartTime

A potential solution is expected to be provided by MPEG Server and Network Assisted DASH (SAND) using the ResourceStatus messages delivered from the DASH Aware Network Element (DANE) to the application. In this case, the MBMS client would act as a DANE.

7.3.6
Other Functionalities

Other functionalities of potential relevance for User Plane APIs:

-
Metric reporting: Potential solutions are provided by the framework in clause 9 of the present document or by MPEG SAND on the Metric reporting.

-
Handling of conditional HTTP requests, or example cookies, query parameters or header extensions. A potential solution is expected to be provided by the third amendment of ISO/IEC 23009-1:2014.
8
MBMS Reception Reporting of DASH QoE Metrics

8.1
Current QoE Reporting Behaviour

The MBMS reception reporting ('RR') and DASH QoE ('DQ') metrics reporting procedures are currently separately defined in TS 26.346 and TS 26.247, respectively. These are depicted in Figure 1 from a high-level, architectural perspective.

[image: image23.emf]DASH QoE Metrics

Report server

BMSC incl.

Reception Report

Server

UE

DASH client

MBMS client

DASH QoE

metrics

reporting

Reception

Reporting

Service Announcement (MPD, SDP, ADPD)

Post of Reception Reports

MPD, Segments

DASH QoE Measurements

Figure 8: Architecture and Interaction Model of MBMS Reception Reporting and DASH QoE Metrics Reporting Procedures

As shown in the diagram, the two processes are independent from one another, and feature different client functions responsible for collecting and sending different types of measurements to different network servers. The MBMS client collects reception statistics according to metrics specified in the Session Description fragment, in accordance to the types applicable to the download delivery method as specified in clause 8.4 of TS 26.346, and performs reception reporting according to the directives in the Associated Delivery Procedure Description (ADPD) fragment of the user service announcement. It provides the corresponding report to the Reception Reporting server as designated in the ADPD. In DQ metrics reporting, the DASH MPD, or Media Presentation Description metadata fragment in the case of DASH-over-MBMS, specifies the parameters to be collected by the DASH client and uploaded to the DASH server.

8.2
Desired QoE Reporting Optimization

The objective is to link these two mechanisms by integrating the DQ procedure with the RR procedure. The MBMS client should collect the DQ metrics and submit those to the same network server to which reception reports are sent, possibly combined with the reception report as an aggregated document. The construction of the MPD's Metrics.Reporting@reportingServer attribute passed to the DASH client should point to the appropriate report server. The appropriate reporting server URL could be specified in different ways. For example, the content provider or the MBMS operator which produces the MPD may set that URL. Alternatively, the MBMS client, upon receiving the Media Presentation Description metadata fragment, could modify the reception server URL to point to the local HTTP server in the UE. It may also be possible to consider the use of MPEG SAND messages to identify the proper reporting server location to which the DQ metrics report should be sent, which could be the local HTTP server in the UE, or the reception report server in the BM-SC. In the case of using SAND messages, security issues such as encryption, authentication and assumed trust relationships will be addressed.

When DQ metrics reports are sent to the local HTTP server in the MBMS client, the MBMS client should:

-
Accept POST commands related to DQ metrics submitted by the DASH client.
-
Embed the DQ metrics file in a corresponding reception report message.

As said, the desired functionality is for the MBMS client to receive DQ metrics reports from the DASH client to be combined with nominal reception reports to be sent to the RR server. Modification of the decoupled RR and DQ metrics reporting architectures previously shown in Figure 8 is illustrated in Figure 9.

[image: image24.emf]DASH QoE Metrics

Report Server

BM-SC incl.

Reception Report

Server

UE

DASH client

MBMS client

DASH QoE

metrics

reporting

Reception

Reporting

Service Announcement (MPD, SDP, ADPD)

Post of special Reception Reports that

include DASH QoE Measurements

MPD,

Segments

DASH QoE

Measurements

A. duplicate/other DASH

QoE metrics report

B. proxied orduplicated

DASH QoE metrics report

Figure 9: DASH QoE Metrics Reporting via MBMS Reception Reporting

Besides the required MPD change, the ADPD will need to be modified, for example, by adding under the postReceptionReport element, a flag to indicate whether DASH QoE metrics should be collected by the MBMS client. Additional attributes may be added under postReceptionReport to signal, for example, which DQ metrics to be collected and reported. Alternatively, the list of desired QoE attributes could be specified in the Session Description, similar to the existing use of the SDP to define MBMS-specific QoE measurements as described in TS 26.346.

The content provider and/or the DASH-over-MBMS service provider may also require that DQ metrics reports are to be sent to a nominal DQ metrics report server, which could be accomplished in different ways:

The DASH client may post the report directly to the local HTTP server associated with the MBMS client (to a localhost based location) and the MBMS client may duplicate the report to the external DQ metrics report server. This is shown as the duplicated method in arrow B of Figure 2.

The MBMS client may intercept the DQ measurement report and forward it to the external server. This is shown as the proxied method in arrow B of Figure 2.

The DASH client may issue multiple reports: one to the MBMS client and another to an external DQ metrics report server. The reports may pertain to the same or different metrics, and based on either the same or different collection and upload directives. This is shown as arrow A in Figure 2.

8.3
Current QoE Metrics and Reporting Formats

8.3.1
DASH QoE Metrics in the MPD

The MPD may contain, at the root level, the element Metrics which specifies information on QoE metrics to be reported by the DASH client. The high level MPD Schema is shown in Figure 10.

[image: image25.emf]

Figure 10: High Level MPD Schema Containing Metrics Element

The data structure of Metrics is shown in Figure 11.

[image: image26.emf]

Figure 11: XML Data Structure of MPD.Metrics Element

The metrics attribute contains a set of quality metric keys for metrics to be collected and reported by the DASH client. As indicated in TS 26.247, these metrics may include:

-
List of HTTP Request/Response Transactions,

-
List of Representation Switch Events,

-
Average Throughput,

-
Initial Playout Delay,

-
Buffer Level,

-
Play List, and

-
MPD Information.

The quality reporting scheme is signalled using the Reporting element in the Metrics element. The URN defined for the Reporting@schemeIdUri is "urn:3GPP:ns:PSS:DASH:QM10". The scheme information for the 3GP-DASH quality reporting scheme is represented by a data structure comprising extension attributes in a separate namespace ("urn:3GPP:ns:PSS:AdaptiveHTTPStreaming:2009:qm"), whose XML syntax is shown in Figure 12 below.

The Range element indicates the time period during which quality metric collection is requested. When not present, quality metric collection is requested for the entire duration of the content. For a Live service, the wall-clock time value for the start of quality metric collection is given by @startTime + MPD@availabilityStartTime.

[image: image27.emf]

Figure 12: Syntax of Quality Reporting Scheme Information

The DASH client decides whether QoE metrics reporting should be performed in accordance to the value of @samplePercentage. The attribute @reportingServer identifies the server to which the reports should be sent, and @reportingInterval indicates the time(s) that reports should be sent.

8.3.2
DASH QoE Report Format and Protocol

The QoE report is formatted as an XML document whose schema is shown in Figure 13.

[image: image28.emf]

Figure 13: XML Schema of Quality Report Message

The DASH client will send QoE reports to the report server as indicated in the ThreeGPQualityReporting element using the HTTP (RFC 2616 [10]) [2] POST request, the message body of which contains an XML-formatted Quality Report document according to the schema shown in Figure 4.

8.3.3
Similarities and Differences between DASH QoE and MBMS Reception Reporting

Similarities in QoE metrics and reporting scheme between DASH QoE and MBMS Reception Reporting should be considered in devising the means to integrate the two mechanisms. Similar characteristics to both schemes include the target percentage of clients that should perform QoE reporting, the location of the network server to which the reports should be sent, and temporal parameters pertaining to when reporting should be sent to the report server. With respect to the QoE metrics to be reported as defined in TS 26.346, it can be seen that the MBMS QoE metrics pertain to the transport level, whereas the DASH QoE metrics apply at the level of the media/content carried in the DASH format.

Also common between the two reporting mechanisms is the use of HTTP POST as the means to convey the contents of the XML-formatted QoE report document to the corresponding report server.

8.4
Potential Solutions

8.4.1
Modifications to the ADPD

8.4.1.1
Method 1 – New Attributes Under postReceptionReport Element

The postReceptionReport element in the ADPD indicates the parameters associated with reception reporting by the MBMS client. This element should be extended to carry the parameters associated with DASH QoE metrics reporting, including the full or subset of DASH QoE metrics as defined in TS 26.247. An example schema of the modified postReceptionReporting element is shown in Figure 14.

[image: image29.emf]

New attributes under

postReceptionReport to

integrate DASH QoE

metrics reporting with

Reception Reporting

Figure 14: Modification to postReceptionReport element to include DASH QoE Reporting

As shown in the figure, a new flag (@DASHQoEReporting) is added to indicate whether DASH QoE metrics should be collected by the MBMS client for reception reporting. If the flag is set to "true", then other conditionally mandatory attributes will further indicate:

-
whether the report should be compressed (@DASHQoECompression);

-
the set of DASH QoE metrics to be collected and reported (@DASHQoEMetrics);

-
whether DASH QoE reporting should be synchronized, i.e. provided during the nominal time of MBMS reception reporting;

-
optionally, target probability that the QoE report should be transmitted (@DASHQoESamplePercentage).

The set of DASH QoE metrics to be sent, represented by (@DASHQoEMetrics) should correspond to the same or subset of DASH QoE parameters as defined in TS 26.247. The optional presence of @DASHQoESamplePercentage could be used to represent conditional probability of DASH QoE report transmission relative to the (probabilistic) occurrence of reception reporting.

8.4.1.2
Method 2 – New Element Under postReceptionReport Element

An alternative change to the ADPD is shown in Figure 15.

[image: image30.emf]

Figure 15: Alternative Modification to postReceptionReport element to include DASH QoE Reporting

In this method, a new DASHQoEProcedure element is added as child of postReceptionReport. Added under DASHQoEProcedure element are child elements pertaining to DASH QoE metrics processing and reporting. If DASHQoEProcedure is present, then DASH QoE collection and reporting may be required in accordance to the value of the child elements of DASHQoEProcedure.

8.4.2
Synchronization of DASH QoE Reporting with Reception Reporting

The DASHQoESync flag in either method 1 or 2 above is used to define whether and how the DASH QoE metrics reporting should be synchronized with the MBMS Reception Reporting. The following outcomes are possible, depending on the synchronization flag value:

Scenario 1: The DASHQoESync sync flag is set to "true", and DASHQoESamplePercentage is absent. Assuming that the MBMS Reception Report procedure is active, then a DASH QoE metrics report should be attached to each reception report transmission.

Scenario 2: the sync flag is set to "true", and sample percentage for DASH QoE reporting, PDQ, is present. Assuming that the MBMS Reception Report procedure is active and associated with sample percentage PRR, the likelihood of DASH QoE reporting should be determined by the conditional probability, i.e. [PDQ | PRR] = PDQ x PRR, assuming the independence of random number generation in producing the two reporting probability values in the UE. For example, if reception reporting sample percentage = 50 and DASH QoE reporting sample percentage = 50, the probability of DASH QoE metric report would be 0.5 x 0.5 = 0.25 or 25%.

Scenario 3: the sync flag is set to "false", and sample percentage for DASH QoE reporting, PDQ, is present. In this case, independently of reception reporting activity, the probability for DASH QoE reporting is given by its sample percentage value.

8.4.3
Aggregation of DASH QoE Reports with Reception Reports

MBMS reception reports and DASH QoE measurement reports may be combined into a single aggregate document using the existing procedure allowed for reception reporting defined in TS 26.346, by making use of the MIME multipart/mixed file format [2]. Two options are possible:

1)
Option 1: The Internet Media Type (content type) is used to differentiate between the two types of reports, e.g. text/xml for nominal reception report files, and text/xml-DQ for DASH QoE metrics report files

2)
Option 2: The same text/xml media type may be used for both. The server can differentiate the report types by the XML header portion of the report.

An example of Option 1 is shown below. Here, the MIME multipart message which contains as separate body parts the Reception Report and the DASH QoE Report delineates the two parts by a boundary, named "separator" in the "Content-Type: " header. This boundary is placed between the parts at the beginning and end of the body of the message, as follows:

POST http://www.exampleserver.com/rr HTTP/1.1

Host: 192.68.1.1

User-Agent: Mozilla™/5.0(Linux; U; Android™ 4.0.3 ….)

Content-Length: 12345

Content-Type: multipart/mixed; boundary=separator

Connection: Keep-Alive

<…other HTTP headers>

--separator

Content-Type: text/xml

<XML document of the MBMS Reception Report>

--separator

Content-Type: text/xml-DQ

<XML document of the DASH QoE Metrics Report>

--separator--

8.4.4
Modification to MPD

The MPD's Metrics.Reporting@reportingServer may need to be constructed to point to the MBMS client to allow posting of DASH QoE metrics reports to the local HTTP server in the UE. For example, the MBMS client may overwrite the BaseURL in the Media Presentation Description fragment to "localhost/", before forwarding the MPD to the DASH client. Alternatively, the HTTP URL of the report server in the MPD, nominally pointing to an external network server, can be unchanged should the MBMS client act as a proxy for all HTTP requests of the DASH client. In this case, the DASH QoE report could be terminated at the MBMS client.

8.5
Client Identifier Access via MBMS API

8.5.1
Introduction

It may be important for MBMS operators to obtain appropriate subscriber identification, generically referred to as 'clientID', in the reporting of transport level statistics and/or service/content usage details produced by MBMS UEs, . Transport level statistics are delivered in nominal MBMS reception reports, whereas service/content usage details would be carried in DASH QoE metrics reports. Each operator may have its own policy on the type/format of clientID to be reported by the UE, which may be enabled by defining extensions to the Associated Delivery Procedure Description (ADPD). Different methods may be available to the MBMS client to obtain the clientID from the UE platform, such as via calls to the operating system, or through the MBMS API set.

8.5.2
Methods and Considerations for Accessing clientID Information

For the purpose of the analysis of user service consumption details in reception/QoE reports, availability of clientID in the reports is important. For the purpose of precision marketing, which may include targeted advertising according to specific user's viewing behaviour, individual user data needs to be known rather than mass statistics. Therefore, the identifier of the reporting UE needs to be collected. As specified in TS 26.346, the clientId attribute is unique identifier for the receiver and identifies the reporting UE, e.g. an MSISDN of the UE.

At the implementation level, there could be different ways for MBMS client to obtain this parameter, for example:

a)
The MBMS client may utilize the API offered by the operating system such as "getLine1Number" in Android™. This API will respond with the subscriber identification information read from the (U)SIM card. In the event that no such data has been written in the card, the API will return null information.
b)
The application usually requires the user to register for the first time and log in with the username and password afterwards. Registration information may include the clientID which can enable the MBMS client to get the clientID from the application.
Different operators may have different policies. Some operators will allow the MSISDN data to be written in the (U)SIM card, and some will not. In the latter situation, no MSISDN data but IMSI is written in the (U)SIM card. However, the IMSI may not provide uniqueness in user identification, since the same subscriber may change his/her (U)SIM card over time, each change resulting in a different IMSI. Therefore, the first method mentioned in the above may not always be the best solution.

On the other hand, since SMS validation is a frequently used method for user verification among application providers, by which the MSISDN is the most common choice as the username for logging in to the application. Under such situation, clientID access from the application using the MBMS API will be straightforward.

8.5.3
clientID Access via MBMS API

An example call flow showing clientID collection by the MBMS client via the MBMS API is shown in Figure 16, and comprises two basic steps as described below:

A)
Client ID Retrieval

1)
Operator-defined policy on clientID access is specified in the ADPD fragment of the USD. Here, it is assumed that such operator policy may contain several information components. The first defines the preferred and alternative access methods for use by the MBMS client to obtain clientID, such as querying the MBMS application via the MBMS API, and if unavailable, calling a suitable API exposed by the operating system. The second policy component specifies the type of clientID to be reported by the MBMS client, such as MSISDN, email address etc. The third policy component indicates whether the clientID will be included in the QoE report.

2)
MBMS client uses the MBMS API to request and obtain clientID from the application.
3)
If (2) is unsuccessful, MBMS client calls the appropriate operating system API to retrieve the clientID.
Note:
Steps 2) and 3) are under the consumption of the policy that querying MBMS API is the preferred way to obtain clientID.

4)
MBMS client determines whether the retrieved clientID fulfils the required format as indicated in the ADPD.
1)
DASH QoE Reporting:
5)
MBMS client receives, via HTTP POST, DASH QoE (DQ) metrics submitted by the DASH client;

6)
MBMS client collects MBMS reception statistics and previously received DASH QoE measurements.
7)
MBMS client combines the DASH QoE metrics with the MBMS reception/QoE measurement into a reception report message and sends it to the report server.

[image: image31.emf]ApplicationMBMS ClientDASH ClientBM-SC

2.(preferred method) Retrieve

clientIDvia MBMS API

5. Reception ofDASH QoE

measurements

7. Sending ofReception Report(clientID, MBMS Reception/QoE,

DASH QoE)to reception report server (assumed to be BM-SC)

1. ADPDdefinesclientID access policy (format, method)

6. CollectsMBMS Reception and

DASH QoE measurements

3. (alternative method) Retrieve

clientID from the operatingsystem

4. Decideson whether the

obtaind clientIDfulfils the

operator’s policy

ClientID Retrieval

DASH QoE Report

Figure 16: Reception Report containing clientID using policy-based access

8.5.4
Considerations on clientID Access via the MBMS API

The following caveats or qualifications should be considered in the use of the MBMS API method for the MBMS client to obtain the clientID from the MBMS application, as described below.

-
There is potential for MBMS applications in the UE to be associated with different forms of clientID's, and it may be necessary for the MBMS operator to ensure that all those applications are provisioned with the same clientID value for proper subscriber identification in reception reporting;
-
The MBMS client and the MBMS application may reside in separate physical devices. An example is the use of an integrated MBMS receiver/WiFi router that serves multiple end-user devices, e.g. in the home or business premises network. In this implementation scenario, and assuming that some of those end-user devices are UEs, there will exist multiple clientID's. Under this circumstance, and when performing nominal reception reports which do not contain DASH QoE measurements, only a single clientID should be included, such that the MBMS client will most likely report the clientID of the UE in which it is hosted. On the other hand, in the reporting of DASH QoE metrics, it would be desirable for the MBMS client to identify the different UEs it serves and separately report each of their respective service/content usage measurements with the corresponding user/client identification. Acquisition of clientID from the MBMS API may represent an attractive solution.
9
Conclusions and Recommendations

In the present document, a set of relevant use cases for the usage of MBMS user services has been identified. The necessary functionality for enabling these use cases have been extracted and build the core for the definition of profiles for service announcement and for download services.

The possibility of defining an MBMS URL form to simplify access to resources delivered over MBMS by providing a URL as an entry point to resources and services has been studied. Different variants of the MBMS URL scheme have been identified, ranging from packing all information into the URL, relying on the MBMS service id, or just changing the protocol scheme. Usage of DNS for resolving the location of resources to MBMS has also been studied.

The definition of APIs for applications to communicate with the MBMS client has also been studied in the present document. The APIs cover aspects of service discovery, resource fetching, error handling, and hints on resource status.

Finally, enhancements to QoE reporting have also been investigated and new means to trigger QoE reporting at MBMS have been suggested.

1) Based on the analysis of the present document, the following recommendations are made:

2) define the profiles for the service announcement over broadcast

3) define the profiles for download services

4) define the enhancements to enable DASH-specific QoE reporting to the BM-SC

5) continue evaluation of the MBMS URL schemes and their resolution and define one or several MBMS URL schemes

6) define skeleton APIs for service discovery, transport, and error handling and communicate with groups that could potentially define these APIs

Annex A:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	09-2015
	SA#69
	SP-150440
	
	
	
	Presented to TSG SA#69 (for information)
	1.0.0

	12-2015
	SA#70
	SP-150644
	
	
	
	Presented to TSG SA#70 (for approval)
	2.0.0

	12-2015
	SA#70
	
	
	
	
	Approved at TSG SA#70
	13.0.0

	03-2016
	SA#71
	SP-160138
	0001
	2
	B
	DNS-based MBMS URL form
	14.0.0

	06-2016
	SA#72
	SP-160267
	0002
	1
	F
	On MBMS URL forms
	14.1.0

_1507559816.vsd
Text

N

N

_1507559821.vsd
Text

N

N

App to MBMS Client Connection Setup

App

API

image1.jpeg

image1.jpeg

_1509271765.vsd
Text

N

N

App to MBMS Client Connection Setup 
(Management Module)

App

API

_1507559823.vsd
Text

N

N

App to MBMS client Connection Setup

App

 API

_1507559824.vsd
Text

N

N

File Delivery Service Shutdown

_1507559822.vsd
Text

N

N

_1507559818.vsd
Text

N

N

App

API

_1507559820.vsd
Text

N

N

App to MBMS Client Connection Shutdown

(Management Module)

File Delivery Service Shutdown

(File Delivery Module)

_1507559817.vsd
Text

N

N

App

API

image1.png

_1507559815.vsd
BM-SC

Content Provider

Modem

DASH Encoder

DASH Client

Application

UE

eMBMS Service Layer

eNODE-B

Multimedia Framework

eMBMS Provisioning system

_1507491899.vsd
Application

MBMS Client

DASH Client

BM-SC

2. (preferred method) Retrieve clientID via MBMS API

5. Reception of DASH QoE measurements

������������

image4.emf

DASH QoE Metrics

Report server

BMSC incl.

Reception Report

Server

UE

DASH client

MBMS client

DASH QoE

metrics

reporting

Reception

Reporting

Service Announcement (MPD, SDP, ADPD)

Post of Reception Reports

MPD, Segments

DASH QoE Measurements

oleObject1.bin

�

DASH QoE Metrics Report server

 BMSC incl.
Reception Report Server

UE

DASH client

MBMS client

DASH QoE metrics reporting

Reception Reporting

Service Announcement (MPD, SDP, ADPD)

Post of Reception Reports

MPD, Segments

DASH QoE Measurements

image1.png

_1497183767.vsd
Encoding and
DASH formatting

DASH client

BM-SC and HTTP server (e.g. proxy) functions

MBMS client
(MBMS receiver +
FLUTE cache +
HTTP proxy server)

USD (pre Rel-12 MPD +
Rel-12 MPD)

Broadcast Segments over FLUTE

image4.emf

DASH QoE Metrics

Report Server

BM-SC incl.

Reception Report

Server

UE

DASH client

MBMS client

DASH QoE

metrics

reporting

Reception

Reporting

Service Announcement (MPD, SDP, ADPD)

Post of special Reception Reports that

include DASH QoE Measurements

MPD,

Segments

DASH QoE

Measurements

A. duplicate/other DASH

QoE metrics report

B. proxied orduplicated

DASH QoE metrics report

oleObject1.bin

�

DASH QoE Metrics Report Server

BM-SC incl. Reception Report Server

UE

DASH client

MBMS client

DASH QoE metrics reporting

Reception Reporting

Service Announcement (MPD, SDP, ADPD)

Post of special Reception Reports that include DASH QoE Measurements

MPD, Segments

DASH QoE Measurements

A. duplicate/other DASH QoE metrics report

B. proxied or duplicated DASH QoE metrics report

