3GPP TR 26.850 V0.1.1 (2017-11)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

MBMS for IoT;

 (Release 15)
 [image: image1.jpg]s

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Keywords

3GPP, MBMS, IoT
Contents

5Foreword

1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
7
4
Use cases
7
4.1 Use case 1 - Periodic and/or planned data delivery
8
4.1.1 Description
8
4.1.2 Recommended Requirements
8
4.2
Use case 2 – Initially Unplanned data delivery
8
4.2.1 Description
8
4.2.2 Recommended requirements
8
4.3
Use case 3 – Initially Unplanned data delivery for critical data
9
4.3.1 Description
9
4.3.2 Recommended requirements
9
5
IoT device analysis
9
5.1 Classes of constrained devices
9
5.2 3GPP device categories
10
5.3
Device classification for MBMS IoT reception
10
6
MBMS for NB-IoT device categories
11
6.1 MBMS User Service Announcement Profile
11
6.2 MBMS IoT profiles for file download delivery method
12
6.2.1 Introduction
12
6.2.1 Common FDT-Instance and File attributes for MBMS IoT profiles
12
6.2.2 FDT-Instance specific Elements and Attributes for MBMS IoT profiles
13
6.2.3 FDT File specific Elements and Attributes for MBMS IoT profiles
13
6.2.4 3GPP-defined FDT extensions for MBMS IoT profiles
14
7
Solutions
15
7.1 Overview of CoAP
15
7.1.1 Comparison to HTTP
16
7.1.2 Logical Architecture Model
16
7.1.2.1 CoAP Messaging Model
17
7.1.2.2 Methods and Response Codes
18
7.1.3 Message Format
18
7.1.4 Options
19
7.1.5 Caching
20
7.1.6 Proxying
20
7.1.7 Security and DTLS
21
7.1.8 Block-wise transfers
21
7.1.8.1 Structure of a Block Option
21
7.2 Overview of LwM2M
23
7.3 Solutions for File Repair using CoAP
25
7.3.1 Byte-Range-based File Repair Request Message Format
26
7.3.1.1 Option 1: use Uri-Query option in CoAP
26
7.3.1.2 Option 2: define a new CoAP option Range
27
7.3.3 Solution evaluation
29
8
Conclusions
29
Annex <A>: <Annex title>
30
A.1
Heading levels in an annex
30
Annex A: Change history
31

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document studies and evaluates the enhancements on service layer to support massive file delivery for IoT devices. An IoT device could be for instance a NB-IoT device or an eMTC device.

Editor note: Other types of device may be added.

The study will consider the enhancements/simplifications in the following areas:

· Define the requirements and constraints for different IoT device categories

· Review the existing multicast/broadcast service architecture to support MBMS delivery for IoT devices

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".

[3]
IETF RFC 3926 (October 2004): "FLUTE - File Delivery over Unidirectional Transport", T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh

[4]
3GPP TS 36.101: "User Equipment (UE) radio transmission and reception".

[5]
3GPP TS 36.306: "User Equipment (UE) radio access capabilities".

[6]
3GPP TR 22.861: “FS_SMARTER - massive Internet of Things”.

[7]
IETF RFC 7252 (June 2014): “The Constrained Application Protocol (CoAP)”, Z. Shelby, K. Hartke, C. Bormann.

[8]
IETF RFC 6347 (January 2012): “Datagram Transport Layer Security Version 1.2”, E. Rescorla, N. Modadugu.
[9]
OMA-TS-LightweightM2M-V1_0-20170208-A: “Lightweight Machine to Machine Technical Specification”.

[10]
IETF RFC 7228 (May 2014): “Terminology for Constrained-Node Networks”, C. Bormann, M. Ersue, A. Keranen.

[11]
3GPP TR 45.820: “Cellular system support for ultra-low complexity and low throughput Internet of Things (CIoT)"
[12]
IETF RFC 4919 (August 2007): “IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals”, N. Kushalnagar, G. Montenegro, C. Schumacher.
[13]
IETF RFC 7959 (August 2006) : "Block-Wise Transfers in the Constrained Application Protocol (CoAP)", C. Bormann, Z. Shelby.
…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

It is preferred that the reference to 21.905 be the first in the list.

3
Definitions, symbols and abbreviations

Delete from the above heading those words which are not applicable.

Clause numbering depends on applicability and should be renumbered accordingly.

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

eMBMS
Evolved Multimedia Broadcast Multicast Services

eMTC
enhanced Machine Type Communication, often referred to as LTE-M
FLUTE
File deLivery over Unidirectional Transport
IoT
Internet of Things

NB-IoT
NarrowBand IoT
RTOS
Real-Time Operating System
XML
Extensible Markup Language
4
Use cases

3GPP TR 22.861 [6] identifies the use case families, traffic scenarios and potential requirements for massive IoT. However, the use case families in 3GPP TR 22.861 do not address the data delivery from the network to a large amount of UEs. The following use cases present the data delivery using MBMS User Services with additional requirements compared to 3GPP TR 22.861
4.1 Use case 1 - Periodic and/or planned data delivery
4.1.1 Description

This use case represents a periodic and/or planned file delivery to a large number of devices. Smart water-metering devices are installed in deep indoor and wake up once or twice a day to send the consumption reports to the water-metering network that is regularly extended. The payload size for uplink transmission is in the range of 12 to 100 bytes. Based on growing amount of data, the system configuration is adjusted, requiring the delivery of small configuration updates to all metering devices. Moreover, the water-metering manufacturer regularly provides non-critical software updates for bug fixes, performance improvements, or new features/functionalities. For example, the clause E.2.4 of 3GPP TR 45.820 [11] estimates a periodic inter-arrival time of 180 days between software update events. This frequency is equivalent to twice per year. Depending on the application, the update frequency can be lower or higher. These devices require a battery lifetime of approximate 15 years and are significantly resource-constrained (processing and storage).
4.1.2 Recommended Requirements

The following recommended requirements are considered:

- The 3GPP system supports the reliable delivery and associated procedures to ensure data integrity.

- The 3GPP system supports the report on successful delivery.

- The 3GPP system supports eMBMS delivery mechanisms and procedures for devices with very limited capabilities (e.g. limited battery life of 15 years, limited processing and limited storage).

- The 3GPP system supports a mechanism to inform the scheduled delivery session to the devices that enables the UE to download the file at the planned schedule time.- The 3GPP system supports a mechanism to acknowledge a successful reception and action required (e.g. successful file update).

In addition, the following recommended requirements are not directly related to 3GPP system but necessary for IoT software update:

· The update needs to be robust. An update does not make the device unusable.

· The update needs to be atomic. An update needs to be completely installed or not at all.

· The update needs to be fail-safe. There is a fall-back mode if the update has failed.

4.2
Use case 2 – Initially Unplanned data delivery

4.2.1 Description

This use case represents the unplanned data delivery to a large number of devices. A device manufacturer wants to distribute a software/firmware update after some bug fixes. These devices may wake up periodically (e.g., every 12 hours to upload measurement data), or dynamically, for instance, when the buffer which contains measurement data is about to be full. The information that a new software/firmware update is available is transmitted during these wake-up periods. The device recommended requirements and constraints are similar to the use case 1.
4.2.2 Recommended requirements

In addition to the recommended requirements in clause 4.1.2, the following additional recommended requirement is considered:

- The 3GPP system supports a mechanism to inform the UE during its wake-up periods about any newly scheduled download delivery sessions.

4.3
Use case 3 – Initially Unplanned data delivery for critical data

4.3.1 Description

This use case represents the unplanned critical data delivery to a large number of devices. A bug in software could be a target for exploitation or is being exploited by unwanted people to perform a massive attack if the devices are connected to the Internet. To solve the issue, a device manufacturer wants to distribute as soon as possible a critical software/firmware update. The device recommended requirements and constraints are similar to the use case 1. But in contrast to use case 2, the device manufacturer wants to speed up the update mechanism such that devices can obtain information on a newly scheduled download delivery session, as opposed to having to wait until the next wake-up period to obtain such information.

4.3.2 Recommended requirements

In addition to the recommended requirements in clause 4.1.2, the following additional recommended requirement is considered:

- The 3GPP system supports a mechanism to page the UE in order to inform the UE about a newly schedule download delivery session.

5
IoT device analysis

In IoT devices, there are two separate parts: connectivity and application. The connectivity part is responsible for the connectivity between the IoT device and the network (e.g. LTE modem) while the application part is used for a specific application/use case. Each part may have its own software/firmware/OS. The clause 5.1 specifies the classes of devices at the application, the clause 5.2 presents the device categories for LTE connectivity.
5.1 Classes of constrained devices

RFC 7228 [10] defines constrained devices as small devices with limited CPU, memory, and power resources. The devices are often used as sensors/actuators, smart objects, or smart devices. RFC 7228 [10] identifies 3 classes of constrained devices as in table 5.1-1 to provide rough indications of device capabilities.

	Name
	Data size (e.g. RAM)
	Code size (e.g. Flash)

	Class 0, C0
	<< 10 KiB
	<< 100 KiB

	Class 1, C1
	~ 10 KiB
	~ 100 KiB

	Class 2, C2
	~ 50 KiB
	~ 250 KiB

Table 5.1-1: Classes of constrained devices (KiB = 1024 bytes) [12]

NOTE:
RFC 7228 uses the term KiB and this term is only applied in the clause 5.1 of the present document.
The description of each class is extracted from RFC 7228 [10] as follows:

Class 0 devices are very constrained sensor-like motes. They are so severely constrained in memory and processing capabilities that most likely they will not have the resources required to communicate directly with the Internet in a secure manner (rare heroic, narrowly targeted implementation efforts notwithstanding). Class 0 devices will participate in Internet communications with the help of larger devices acting as proxies, gateways, or servers. Class 0 devices generally cannot be secured or managed comprehensively in the traditional sense. They will most likely be preconfigured (and will be reconfigured rarely, if at all) with a very small data set. For management purposes, they could answer keepalive signals and send on/off or basic health indications.

Class 1 devices are quite constrained in code space and processing capabilities, such that they cannot easily talk to other Internet nodes employing a full protocol stack such as using HTTP, Transport Layer Security (TLS), and related security protocols and XML-based data representations. However, they are capable enough to use a protocol stack specifically designed for constrained nodes (such as the Constrained Application Protocol (CoAP) over UDP) and participate in meaningful conversations without the help of a gateway node. In particular, they can provide support for the security functions required on a large network. Therefore, they can be integrated as fully developed peers into an IP network, but they need to be parsimonious with state memory, code space, and often power expenditure for protocol and application usage.

Class 2 devices are less constrained and fundamentally capable of supporting most of the same protocol stacks as used on notebooks or servers. However, even these devices can benefit from lightweight and energy-efficient protocols and from consuming less bandwidth. Furthermore, using fewer resources for networking leaves more resources available to applications. Thus, using the protocol stacks defined for more constrained devices on Class 2 devices might reduce development costs and increase the interoperability.

Constrained devices with capabilities significantly beyond Class 2 devices exist. They are less demanding from a standards development point of view as they can largely use existing protocols unchanged. The present document therefore does not make any attempt to define classes beyond Class 2. These devices can still be constrained by a limited energy supply.
5.2 3GPP device categories

3GPP TS 36.306 [5] defines categories for NB-IoT and MTC devices: Cat-NB1, Cat-NB2, Category M1, Category M2. 3GPP TS 36.306 clauses 4.1A and 4.1C specify uplink and downlink capability for MTC and NB-IoT categories, respectively. However, 3GPP TS 36.306 does not specify whether NB-IoT or MTC devices support certain MBMS operations and capabilities (e.g. XML parsing and processing).
5.3
Device classification for MBMS IoT reception

The classification in clause 5.1 is applied for the application part while the 3GPP device categories is applied for the connectivity part. Depending on the application, use case, and device capabilities, multiple combinations from the classification in clause 5.1 and the 3GPP device categories are possible. For example, a smart water-metering device may use Cat-NB1 for the connectivity and Class 1 for the application with finite battery power. The MBMS client is between the applications and the connectivity functions. Classification and dimensioning provided by RFC 7228 [10] and by 3GPP TS 36.306 [5] can not be applied directly to the MBMS client. Consequently, 2 classification categories are here proposed for the MBMS reception point of view: low-end and high-end; depending on the application and/or use case.

The low-end IoT category represents the devices with limited capabilities such as processing, memory, battery etc. The MBMS User Services for this category have to be simplified as much as possible to address a wide range of devices, applications, and use cases. For example, Class 1 devices do not recommend full XML processing [12].
The high-end IoT category represents the devices with moderate or good capabilities (e.g., smart endpoints, IoT gateways). This device category may have additional capabilities (e.g. XML parsing/processing) compared to the low-end IoT category.

The low-end IoT category may support reduced MBMS processing (e.g. no XML). The high-end IoT category may support an MBMS profile without requirements for multimedia services (e.g. neither RTP nor DASH).
6
MBMS for NB-IoT device categories

6.1 MBMS User Service Announcement Profile
3GPP TS 26.346 [2] defines different procedures, mechanisms and protocols for MBMS User Services. The table 6.1-1 shows the profiling for each IoT category:
	
	
	Recommended for Low-end IoT category Profile
	Recommended for High-end IoT category Profile

	Service Announcement
	MBMS bearer
	Yes (NOTE 1)
	Yes

	
	Interactive Announcement Function
	 Yes (NOTE 2)
	Yes

	
	Point-to-Point push bearer
	Still under consideration
(NOTE 4)
	Still under consideration (NOTE 4)

	Associated delivery procedure
	File Repair – Byte Range
	Yes (NOTE 3)
	Yes

	
	File Repair – Symbol based
	No
	No

	
	Reception Report
	Yes (NOTE 3)
	Yes

	
	Consumption Report
	No
	No

	Delivery method
	Download
	Yes
	Yes

	
	Streaming
	No
	No

	
	Group communication
	No
	No

	
	Transparent
	No
	No

	NOTE 1: In clause 5.2.3.1 of 3GPP TS 26.346, the possibility to download session parameters from an HTTP server resolved from the Service Announcement may not be applicable for low-end IoT category. A CoAP based solution instead of HTTP may be more efficient.

NOTE 2: In clause 5.2.4 of 3GPP TS 26.346, the HTTP URL used by the UE to obtain USD via unicast may not be applicable to low-end IoT category. A CoAP based solution for Interactive Announcement Function instead of HTTP may be more appropriate.

NOTE 3: File repair and reception report messages using HTTP protocol in a single TCP connection (3GPP TS 26.346 clauses 9.3 and 9.4) is not applicable to low-end IoT category. Simplified file repair and reception report procedures is required (e.g. file repair and reception report based on CoAP).

NOTE 4: The decision to use or not the Point-to-Point push bearer is still under consideration until a solution for a paging procedure as required in Section 4.3.2 is proposed.

Table 6-1: List of supported procedures and methods for low-end and high-end IoT categories
6.2 MBMS IoT profiles for file download delivery method

6.2.1 Introduction

Annex L.4 in 3GPP TS 6.346 specifies the MBMS download profile for both non-real-time (NRT) file delivery services as well as DASH-formatted streaming services, using the FLUTE protocol. FLUTE uses FDT instance to indicate the attributes and elements required for the delivery. The FDT attributes and elements are categorized at the FDT-Instance level (i.e., the FDT-Instance element of the FDT) and at the File level (i.e., the File element of the FDT). The high-end IoT category may reuse the MBMS download profile but does not require the functionalities for multimedia services (e.g. DASH). Table 6.1-1 show the supported high-level capabilities in download delivery method for IoT devices.

	
	Recommended for Low-end IoT category profile
	Recommeded for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	FLUTE session setup and control with RTSP
	No (NOTE 1)
	No (NOTE 1)
	Optional

	SDP for Download Delivery Method
	Yes
	Yes
	Yes

	XML schema and processing
	No (NOTE 2)
	Still under consideration (Note 3)
	Yes

	NOTE 1: 3GPP TS 26.346 clause L.4.6 specifies “FLUTE session setup and control with RTSP” as an option supported by the UE, IoT devices do not require this functionality.

NOTE 2: In clause 5.3, low-end IoT category does not recommend full XML processing. A binary/json format may be defined for any XML data.

NOTE 3: Still under consideration. Do we need to merge the 2 profiles and have a unique profile or have an High-end Iot Profile compatible with the Annex L?

Table 6.2-1: Supported capabilities in download delivery method
6.2.1 Common FDT-Instance and File attributes for MBMS IoT profiles

Annex L4.2 in 3GPP TS 26.346 specifies the FDT attributes defined for both the FDT-Instance and File levels. Table 6.2.1-1 shows the profiling for each IoT category.

	Attributes/Parameters
	Recommended for Low-end IoT category profile
	Recommeded for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Content-type
	Yes
	Yes
	Yes

	FEC-OTI-FEC-Encoding-ID
	Yes
	Yes
	Yes

	FEC-OTI-Maximum-Source-Block-Length
	Yes
	Yes
	Yes

	FEC-OTI-Encoding-Symbol-Length
	Yes
	Yes
	Yes

	FEC-OTI-Scheme-Specific-Info
	Yes
	Yes
	Yes

	Content-Encoding
	No
	No
	No

	FEC-OTI-FEC-Instance-ID
	No
	No
	No

	

Table 6.2.1-1: Common FDT-Instance and File attributes for MBMS IoT profiles

NOTE: The indicators YES and NO are specified for FLUTE sender.

6.2.2 FDT-Instance specific Elements and Attributes for MBMS IoT profiles

Table 6.2.2-1 shows the profiling for each IoT category on FDT-Instance specific elements and attributes.

	Parameters
	Recommended for Low-end IoT category profile
	Recommeded for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Expires
	Yes
	Yes
	Yes

	Complete
	No
	No
	No

	mbms2008:FullFDT
	No
	No
	No

	mbms2012:Base-URL-1
	Yes (NOTE 1)
	Yes (NOTE 1)
	No

	mbms2012:Base-URL-2
	Yes (NOTE 1)
	Yes (NOTE 1)
	No

	MBMS-Session-Identity-Expiry
	No
	No
	No

	NOTE 1: The "Base-URL-1" or "Base-URL-2" elements are used for byte-range-based file repair.

Table 6.2.2-1: FDT-Instance Specific Elements and Attributes for MBMS IoT profiles

NOTE: The indicators YES and NO are specified for FLUTE sender.
6.2.3 FDT File specific Elements and Attributes for MBMS IoT profiles

Table 6.2.3-1 shows the profiling for each IoT category on FDT File specific elements and attributes.

	Parameters
	Recommended for Low-end IoT category profile
	Recommeded for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Content-Location
	Yes
	Yes
	Yes

	TOI
	Yes
	Yes
	Yes

	Content-Length
	Yes
	Yes
	Yes

	Content-MD5
	Yes
	Yes
	Yes

	mbms2007:Cache-Control
	Still under consideration (NOTE 2)
	Yes
	Yes

	Content-type
	Yes
	Yes
	Yes

	FEC-OTI-FEC-Encoding-ID
	Yes
	Yes
	Yes

	FEC-OTI-Maximum-Source-Block-Length
	Yes
	Yes
	Yes

	FEC-OTI-Encoding-Symbol-Length
	Yes
	Yes
	Yes

	FEC-OTI-Max-Number-of-Encoding-Symbols
	Yes
	Yes
	Yes

	FEC-OTI-Scheme-Specific-Info
	Yes
	Yes
	Yes

	Transfer-Length
	No (NOTE 1)
	Yes (NOTE 1)
	No (NOTE 1)

	mbms2009:Decryption-KEY-URI
	No
	No
	No

	mbms2012:FEC-Redundancy-Level
	No
	No
	No

	mbms2012:Alternate-Content-Location-1
	Yes
	Yes
	No

	mbms2012:Alternate-Content-Location-2
	Yes
	Yes
	No

	MBMS-Session-Identity
	No
	No
	No

	NOTE 1: IoT devices may not use gzip content encoding, Transfer-Length may not be useful.

NOTE 2: still under consideration. Is there any use case ? If no, it should not be part of the profile as it consumes resources

Table 6.2.3-1: FDT File specific Elements and Attributes for MBMS IoT profiles
NOTE: The indicators YES and NO are specified for FLUTE sender.

Signaling of parameters with basic ALC/FLUTE headers or FLUTE extension headers for IoT device categories is the same as specified in clauses 7.2.7 and 7.2.8 of 3GPP TS 26.346.

6.2.4 3GPP-defined FDT extensions for MBMS IoT profiles

3GPP TS 26.346 defines various FDT elements and attributes specified for 3GPP MBMS User Services that are not in the FLUTE specified in RFC 3926 [3]. Table 6.2.4-1 shows the profiling of these elements and attributes for MBMS IoT profiles

	Parameters
	Recommended for Low-end IoT category profiles
	Recommended for High-end IoT category profiles
	MBMS profile in Annex L 3GPP TS 26.346

	mbms2005:MBMS-Session-Identity-Type
	No
	No
	No

	mbms2005:MBMS-Session-Identity-Expiry-Type
	No
	No
	No

	mbms2005:groupIdType
	No
	No
	No

	mbms2007:Cache-Control
	No
	No
	No

	mbms2008:FullFDT
	No
	No
	No

	mbms2009:Decryption-KEY-URI
	No
	No
	No

	mbms2012:Base-URL-1
	No
	No
	No

	mbms2012:Base-URL-2
	No
	No
	No

	mbms2012:FEC-Redundancy-Level
	No
	No
	No

	mbms2012:Alternate-Content-Location-1
	No
	No
	No

	mbms2012:Alternate-Content-Location-2
	No
	No
	No

	mbms2012:File-ETag
	Yes (NOTE 1)
	Yes
	Yes

	mbms2015:IndependentUnitPositions
	No
	No
	No

	MBMS-Session-Identity-Expiry
	No
	No
	No

	NOTE 1:
CoAP supports Etag option.

NOTE: The indicators YES and NO are specified for FLUTE sender.
7
Solutions

7.1 Overview of CoAP
This section provides an overview of CoAP, whose design was motivated for IoT-related communications. As described in RFC 7252 [7], it is a specialized content transfer protocol for the Internet for use with constrained endpoints and constrained networks (e.g. low-power Tx/Rx and bandwidth). CoAP supports a request/response interaction model between application endpoints and includes key Web concepts in HTTP such as RESTful client-server architecture, use of URIs for resource identification and location, and Internet media types. In fact, CoAP is designed to interface easily with HTTP for Web integration while meeting specific requirements such as very low overhead, simplicity for constrained application, device and network environments (such as in IoT communications). It also contains built-in support for service and resource discovery, as well as multicast distribution (since it runs over UDP, it also supports the use of multicast IP destination addressing). The key characteristics and features of CoAP can be summarized as follows:

· Web protocol which fulfils IoT/M2M requirements in constrained environments;

· Binding to UDP transport with optional reliable delivery;

· Support for both unicast and multicast requests;

· Asynchronous message exchanges;

· Small, simple header < 10 bytes;

· URI-based resource location/addressing and content type support;

· Simple proxy and caching capabilities;

· Stateless HTTP mapping, enabling both the use of proxies to provide access to CoAP resources using HTTP in a uniform way, and simple HTTP interfaces to be alternatively implemented over CoAP;

· Security binding to DTLS (Datagram Transport Layer Security;

· Optional observation, block transfer and discovery

The relationship between the use of and interworking between HTTP and CoAP as Web transfer protocols in the REST-based architecture environment is shown in Figure 7.1-1 below:

[image: image3.emf]Internet

Constrained

environment

Figure 7.1-1 – Interworking between HTTP and CoAP
7.1.1 Comparison to HTTP
Like HTTP, CoAP was designed with the REST architecture popular in the Web in mind in support of the ubiquitous use on the Internet of Web services/Web APIs by applications. As opposed to simply employing compression of HTTP, the design of CoAP intended to realize a subset of REST common with HTTP but optimized for IoT or M2M applications. The interaction model of CoAP is similar to the client/server model in HTTP. A CoAP request, as in HTTP, is sent by a client to a server to request an action, via a Method Code on the server-resident resource. Subsequently, the server returns a response (with associated Response Code) which may include a payload containing a representation of the requested resource. However, unlike HTTP, such interactions operate asynchronously in CoAP, over the datagram-based transport offered by UDP. Other similarities in features to HTTP as offered in CoAP include:
a) signalling of additional metadata in both request or responses in the form of Options carried in the CoAP message header, similar to the use of Header fields in HTTP;

b) support for proxying and caching as in HTTP;

c) enables securing the message exchange between CoAP endpoints by use of DTLS, which functions like TLS in HTTPS.

7.1.2 Logical Architecture Model

CoAP can be considered logically as a two-layer operational model comprising: i) request/response interaction layer using Method and Response codes, and whose contents are carried by messages and ii) a message layer that addresses the underlying UDP transport and the asynchronous nature of the client-server interactions. This model is shown below in Figure 7.1.2-1.

[image: image4.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 9

Application

Requests/Responses

Messages

DTLS

CoAP

UDP

Figure 7.1.2-1 – Logical Layered Model of CoAP

7.1.2.1 CoAP Messaging Model
CoAP messages uses a short fixed-length binary header (4 bytes) that may be followed by compact binary options and a payload. This message format is shared by requests and responses. Each CoAP message contains a Message ID for duplicate-detection and support of optional reliability. CoAP defines four types of messages:
· Confirmable (CON),

· Non-confirmable (NON),

· Acknowledgement (ACK), and

· Reset (RST).

Requests can be carried in either Confirmable or Non-confirmable messages, and responses can be carried in these or could be piggybacked in Acknowledgement messages. The use of Confirmable messages adds reliability to UDP transport, since messages marked as such (CON) will be retransmitted (using a default time-out and exponential back-off between retransmissions) until the recipient returns an ACK message with the same Message ID. An example of reliable CoAP messaging is shown in Figure 7.1.2.1-1.

[image: image5.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 13

CoAP Client CoAP Server

CON [0xfc17]

ACK [0xfc17]

The Constrained Application Protocol (CoAP)

Figure 7.1.2.1-1 – Reliable Message Transmission in CoAP
The response to a CON message could be sent initially as an empty ACK message (as shown by the second step of the call flow in the right-hand side diagram in Figure 7.1.2.1-1), and later, when the resource becomes available, it can be carried as the payload of a second response via a separate CON message (as shown by the third step of the call flow in the right-hand side diagram in Figure 7.1.2.1-1). This is referred to as a “separate response”. The latter response can be linked to the original request using a Token in both the request and response messages to identify their correlation independently from the underlying message exchanges. An example of piggybacked and separated responses (separated delivery of ACK from payload) is show in Figure 7.1.2.1-2.

[image: image6.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 10

CoAP Client CoAP Server

CON [0xbc90]

GET/Temperature

(Token 0x71)

ACK [0xbc90]

…

CON [0x12bb]

2.05 Content

(Token 0x71)

“18.4 C”

ACK [0x12bb]

Request

Response

(w/ payload)

Response

(w/o payload)

CoAP Client CoAP Server

CON [0xbc90]

Get/Temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

“20.5 C”

Request

Response

The Constrained Application Protocol (CoAP)

Piggybacked response Separated response

Figure 7.1.2.1-2 – Piggybacked vs. Separated Response for Reliable Messaging in CoAP

Should a recipient be unable to process a CON message, it will reply with a Reset message (RST) instead of an ACK. Messages not requiring reliable delivery can be sent as Non-Confirmable (NON) messages. Such message will not be acknowledged, but will contain a Message ID for duplicate detection. If a request is sent in a NON message, its response may be returned in a new NON message, an example of which is shown in Figure 7.1.2.1-3, or a CON message can be returned (requiring the peer to return an ACK). A recipient that is unable to process a NON message may reply with a RST message.

[image: image7.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 11

CoAP Client CoAP Server

NON [0xab88]

GET/Temperature

(Token 0x71)

NON [0x17d2]

2.05 Content

(Token 0x71)

“23.8 C”

The Constrained Application Protocol (CoAP)

Figure 7.1.2.1-3 – Request and Response via Separate Non-Confirmable Messages

7.1.2.2 Methods and Response Codes
CoAP makes use of GET, PUT, POST, and DELETE methods in a manner similar to HTTP, with the semantics described below.
· GET: retrieves a representation for the information that currently corresponds to the resource identified by the request URI.

· PUT: requests that the resource identified by the request URI be updated or created with the attached representation.

· POST: requests processing of the enclosed representation in the request.

· DELETE: requests that the resource identified by the request URI be deleted.

Methods beyond the basic four types can be added to CoAP in separate IETF specifications. URI support in a server is simplified as the client already parses the URI and splits it into host, port, path, and query components, making use of default values for efficiency. Response Codes relate to a small subset of HTTP status codes along with a few CoAP-specific codes, with some examples as shown in Section 7.1.3.
After receiving and interpreting a request, a server responds with a CoAP response that is matched to the request by the client-generated token whose purpose is different from the Message ID (the latter is used to match a Confirmable message to its Acknowledgement). A response is identified by the Code field in the CoAP header as defined in Section 7.1.3. Like the HTTP Status Code, the CoAP Response Code indicates the result of the target endpoint’s attempt to understand and satisfy the request.
7.1.3 Message Format
CoAP features the delivery of compact message delivery over UDP. CoAP messages are encoded in a simple binary format. The message format starts with a fixed-size 4-byte header. This is followed by a variable-length Token value, which can be between 0 and 8 bytes long. After the Token is a sequence of zero or more CoAP Options in Type-Length-Value (TLV) format, optionally followed by a payload that occupies the data section of the datagram. The CoAP message format is shown below in Figure 7.1.3-1.

[image: image8.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 12

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 Ver T TKL Code Message ID

Token (if any, TKL bytes) ...

 Options (if any) ...

1 1 1 1 1 1 1 1 Payload (if any) ...

LWM2M Client

(CoAP)

LWM2M

Bootstrap Server

(CoAP)

CON [0xbc90]

(Token 0x71)

{Bootstrap Request}

ACK [0xbc90]

(Token 0x71)

{Bootstrap Response}

Bootstrap

•

CoAP includes two features (integrated layers)

•

Requests/Responses

•

Messages

•

CoAP message format – integrated layers

•

Version (Ver)

•

Ver=1 in RFC 7252

•

Type (T)

•

CON (0), NON (1), ACK (2), RST (3)

• Supported message reliability – resend CON

message after a timeout if no ACK/RST received

•

Token Length (TKL) and Token

•

Correlates a response with a corresponding request

•

Message ID

•

Supports message correlation – ACK/RST matched to

CON/NON messages

• ACK/RST message echo message ID

on CON/NON request

•

Supports duplicate detection

• ACK/RST resent on duplicate

CON message ID

• Silently ignores duplicate NON

messages

•

Message ID must not be reused in

EXCHANGE_LIFETIME

The Constrained Application Protocol (CoAP)

•

Piggybacked response

•

Message format

Figure 7.1.3-1 – CoAP Message Header

· Ver (V): message Version number

· Type (T): message Type – CON (00), NON (01), ACK (10), RST (11)

· Token Length (TKL): length of (variable-length) Token field whose value is a sequence of 0 to 8 bytes. The Token value, acting effectively as a “request ID” is used to correlate requests and responses, as every request will contain a client-generated Token that the server must echo (without modification) in any resulting response.

· Code: A 3-digit code in the form c.dd, where ‘c’ is 3-bit ‘class’ representing a single decimal digit from 0-7, and ‘dd’ is a 5-bit ‘detail’ representing two decimal digits from 00 to 31. The class can indicate a Request (0), a Success response (2), a Client Error response (4), or a Server Error response (5). As example values of the ‘Code’ field, the following Success and Client Error codes are defined:

Success codes (2.xx):
· 2.01 Created: similar to HTTP 201 "Created", but only used in response to POST and PUT requests. The payload returned with the response, if any, is a representation of the action result.

· 2.02 Deleted: similar to HTTP 204 "No Content" but only used in response to a request that causes the resource to be no longer available, such as DELETE and, in certain circumstances, POST requests.

· 2.03 Valid: similar to HTTP 304 "Not Modified", but is only used to indicate that the response identified by the entity-tag identified by the included ETag Option is valid.

· 2.04 Changed: similar to HTTP 204 "No Content" but only used in response to POST and PUT requests.

· 2.05 Content: similar to HTTP 200 "OK" but only used in response to GET requests.

Client Error codes (4.xx):
· 4.00 Bad Request: Equivalent meaning to HTTP 400 “Bad Request”.

· 4.01 Unauthorized: the client is not authorized to perform the requested action.

· 4.02 Bad Option: the request could not be understood by the server due to one or more unrecognized or malformed options.

· Each of the following error codes 4.03 Forbidden, 4.04 Not Found, 4.05 Method Not Allowed, 4.06 Not Acceptable, 4.12 Precondition Failed, 4.13 Request Entity Too Large, and 4.15 Unsupported Content-Format has similar semantics to its HTTP 4.xx error code counterpart with the same ‘xx’ value.

· Message ID: use for matching response type ACK/RST to request type CON/NON, as well as for message duplicate detection.

While the CoAP specification [7] itself only defines an upper bound to the message size. Messages larger than an IP packet would result in undesirable packet fragmentation. Therefore, [7] recommends that when appropriately encapsulated, a CoAP message should fit within a single IP packet and which fits into
one UDP packet payload, i.e. within a single IP datagram.
7.1.4 Options

Either a request or response message may contain one or more options, a common set of which is defined in CoAP for both message types:
· Content-Format

· ETag

· Location-Path

· Location-Query

· Max-Age

· Proxy-Uri

· Proxy-Scheme

· Uri-Host

· Uri-Path

· Uri-Port

· Uri-Query

· Accept

· If-Match

· If-None-Match

· Size1

As can be seen, many of these options have the same name and similar semantics as header fields defined in HTTP. Options belong to one of two classes: “critical” or “elective”. The difference is how an unrecognizable option is handled by the message recipient, namely according to the following rules:
· Unrecognized options of class "elective" MUST be silently ignored;

· Unrecognized options of class "critical" that occur in a CON request must cause the return of a 4.02 (Bad Option) response;

· Unrecognized options of class "critical" that occur in a CON response, or piggybacked in an ACK response, must cause the response to be rejected;

· Unrecognized options of class "critical" that occur in a NON message MUST cause the message to be rejected.

Additionally, options are also classified based on how a proxy is to deal with an option it does not recognize it. For this purpose, an option can either be considered ‘Unsafe-to-Forward’ (UnSafe is set to 1) or ‘Safe-to-Forward’ (UnSafe is set to 0).
7.1.5 Caching
CoAP endpoints may be able to cache responses to reduce the response time and network bandwidth consumption on future, equivalent requests. Unlike HTTP, the cacheability of a CoAP response does not depend on the request method, but instead on the Response Code. A "freshness" mechanism is used for this purpose by making of the ‘Max-Age’ Option code, which indicates the cache lifetime. The ‘ETag’ Option allows for validity checking whereby the payload of a prior response can be reused to satisfy a new request. RFC 7252 [7] indicates that Response Codes used to indicate success but are unrecognized by an endpoint must not be cached.
7.1.6 Proxying
As possible in HTTP, CoAP supports the use of proxies which are CoAP devices typically used by clients to perform requests on their behalf. Both forward-proxy and reverse-proxy functionality are possible. In the former, the proxy can be explicitly selected by the client in serving the client’s request, whereas in the latter, the proxy serves as stand-in for an origin server. A proxy can map an incoming CoAP request to an outgoing CoAP request (CoAP-to-CoAP proxy), or translate from/to a different protocol (“cross-proxy”), for example, between CoAP and HTTP. An instance of such CoAP-to-HTTP cross proxy is shown in Figure 7.1-1.
7.1.7 Security and DTLS
The delivery of CoAP messages can be secured by using DTLS (Datagram Transport Layer Security) as defined in RFC 6347 [8], in a similar fashion to securing HTTP over TCP by using TLS. The CoAP protocol stack model with the (optional) inclusion of DTLS was shown in Figure 7.1.2-1.

7.1.8 Block-wise transfers
The CoAP base protocol works well for small payload. However, in case of larger payload which exceeds the maximum size for fragmentation at different layers (e.g. IP, UDP), RFC 7959 [13] extends basic CoAP with a pair of "Block" options for transferring multiple blocks of information from a resource representation in multiple request-response pairs. RFC 7959 [13] suggests to limit the size of datagrams in constrained networks:
· by the maximum datagram size (~ 64 KiB for UDP)

· by the desire to avoid IP fragmentation (MTU of 1280 bytes for IPv6)

· by the desire to avoid adaptation-layer fragmentation (60-80 bytes for 6LoWPAN [12])

NOTE: KiB = 1024 bytes

The block-wise specification adds a pair of Block options (Block1 and Block2) to CoAP that can be used for block-wise transfers. Both options can be present in both the request and response messages. In either case, the Block1 Option pertains to the request payload, and the Block2 Option pertains to the response payload. Benefits of using these options include:

· Transfers larger than what can be accommodated in constrained-network link-layer packets can be performed in smaller blocks.
· No hard-to-manage conversation state is created at the adaptation layer or IP layer for fragmentation.
· The transfer of each block is acknowledged, enabling individual retransmission if required. Both sides have a say in the block size that actually will be used.
· The resulting exchanges are easy to understand using packet analyzer tools, and thus quite accessible to debugging.
· If needed, the Block options can also be used (without changes) to provide random access to power-of-two sized blocks within a resource representation.
7.1.8.1 Structure of a Block Option
Three items of information may need to be transferred in a Block (Block1 or Block2) option:

· the size of the block (SZX);

· whether more blocks are following (M);

· the relative number of the block (NUM) within a sequence of blocks with the given size.

The value of the Block option is a variable-size (0 to 3 byte) unsigned integer. This integer value encodes these three fields, see Figure 7.1.8.1-1.
[image: image9.png]]
©1234567
R e e T
| Num M| szx |
R e e T

] 1
©123456789012345
B S e et T T]
| NUM M| szx |
B S e et T T]

] 1 2
©12345678901234567890123
B e s R EE L TE LT
| NUM Im| szx |
B e s R EE L TE LT

Figure 7.1.8.1-1 – Block Option Value

The block size is encoded using a three-bit unsigned integer (0 for 2**4 bytes to 6 for 2**10 bytes), which we call the "SZX" ("size exponent"); the actual block size is then "2**(SZX + 4)".

The bit M or "more" bit, indicates whether more blocks are following or if the current block-wise transfer is the last block being transferred.

The option value divided by sixteen (the NUM field) is the sequence number of the block currently being transferred, starting from zero. The current transfer is, therefore, about the "size" bytes starting at byte "NUM << (SZX + 4)".

More specifically, within the option value of a Block1 or Block2 Option, the meaning of the option fields is defined as follows:

NUM: Block Number, indicating the block number being requested or provided. Block number 0 indicates the first block of a body (i.e., starting with the first byte of the body).

M: More Flag ("not last block"). For descriptive usage, this flag, if unset, indicates that the payload in this message is the last block in the body; when set, it indicates that there are one or more additional blocks available. When a Block2 Option is used in a request to retrieve a specific block number ("control usage"), the M bit MUST be sent as zero and ignored on reception. (In a Block1 Option in a response, the M flag is used to indicate atomicity, see below.)

SZX: Block Size. The block size is represented as a three-bit unsigned integer indicating the size of a block to the power of two. Thus, block size = 2**(SZX + 4). The allowed values of SZX are 0 to 6, i.e., the minimum block size is 2**(0+4) = 16 and the maximum is 2**(6+4) = 1024. The value 7 for SZX (which would indicate a block size of 2048) is reserved, the detailed behavior is referred to RFC 7959 [13].

NOTE: The bit order (e.g. most or least significant bits) are specified in RFC 7959 [13].Table 7.1.8.1-1 shows the CoAP options including Block1 and Block2 with numbers 27 and 23, respectively.

[image: image10.png]Format | Length | Default

Name

o
N
Bl
o
2
m

Repeatable

R=1

ocacheKey,

N=N

Unsafe,

U=t

c=Critical,

Table 7.1.8.1-1 – Block Option Numbers

7.2 Overview of LwM2M

Lightweight M2M (LwM2M) [9] is a system standard defined by Open Mobile Alliance (OMA). As with other device management standards (e.g. OMA DM), LwM2M solution is called an Enabler. LwM2M Enabler defines the application layer communication protocol between a LwM2M Server and a LwM2M Client. The LwM2M Server resides in a private or public data center and can be hosted by the M2M Service Provider, Network Service Provider or Application Service Provider while the LwM2M Client resides on the device. The target LwM2M Devices are mainly resource constrained devices. The key features of LwM2M 1.0 Enabler can be summarized as follows:

· Simple resource model with the core set of objects and resources defined in this specification.

· Operations for creation, update, deletion, and retrieval of resources.

· Asynchronous notifications of resource changes.

· Support for several serialization formats, namely TLV, JSON, Plain Text and binary data formats and the core set of LightweightM2M Objects.

· UDP and SMS transport support.

· Communication security based on the DTLS protocol supporting different types of credentials.

· Queue Mode offers functionality for a LwM2M Client to inform the LwM2M Server that it may be disconnected for an extended period and when it becomes reachable again.

· Support for use of multiple LwM2M Servers.

· Provisioning of security credentials and access control lists by a dedicated LwM2M bootstrap-server.

LwM2M employs a client-server architecture plus CoAP with UDP/SMS transport binding as shown in Figure 7.2-1 while the protocol stack is shown in Figure 7.2-2. The LwM2M Enabler has two components, LwM2M Server and LwM2M Client. Four interfaces are designed between these two components as shown below:

· Bootstrap: is used to provision essential information into the LwM2M Client to enable the LwM2M Client to perform the operation “Register” with one or more LwM2M Servers. Bootstrap interface also allows LwM2M Bootstrap Server to manage the keying, access control and configuration of a device.

· Client Registration: is used by a LwM2M Client to register its capabilities with one or more LwM2M Servers, maintain each registration and de-register from a LwM2M Server.
· Device management and service enablement: allows the LwM2M Server to perform device management and M2M service enablement by sending operation to the Client and to get corresponding response from the LwM2M Client.

· Information Reporting: is used by a LwM2M Server to observe any changes in a Resource on a registered LwM2M Client, receiving notifications when new values are available.
[image: image11.emf]
Figure 7.2-1: The overall architecture of the LwM2M Enabler
[image: image12.emf]
Figure 7.2-2: The protocol stack of the LwM2M Enabler
The LwM2M Enabler defines a simple resource model where each piece of information made available by the LwM2M Client is a Resource. The Resources are further logically organized into Objects, and each Resource is given a unique identifier within that Object.
Figure 7.2-3illustrates the relationship between Resources, Objects and the LwM2M Client. The LwM2M Client can have any number of Resources, each of which belongs to an Object. For example, the Firmware Object contains all the Resources used for firmware update purposes.
[image: image13.emf]
Figure 7.2-3: Relationship between LwM2M Client, Object, and Resources
OMA LwM2M Enabler version 1.0 also specifies a set of 8 Device Management‐oriented Objects
· 0: Security Object ‐ handles security aspects between LwM2M Client and Server

· 1: Server ‐ defines data and functions related to the LwM2M Server

· 2: Access Control ‐ defines the access rights which can be granted on Client Objects for a given Server

· 3: Device ‐ details device specific information

· 4: Firmware ‐ details resources on the device useful for firmware upgrades

· 5: Location ‐ groups resources providing information about the device current location

· 6: Connectivity Monitoring ‐ groups resources that assist in monitoring the status of a network connection

· 7: Connection Statistics ‐ groups resources that hold statistical information about an existing network connection
Editor note: section 7.2 to be reviewed.

7.3 Solutions for File Repair using CoAP

3GPP TS 26.346 clause 9.3 describes 2 file repair procedures for MBMS User Services: the symbol-based procedure and the byte-range-based procedure. The symbol-based procedure is not part of the IOT profiles as described in section 6.1. In byte-range-based message format, the MBMS UE uses the conventional HTTP/1.1 GET or partial GET requests as defined in RFC 2616 to request all or a subset of source symbols of the referenced resource, respectively. Low-end IoT device catetory may not equipped with HTTP stack to keep a small code size. This section describes the solutions for File Repair based on CoAP.

7.3.1 Byte-Range-based File Repair Request Message Format
The CoAP base procotol [7] does not define the option that has an equivalent functionality as Range in HTTP header. This solution provides two alternative options to address the byte-range-based file repair.

7.3.1.1 Option 1: use Uri-Query option in CoAP
This alternative relies on the use of Uri-Query option in CoAP to send a byte-range request message. This solution uses the special defined keywords “bytefrom” and “byteto” inside Uri-Query option to indicate the byte-range.

NOTE: The special defined keywords could be different than “bytefrom” and “byteto” if this option is adopted.

As an example, the FLUTE receiver partially receives the transport object with file name "firmware.bin" having the “File-Etag” attribute set to “df69d20220cb1ff4” in the FDT instance. It issues a repair request to the host server to fetch the missing bytes. The request message from the CoAP client is as follows:

Input:

Destination IP Address = 198.51.100.1

Destination UDP Port = 5683

Uri-Host = “mbmsrepair1.example.com”

Etag = "df69d20220cb1ff4"
Uri-Path = “path”

Uri-Path = “repair_script”
Uri-Query = "bytefrom=500;byteto=627"

Output:

coap://mbmsrepair1.example.com:5683/path/repair_script/?bytefrom=500;byteto=627
NOTE: The Etag option does not appear in the CoAP URI but in the CoAP payload.

Upon reception of the GET request message, the CoAP server parses the special keywords “bytefrom”, “byteto” to extract the byte-range the CoAP client wants to fetch. Figure 7.x.1.1-1 shows the request and reponse CoAP messages.
[image: image14.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

B
U Query = bysfrom=500 yteto=a2T

ACK [MID=1234], 2.05 Content

>

Payload: Tonentofbyterange 500627

Figure 7.3.1.1-1: Request and reponse CoAP messages using Uri-Query option
NOTE: MID is the message ID in CoAP header

In 3GPP TS 26.346, multiple byte-ranges or multiple symbols in different block number can be put in a single HTTP based file repair request message. However, there is no benefits to combine multiple requests in a single request message in CoAP since transfer of each block is acknowledged [13]. If the missing data in response message is large or the CoAP server wants to use multiple small data payload in response messages, the block-wise transfer is used. Table 7.3.1-1 shows different cases for byte-range request:

	Single byte-range
	Single response CoAP message for file repair if possible

Otherwise use block-wise transfer

	Multiple byte-ranges
	Split into multiple of single byte-range requests

Table 7.3.1-1: Different cases for CoAP byte-range request message
Figure 7.3.1.1-2 shows the case where the CoAP server wants to use block-wise transfer to deliver the missing bytes.

[image: image15.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

B
U Query = bysfrom=500 yteto=a2T

ACK [MID=1234], 2.05 Content, 2:0/1/64

>

CON [MID=1235] GET, /pathirepair_script, 2:1/0/64

ACK [MID=1235], 2.05 Content, 2:1/0/64

Figure 7.3.1.1-2: Request reponse CoAP messages using block-wise

NOTE: MID is the message ID in CoAP header
7.3.1.2 Option 2: define a new CoAP option Range
A new CoAP option “Range” with a new allocated number 21 is defined in this solution. Table 7.x.1.2-1 shows an example where the “Range” option resides in the ordered options in CoAP.

	No.
	C
	U
	N
	R
	Name
	Format
	Length
	Default

	1
	x
	
	
	x
	If-Match
	opaque
	0-8
	(none)

	3
	x
	x
	-
	
	Uri-Host
	string
	1-255
	(see below)

	4
	
	
	
	x
	ETag
	opaque
	1-8
	(none)

	5
	x
	
	
	
	If-None-Match
	empty
	0
	(none)

	7
	x
	x
	-
	
	Uri-Port
	unit
	0-2
	(see below)

	8
	
	
	
	x
	Location-Path
	string
	0-255
	(none)

	11
	x
	x
	-
	x
	Uri-Path
	string
	0-255
	(none)

	12
	
	
	
	
	Content-Format
	unit
	0-2
	(none)

	14
	
	x
	-
	
	Max-Age
	unit
	0-4
	60

	15
	x
	x
	-
	x
	Uri-Query
	string
	0-255
	(none)

	17
	x
	
	
	
	Accept
	unit
	0-2
	(none)

	20
	
	
	
	x
	Location-Query
	string
	0-255
	(none)

	21
	
	x
	
	x
	Range
	string
	0-255
	(none)

	35
	x
	x
	-
	
	Proxy-Uri
	string
	1-1034
	(none)

	39
	x
	x
	-
	
	Proxy-Scheme
	string
	1-255
	(none)

	60
	
	
	x
	
	Size1
	unit
	0-4
	(none)

C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable
Table 7.3.1.2-1: New defined “Range” option within CoAP options
NOTE: This solution uses the option number 21 to demonstrate the feasibility of the solution. If this solution using “Range” option is adopted as an extension of CoAP protocol, the allocated number could be different.

With the new defined CoAP option, the query message from the CoAP client is as follows:

Input:

Destination IP Address = 198.51.100.1

Destination UDP Port = 61616

Uri-Host = “mbmsrepair1.example.com”

Etag = "df69d20220cb1ff4"
Uri-Path = “path”

Uri-Path = “repair_script”
Range = “bytes=500-627"

Output:

coap://mbmsrepair1.example.com:5683/path/repair_script/
NOTE: The Etag and Range options do not appear in the CoAP URI but in the CoAP payload since these options are not in the process of the section 6.5 of RFC 7252.

Figure 7.x.1.2-1 shows the request response CoAP messages using the new defined “Range” option.

[image: image16.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

Erpr—rea
Range ="byes=00-27"

ACK [MID=1234], 2.05 Content

>

Payload: Tonentofbyterange 500627

Figure 7.3.1.2-1: Request and response CoAP messages using defined “Range” option
Similarly, Figure 7.3.1.2-2 shows the case where the CoAP server wants to use block-wise transfer to deliver the missing bytes

[image: image17.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

Erpr—rea
Range ="byes=00-27"

ACK [MID=1234], 2.05 Content, 2:0/1/64

>

CON [MID=1235] GET, /pathirepair_script, 2:1/0/64

ACK [MID=1235], 2.05 Content, 2:1/0/64

Figure 7.3.1.2-2: Request and reponse CoAP messages using defined “Range” option and block-wise
7.3.2 Solution evaluation

CoAP can be used for File Repair request and response messages instead of using HTTP stack for byte-range-based.

The byte-range-based solutions have two following options:

· The option 1 provides a solution using the existing Uri-Query option defined in CoAP. It can be done without any changes in the CoAP IETF standard.
· The option 2 defines a new CoAP option Range. This solution requires a change in the CoAP IETF standard.
8
Conclusions
Annex <A>:
<Annex title>

Annexes are only to be used where appropriate:

Annexes are labelled A, B, C, etc. and are "informative" (3GPP TRs are informative documents by nature).

A.1
Heading levels in an annex

Heading levels within an annex are used as in the main document, but for Heading level selection, the "A.", "B.", etc. are ignored. e.g. A.1.2 is formatted using Heading 2 style.

Annex A:
Change history

This is the last annex for TRs which details the change history using the following table.

This table can be used for recording progress during the WG drafting process till TSG approval of this TR.
For TRs under change control, use one line per approved Change Request

Date: use format YYYY-MM

TSG # : use format RAN#55

CR: four digits, leading zeros as necessary

Rev: blank, or number (max two digits)

Cat: use one of the letters A, B, C, D, F

Subject/Comment: for TRs under change control, include full text of the subject field of the Change Request cover

New vers: use format n[n].n[n].n[n]

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	October 2017
	SA#95
	S4-171005
	
	
	
	Clarification on Device analysis for FS_MBMS_IoT part
	0.1.0

	October 2017
	SA#95
	S4-171022
	
	
	
	add clarification to use case 1 and add 2 new use cases
	0.1.0

	November 2017
	SA#96
	S4-171205
	
	
	
	Add support of Block-wise transfers in CoAP
	0.1.1

	November 2017
	SA#96
	S4-171206
	
	
	
	Add file repair using CoAP
	0.1.1

	November 2017
	SA#96
	S4-171323
	
	
	
	Add Profile definition
	0.1.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Application

Requests/Responses

Messages

DTLS

CoAP

UDP

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

The Constrained Application Protocol (CoAP)

Piggybacked response

Separated response

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP Client CoAP Server

CON [0xbc90]

GET/Temperature

(Token 0x71)

ACK [0xbc90]

…

CON [0x12bb]

2.05 Content

(Token 0x71)

“18.4 C”

ACK [0x12bb]

Request

Response

(w/ payload)

Response

(w/o payload)

image2.emf

CoAP Client CoAP Server

CON [0xbc90]

Get/Temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

“20.5 C”

Request

Response

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

CoAP Client

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

oleObject2.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

The Constrained Application Protocol (CoAP)

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP Client CoAP Server

NON [0xab88]

GET/Temperature

(Token 0x71)

NON [0x17d2]

2.05 Content

(Token 0x71)

“23.8 C”

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

CoAP includes two features (integrated layers)

Requests/Responses

Messages

CoAP message format – integrated layers

Version (Ver)

Ver=1 in RFC 7252

Type (T)

CON (0), NON (1), ACK (2), RST (3)

Supported message reliability – resend CON message after a timeout if no ACK/RST received

Token Length (TKL) and Token

Correlates a response with a corresponding request

Message ID

Supports message correlation – ACK/RST matched to CON/NON messages

ACK/RST message echo message ID 		 on CON/NON request

Supports duplicate detection

ACK/RST resent on duplicate			CON message ID

Silently ignores duplicate NON messages

Message ID must not be reused in EXCHANGE_LIFETIME

The Constrained Application Protocol (CoAP)

Piggybacked response

Message format

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

Ver T TKL Code Message ID

Token (if any, TKL bytes) ...

Options (if any) ...

1 1 1 1 1 1 1 1 Payload (if any) ...

image2.emf

LWM2M Client

(CoAP)

LWM2M

Bootstrap Server

(CoAP)

CON [0xbc90]

(Token 0x71)

{Bootstrap Request}

ACK [0xbc90]

(Token 0x71)

{Bootstrap Response}

Bootstrap

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

oleObject2.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

The Constrained Application Protocol (CoAP)

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP Client CoAP Server

CON [0xfc17]

ACK [0xfc17]

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

Internet

Constrained

environment

image1.png

image2.png

Constrained
environment

[« Internet >

