3GPP TS 26.247 V1.3.0 (2011-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects

Transparent end-to-end Packet-switched

Streaming Service (PSS);

Progressive Download and
Dynamic Adaptive Streaming over HTTP (3GP-DASH)

(Release 10)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

3GPP, 3GP-DASH
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2010, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

Introduction
6
1
Scope
7
2
References
7
3
Definitions and abbreviations
8
3.1
Definitions
8
3.2
Abbreviations
9
4
Overview
9
5
System Description
10
5.1
Overview
10
5.2
Service Access
10
6
Progressive Download over HTTP
11
6.1
General
11
6.2
Progressive Download
11
6.3
Profiles
11
7
3GPP Dynamic Adaptive Streaming over HTTP
11
8
DASH - Media Presentation
12
8.1
Introduction
12
8.2
Media Presentation Description
12
8.2.1
General
12
8.2.2
Schema
13
8.2.3
Reference Resolution
13
8.2.4
Alternative Base URLs
14
8.3
MPD Assembly
14
8.3.1
Introduction
14
8.3.2
Syntax and semantics
14
8.3.3
Processing
15
8.4
Hierarchical Data Model
15
8.4.1
General
15
8.4.2
Period
18
8.4.3
Representation and Groups
20
8.4.3.1
Overview
20
8.4.3.2
Common Group and Representation Attributes and Elements
20
8.4.3.3
Group
22
8.4.3.4
Representation
23
8.4.3.5
Sub-Representation
24
8.4.4
Segments and Segment Information
25
8.4.4.1
General
25
8.4.4.2
Combination Rules to obtain Derived SegmentInfo Element
28
8.4.4.3
Segment Information based on Derived SegmentInfo element
29
8.4.4.3.1
Overview
29
8.4.4.3.2
Initialisation Segment Information
30
8.4.4.3.3
Media Segment Information
30
8.4.4.4
Template-based Segment URL Construction
31
8.5
MPD Update
32
8.5.1
General
32
8.5.2
Media Presentation Description Delta
32
8.6
Additional Descriptors
33
8.6.1
Introduction
33
8.6.2
Program Information
34
8.6.3
Content Descriptors
34
8.6.3.1
General
34
8.6.3.2
Content Protection
35
8.6.4
Trick Mode Description
35
9
DASH - Usage of 3GP File Format
36
9.1
Introduction
36
9.2
Segment Types and Formats
36
9.2.1
Segment Types
36
9.2.2
Initialisation Segment Format
37
9.2.3
Media Segment Format
37
9.2.4
Self-Initialising Media Segment Format
37
9.3
Usage on Server and Client
38
9.4
Media Presentation Authoring Rules for specific MPD flags
38
9.4.1
General
38
9.4.2
Segment Alignment
38
9.4.3
Bitstream Switching
38
9.4.4 Sub-Representation
38
10
Quality-of-Experience for DASH
39
10.1
General
39
10.2
QoE Metric Definitions and Measurement Framework
39
10.2.1
Introduction
39
10.2.2
MPD Fetch Event
39
10.2.3
Initialisation Segment Fetch Event
40
10.2.4
Representation Switch Event
40
10.2.5
Client State
40
10.2.6
Average Throughput
41
10.2.7
Average Segment Fetch Duration
41
10.2.8
Download Jitter
41
10.2.8
Inactivity Time
41
10.2.9
Resource Not Accessible
42
10.2.10
Buffer Level
42
10.2.11
Rebuffering Event
42
10.2.12
Audio Metrics
42
10.2.13
Video Metrics
43
10.2.14
QoE Metrics and OP Summary
43
10.3 Report Format
44
10.4 Metrics Feedback over HTTP
46
11
3GP-DASH: Profiles
47
11.1
General
47
11.2
3GPP Adaptive HTTP Streaming (Release-9 AHS)
47
11.2.1
Introduction
47
11.2.2
Media Codecs
47
11.2.3
Content Protection
48
11.2.4
Transport Security
48
11.3
3GP-DASH Release-10 Profile
48
11.3.1
Introduction
48
Annex A
Client Behaviour
49
A.1
Introduction
49
A.2
Overview
49
A.3
Segment List Generation
50
A.3.1
General
50
A.3.2
Template-based Generation of Media Segment List
50
A.3.3
Playlist-based Generation of Media Segment List
51
A.3.4
Media Segment List Restrictions
52
A.4
Seeking
52
A.5
Support for Trick Modes
53
A.6
Switching Representations
53
A.7
Reaction to Error Codes
53
A.8
Encoder Clock Drift Control
54
Annex B Media Presentation Description Schema
55
Annex C (informative): MPD Examples
58
C.1 On-Demand Service
58
C.2 Live Service
58
C.3 XLink
58
C.4 MPD Deltas
58
Annex D (informative): Guidelines for Adaptive HTTP Streaming
61
D.1
Content-Preparation Modes
61
D.1.1
Introduction
61
D.1.2
Static Mode
62
D.1.3
Dynamic Mode
62
A.2
Mapping MPD structure and semantics to SMIL
63
A.2.1
General
63
A.2.2
Examples
65
A.2.2.1
Example 1: MPD for on-demand content with multiple Periods and alternate Representations
65
A.2.2.2
Example 2: MPD for live content
66
Annex E: ISO base media file format extensions for 3GPP DASH support
67
E.1 Introduction
67
E.2 Level Assignment Box
67
E.2.1
Definition
67
E.2.2
Syntax
68
E.2.3
Semantics
68
E.3
Subsegment Index Box
68
E.3.1
Definition
68
E.3.2
Syntax
69
E.3.3
Semantics
69
E.4
Temporal level sample grouping
69
E.4.1
Definition
69
E.4.2
Syntax
69
E.4.3
Semantics
70
E.5
Producer reference box
70
E.5.1
Definition
70
E.5.2
Syntax
70
E.5.3
Semantics
70
Annex X (informative): Change history
71

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

The 3GPP transparent end-to-end packet-switched streaming service (PSS) specification consists of seven 3GPP TSs: 3GPP TS 22.233 [1], 3GPP TS 26.233 [2], 3GPP TS 26.234 [3], 3GPP TS 26.244 [4], 3GPP TS 26.245 [5], 3GPP TS 26.246 [6], and the present document.

The TS 22.233 contains the service requirements for the PSS. The TS 26.233 provides an overview of the PSS. The TS 26.234 provides the details of the protocols and codecs used by the PSS. The TS 26.244 defines the 3GPP file format (3GP) used by the PSS and MMS services. The TS 26.245 defines the Timed text format used by the PSS and MMS services. The TS 26.246 defines the 3GPP SMIL language profile. The present document defines Progressive Download and Dynamic Adaptive Streaming over HTTP.

The TS 26.244, TS 26.245 and TS 26.246 start with Release 6. Earlier releases of the 3GPP file format, the Timed text format and the 3GPP SMIL language profile can be found in TS 26.234.

The TS 26.cde started with Release 10. Earlier releases of Progressive Download and Dynamic Adaptive Streaming over HTTP can be found in TS 26.234.
Introduction

Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) collects a set of technologies how progressive download and adaptive streaming of continuous may be exclusively carried out over HTTP.
1
Scope

The present document specifies Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH). This specification is part of Packet-switched Streaming Service (PSS). HTTP-based progressive download and adaptive streaming are separated from TS 26.234 to differentiate from RTP-based streaming that is maintained TS 26.234. HTTP-based progressive download and adaptive streaming may be deployed independently from RTP-based PSS, for example by using standard HTTP/1.1 servers for hosting the services.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 22.233: "Transparent End-to-End Packet-switched Streaming Service; Stage 1".

[2]
3GPP TS 26.233: "End-to-end transparent streaming service; General description".

[3]
3GPP TS 26.234: "Transparent end-to-end packet switched streaming service (PSS); Protocols and codecs".

[4]
3GPP TS 26.244: "Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP)".

[5]
3GPP TS 26.245: "Transparent end-to-end packet switched streaming service (PSS); Timed text format".

[6]
3GPP TS 26.246: "Transparent end-to-end packet switched streaming service (PSS); 3GPP SMIL Language Profile".

[7]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[8]
IETF STD 0007: "Transmission Control Protocol", Postel J., September 1981.

[9]
IETF RFC 2616: "Hypertext Transfer Protocol – HTTP/1.1", Fielding R. et al., June 1999.

[10]
Open Mobile Alliance, Service and Content Protection for Mobile Broadcast Services, Approved Version 1.0, February 2009.

[11]
ISO/IEC 14496-12:2005 | 15444-12:2005: "Information technology – Coding of audio-visual objects – Part 12: ISO base media file format" | "Information technology – JPEG 2000 image coding system – Part 12: ISO base media file format".

[12]
IETF RFC 2818: "HTTP Over TLS", E. Rescorla, May 2000.

[13]
IETF RFC 5646: "Tags for Identifying Languages", A. Phillips, M. Davis, September 2009.

[14]
IETF RFC 4281: "The Codecs Parameter for "Bucket" Media Types", R. Gellens, D. Singer, P. Frojdh, November 2005.

[15]
Open Mobile Alliance: "DRM Content Format V 2.0".
[16]
Open Mobile Alliance: "DRM Content Format V 2.1".
[17]
IETF RFC 3986: Uniform Resource Identifiers (URI): Generic Syntax, Berners-Lee T., Fielding R. and Masinter L., January 2005.

[18]
IETF RFC 1952: GZIP file format specification version 4.3", P. Deutsch, May 1996.

[19]
IETF RFC 1738: Uniform Resource Locators (URL), December 1994.
[20]
W3C XLINK: XML Linking Language (XLink) Version 1.1, W3C Recommendation 06, May 2010.
[21]

IETF RFC 3406: Uniform Resource Names (URN) Namespace Definition Mechanisms, October

2002.
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [7] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [7].

continuous media: media with an inherent notion of time. In the present document speech, audio, video, and timed text.
HTTP-URL: a URI with a fixed scheme of “http://” or https://.
media component: A media component is an encoded version of one individual media type such as audio, video or timed text.
media content: A set of media components, (e.g. audio, video, timed text) that have a common timeline as well as relationships one how they may be presented for example individually, jointly, or mutually exclusive. An example for a media content is a program or a movie.
media presentation: a structured collection of data that is accessible to the HTTP-Streaming Client.

media presentation description (MPD): contains information required by the HTTP-Streaming Client to construct appropriate URLs to access Segments and to provide the streaming service to the user.
Period: A period is a timely subset of the media presentation. The sequence of periods constitutes the media presentation. Periods are consecutive and non-overlapping.
representation access point (RAP): position in a media segment that is identified as being a position for which it is possible to start playback using only the information contained in the media segment from that position onwards (preceded by initialising with the initialisation segment, if any). It consists of a byte index, IRAP, and a presentation time, TRAP, related as follows

· TRAP is the earliest presentation time such that all access units with presentation time greater than or equal to TRAP can be correctly decoded using stream data starting at IRAP and no stream data before IRAP.

· IRAP is the greatest byte index in the stream such that all access units with presentation time greater than or equal to TRAP can be correctly decoded using stream data starting at IRAP and no stream data before IRAP.
Representation access points may coincide with random access points in certain media streams..
Representation: A structured collection of data which contains one or more media components with specific attributes, e.g. bandwidth, language, resolution etc.
Segment: a unit of media that can be referenced by an HTTP-URL, possibly restricted by a byte range, included in the MPD.
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [x] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [7].

3GP
3GPP file format

AVC
Advanced Video Coding

DRM
Digital Rights Management

HSD
HTTP Streaming and Download

HTTP
Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol Secure

MPD
Media Presentation Description

MPEG-2 TS
Moving Picture Experts Group Transport Stream

MIME
Multipurpose Internet Mail Extensions

OMA
Open Mobile Alliance

PDCF
Packetized DRM Content Format

PSS
Packet-switched Streaming Service

RAP
Representation access Point

RFC
Request For Comments

RTP
Real-time Transport Protocol

SMIL
Synchronised Multimedia Integration Language

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

UTC
Universal Time Coordinated

UTF-8
Unicode Transformation Format (the 8-bit form)

W3C
WWW Consortium

XML
eXtensible Markup Language

XSLT
eXtensible Stylesheet Language Transformation
4
Overview
The present document specifies Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) for continuous media. The features are separated from the umbrella specification TS 26.234 [3] to differentiate from RTP-based streaming that is specified and maintained in TS 26.234. Services relying exclusively on these features may be deployed independently from RTP-based PSS servers, for example by using standard HTTP/1.1 servers for hosting the services.
Editor's Note: Updates are necessary
The specification covers the following aspects:
· System Description: describes the relationship to the PSS architecture and refines the architecture and interfaces that are defined in this specification.

· Progressive Download over HTTP.

· Framework for Adaptive Streaming over HTTP: describes the data model of a Media Presentation. It also provides an overview on elements and attributes that may be used to describe components and properties of a media presentation in a Media Presentation Description (MPD).

· 3GPP Adaptive HTTP Streaming: Specifies the Media Presentation framework for 3GPP Adaptive HTTP Streaming including the Media Presentation Description format, the file and segment formats, codecs and other mechanisms.

· Annex A provides implementation guidelines for Adaptive Streaming Services.

5
System Description

5.1
Overview
Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) enables to provide services to deliver continuous media content over HTTP in a sense that all resources that compose the service are accessible through HTTP-URLs and the HTTP/1.1 protocol as specified in RFC 2616 [9] may be used to deliver the metadata and media data composing the service. This enables that standard HTTP servers and standard HTTP caches can be used for hosting and distributing continuous media content. Figure 1 shows the architecture for services using progressive download and Figure 2 shows the architecture for services using 3GP-DASH.

This specification only deals with the specification of interfaces between the Client and the Server. Specifically, it defines the formats that may be delivered exclusively over the HTTP interface to enable progressive download and streaming services.

[image: image3.png]
Figure 1: Architecture for Progressive Download over HTTP
Services using the features defined described in this specification may be deployed within PSS as specified in TS 26.234. In this case the Download/Adaptive Streaming Server may be a sub-function of the PSS server and the Download/Adaptive Streaming Client may be a sub-function of the PSS client.

[image: image4.png]
Figure 2: Architecture for 3GP-DASH
Services using the features defined in this specification may also be deployed independent of the PSS servers and clients. In this case the Progressive Download and Adaptive Streaming Client shall support the formats and codecs as according to this specification.

Access to services based on the features defined in this document is introduced in clause 5.2.

The protocol support for services using the features defined in this specification is provided in clause 5.3.

Clients supporting progressive download-based services shall support the features and formats as specified in clause 6 of this specification.

Clients supporting 3GP-DASH shall support the features and formats as specified in clause 8 of this specification.

5.2
Service Access

Service access refers to the method by which a Client initially accesses the service. Service access for services based in the specification can be achieved e.g. by a Media Presentation Description or just an URL to the media file.

The service access URL can be made available to a client in many different ways. Clients supporting services based on the features in this specification shall be able to access services that are provided through an HTTP-URL. However, it is out of the scope of this specification to mandate any specific mechanism. A preferred way may be to embed URLs for service establishment within HTML pages.
Editor's Note: Refer to Figure 3
[image: image5.png]
Figure 3: Overview of the protocols stack
6
Progressive Download over HTTP

6.1
General

As an alternative to conventional streaming, a Client may download, typically through HTTP, a media file that encapsulates continuous media and may play the media from the local storage. A PSS client shall support progressive download and playout of 3GP files [4] as specified in the remainder of this clause.

The media file encapsulating the continuous media is accessed directly by issuing one or more HTTP GET or partial GET requests to the referenced media file. An example of a valid URL is http://example.com/morning_news.3gp.
Editor’s Note: the URL does not work.
6.2
Progressive Download

Progressive download uses normal HTTP download using HTTP GET or partial GET requests. The differences between regular download and Progressive Download are that 1) the content may be authored as Progressively downloadable, and 2) the terminal recognises that the content is suitable for progressive download.
A client downloading continuous media may decide to start playout of the encapsulated media data before the download of the media file is completed.

6.3
Profiles

The following profiles of the 3GP file format in TS 26.244 [4] shall be supported by clients supporting Progressive Download over HTTP:

-
Basic profile, and

-
Progressive-download profile.
7
3GPP Dynamic Adaptive Streaming over HTTP

The 3GPP Dynamic Adaptive Streaming over HTTP (3GP-DASH) specified in this section provides streaming services over HTTP. This enables delivering content from standard HTTP servers to an HTTP-Streaming client and enables caching content by standard HTTP caches.

Figure 7.1 shows the architecture for 3GP-DASH. This document only deals with the specification of interface 1 between the HTTP-Streaming Client and the HTTP-Streaming Server. All other interfaces are out-of-scope of this specification.
Editor's Note: ADD EXPLANATION OF SPECIFICATION (ADD SOME ASPECTS FROM MPEG DASH)
It is assumed that the HTTP-Streaming Client has access to a Media Presentation Description (MPD). An MPD provides sufficient information for the HTTP-Streaming Client to provide a streaming service to the user by sequentially downloading media data from an HTTP server and rendering the included media appropriately.
[image: image6.png]
Figure 7.1: System Architecture for 3GP-DASH
Editor's Note: update this part to provide more details

To initiate the streaming service to the user, the HTTP Streaming Client establishes a Media Presentation by downloading the relevant metadata and subsequently the media data. The Media Presentation is defined in clause 7.2. The Media Presentation Description is provided in clause 7.3. Guidelines on the Client Behaviour are presented in clause 7.5.
8
DASH - Media Presentation
8.1
Introduction

A Media Presentation is a structured collection of data that is accessible to a DASH Client to provide a streaming service to the user.

A Media Presentation is described in a Media Presentation Description (MPD) including any possible updates of the MPD. The MPD is defined in clause 8.2 and the update mechanisms in 8.5. Assembly of a fragmented MPD is defined in 8.3. The data model that constitutes a media presentation is defined in 8.4 and some additional elements in the MPD that describe the content are provided in 8.6.
8.2
Media Presentation Description
8.2.1
General
The Media Presentation Description (MPD) is a document that contains metadata required by a DASH Client to construct appropriate HTTP-URLs to access Segments and to provide the streaming service to the user. HTTP-URLs may be absolute or relative. If relative then reference resolution as defined in 8.2.3 shall be applied. Handling of alternative base URLs is addressed in 8.2.4.
The MPD is an XML-document that is formatted according to the XML schema provided in clause 8.2.2.
The MPD shall be authored such that, after unrecognized XML attributes or elements are removed, the result is a valid XML document formatted according to the XML schema provided in section 8.2.2 and that complies with this standard.

Editor's Note: check the below sentence

The MIME type of the MPD shall be “application/dash+xml”.
The delivery of the MPD is not in scope of this specification. If the MPD is delivered over HTTP, then the MPD may be content encoded for transport, as described in [18] using the generic GZip algorithm RFC 1952 [18]. DASH clients shall support GZip content decoding of the MPD when delivered over HTTP (GZIP RFC 1952 [18], clause 9).
An adaptive HTTP streaming client shall ignore any XML attributes or elements in a valid XML document formatted according to the XML schema provided in clause 8.2.2 that it does not recognize. If attributes or elements not defined in the schema in clause 8.2.2 are added to the MPD in the same namespace, the MPD shall be authored such that DASH client gets a valid and functional MPD

8.2.2
Schema

The XML schema of the MPD is provided below. Specific types, elements and attributes are introduced in the remainder of this section. The complete MPD schema is provided in Annex B of this specification. In case of any inconsistencies the schema in Annex B takes precedence over the XML-syntax snippets provided in this section. For the normative schema refer to the schema in Annex B.

	<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace=" urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009"

attributeFormDefault="unqualified"

elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009">

<xs:import namespace="http://www.w3.org/1999/xlink" schemaLocation="xlink.xsd"/>

<xs:annotation>

<xs:appinfo>Media Presentation Description</xs:appinfo>

<xs:documentation xml:lang="en">

This Schema defines Media Presentation Description for 3GPP DASH.

</xs:documentation>

</xs:annotation>

<!-- MPD: main element -->

<xs:element name="MPD" type="MPDtype"/>

<!-- the remaining types, elements attributes are defined in the below -->

...

</xs:schema>

8.2.3
Reference Resolution

URLs at each level of the MPD are resolved with respect to the BaseURL element specified at that level of the document or the level above in the case of resolving base URLs themselves (the document “base URI” as defined in RFC 3986 [16], Section 5.1 is considered to be the level above the MPD level). If only relative URLs are specified and the document base URI cannot be established according to RFC 3986 then the MPD should not be interpreted.

In addition to the document level, base URL information may present on the following levels:

· On MPD level in MPD.BaseURL element, see 8.2.1.

· On Period level in Period.SegmentInfoDefault.BaseURL element. For details refer to 8.4.2.

· On Group level in Group.SegmentInfoDefault.BaseURL element. For details refer to 8.4.3.3.

· On Representation level in SegmentInfo.BaseURL. For details refer to 8.4.3.4.

8.2.4
Alternative Base URLs

If alternative base URLs are provided through the BaseURL element at any level, this means that the identical segments are accessible at multiple locations. In the absence of other criteria, the DASH Client may use the first base URL as “base URI”. The DASH Client may use base URLs provided in the BaseURL element as “base URI” and may implement any suitable algorithm to determine which URLs it uses for requests.
8.3
MPD Assembly

8.3.1
Introduction

This Subclause defines a mechanism for referencing a remote DASH element from within a local MPD. Therefore, a subset of W3C XLINK simple links is defined as follows by

· restricted syntax and semantics in subsection 8.3.2, and

· the processing model in 8.3.3.

8.3.2
Syntax and semantics

Table 1 provides the XLINK attributes that are used in this standard.

Table 0\IF >= 1 "A."

SEQ Table
1
: XLINK attributes used in this standard

	Attribute
	Comments and Usage

	@xlink:type
	Identifies the type of W3C XLINK being used.

In the context of standard, all references shall be W3C XLINK simple links. As the attribute @xlink:type is optional with fixed setting @xlink:type="simple" the type of the link shall not be specified.

	@xlink:href
	Identifies the remote Element by URI as defines in IETF RFC 3986.

In the context of this standard, URI shall exclusively be HTTP-URLs.

	@xlink:show
	Defines the desired behaviour of a remote DASH element once dereferenced from within a MPD as defined in W3C XLINK.

In the context of standard, as the attribute @xlink:show is optional with fixed setting @xlink:show="embed" the show attribute of the link should not be specified.

NOTE
In W3C XLINK, the behaviour of conforming XLink applications when embedding XML-based ending resources, such as a remote DASH element, is not defined. Thus, the actual behaviour for this standard is defined in 8.3.3.

	@xlink:actuate
	Defines the desired timing of dereferencing a remote DASH-Element from within a MPD as defined in W3C XLINK. The following attribute values are allowed in this standard:

1) onLoad: an application should dereference the remote MPD element immediately on loading the MPD.

2) onRequest (default): formally, an application should dereference the remote DASH-element only on a post-loading event triggered for the purpose of dereferencing. In the context of this specification, the application dereferences the link only for those resources it needs (or anticipates it probably will need). Examples include de-referencing a link in a period element when the play-time is expected to enter that period, de-referencing a representation group link when it appears to contain representations that will be needed, and so on.

The restricted schema for XLINK in the context of the standard is referred to as "xlink.xsd" in any schema in this standard and defined is as follows:

	<?xml version='1.0' encoding='UTF-8'?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.w3.org/1999/xlink"

 xmlns:xlink="http://www.w3.org/1999/xlink">
 <xs:attribute name="type" type="xs:token" fixed="simple"/>
 <xs:attribute name="href" type="xlink:hrefType"/>
 <xs:simpleType name="hrefType">
 <xs:restriction base="xs:anyURI"/>
 </xs:simpleType>
 <xs:attribute name="show" type="xs:token" fixed="embed"/>
 <xs:attribute name="actuate" type="xlink:actuateType" default="onRequest"/>
 <xs:simpleType name="actuateType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="onLoad"/>
 <xs:enumeration value="onRequest"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

8.3.3
Processing

The following rules apply to the processing of URI references within @xlink:href:

3) URI references to elements that cannot be resolved shall be treated as invalid references.

4) URI references to elements that are inappropriate targets for the given reference shall be treated as invalid references (see list below for appropriate targets).

5) URI references that directly or indirectly reference themselves are treated as invalid circular references.

The elements referenced from within an MPD (referred to as appropriate targets) shall be embedded into the MPD by applying the following rules:

6) Attributes shall be added to the element of the MPD that contains @xlink:href merging with existing attributes. If the same attributes are present in both MPD and remote DASH element, the attribute values should be the same. If they are not identical, then the value of the attribute of the MPD takes precedence over the value of the attribute in the remote DASH element.

7) The element referenced by the @xlink:href shall conform to the type definition of the element in the MPD that contains @xlink:href.

8) All XLINK attributes shall be removed after dereferencing is completed.

9) Only a single element shall be included in a remote DASH element.
8.4
Hierarchical Data Model

8.4.1
General

A Media Presentation is described in the MPD element that is contained in an MPD document formatted as defined in .

A Media Presentation consists of

· A sequence of one or more Periods described in 8.4.2.

· Each Period contains one or more Groups described in 8.4.3.3.

· Each Group contains one or more Representations from the same media content. Representations are described in 8.4.3.4.

· Each Representation consists of one or more Segments. Segment Information is introduced in 8.4.4. Segments contain media data and/or metadata to access, decode and present the included media content.

This MPD element provides descriptive information that enables a client to choose Representations. For doing so, it provides descriptions of the Representations that may also be deduced by inspecting this Representation if available partially or in its entirety to the client. However, actual playback of the Representations is not controlled by the MPD information. Playback is controlled by the media engine operating on the media data in the usual way.

The Media Presentation timeline is defined by the concatenation of the timeline of each Period.

NOTE
The playout procedure of the media may need to be adjusted at the end of the preceding Period to match the start time of the new Period as there may be small overlaps or gaps with a Representation at the end of the preceding Period.

The timeline in each Period is common to all Representations.
The summary of the semantics of the attributes and elements within an MPD element are provided in Table 1. The XML-syntax of the MPD element is provided in Table 2.
Table 0\IF >= 1 "A."

SEQ Table
1
: Semantics of MPD element
	Element or Attribute Name
	Use
	Description

	MPD
	1
	The root element that carries the Media Presentation Description for a Media Presentation.

	
	@profile
	O
	A space delimited list of Media Presentation profiles.

	
	@type
	OD

default: OnDemand
	“OnDemand” or “Live”.

Indicates the type of the Media Presentation. Currently, on-demand and live types are defined.

	
	@availabilityStartTime
	CM

Must be present for type=”Live”
	Gives the earliest availability time (in UTC) for any Segment in the Media Presentation.

For @type=“Live” this attribute shall be present. In this case it gives the anchor for the computation of the earliest availability time (in UTC) for any Segment in the Media Presentation.

For @type=“OnDemand” all Segments described in the MPD shall be available. If not present, all Segments described in the MPD shall be available.

	
	@availabilityEndTime
	O
	Gives the earliest availability end time (in UTC). After this time, the Media Presentation described in this MPD is no longer guaranteed to be available. When not present, the value is unknown.

	
	@mediaPresentationDuration
	O

	Specifies the duration of the entire Media Presentation. If the attribute is not present, the duration of the Media Presentation is unknown.

	
	@minimumUpdatePeriodMPD
	O
	Provides the minimum period the containing MPD document is updated. If not present the minimum update period is assumed to be infinite.

	
	@minBufferTime
	O

	Provides the minimum amount of initially buffered media that is needed to ensure smooth playout provided that each Representation is continuously delivered at or above the value of its @bandwidth attribute. If not present, each Period element shall contain the @minBufferTime attribute.

	
	@timeShiftBufferDepth
	O

	Indicates the duration of the time shifting buffer that is guaranteed to be available for a Media Presentation with type 'Live'. When not present, the value is unknown. This value of the attribute is undefined if the @type attribute is equal to ‘OnDemand’

	
	@suggestedPresentationDelay
	O
	indicates a fixed delay offset in time from the existing signalled UTC availability times of each media segment that is suggested to be used by clients to enable synchronouous presentation of the media presentation with clients that also use this attribute. This value of the attribute is undefined if the @type attribute is equal to ‘Live’

	
	ProgramInformation
	0…1
	Provides descriptive information about the program. For more details refer to the description in 8.6.2.

	
	DeltaSupport
	0…N
	If present, this element indicates that MPD delta files are supported by the server. For more details refer to the description in 8.5.2.

	
	Period
	1…N
	Provides the information of a Period. For more details refer to the description in 8.4.2.

	
	BaseURL
	0…N
	A Base URL that can be used for reference resolution and alternative URL selection. For more details refer to the description in 8.2.3 and 8.2.4.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>…<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @

Table 0\IF >= 1 "A."

SEQ Table
2
: Syntax of MPD element
	
<!-- MPD Type -->

<xs:complexType name="MPDtype">

<xs:sequence>

<xs:element name="ProgramInformation" type="ProgramInformationType" minOccurs="0"/>

<xs:element name="Period" type="PeriodType" maxOccurs="unbounded"/>

<xs:element name="BaseURL" type="BaseURLType" minOccurs="0" maxOccurs="unbounded"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="profiles" type="URIVectorType"/>

<xs:attribute name="type" type="PresentationType" default="OnDemand"/>

<xs:attribute name="availabilityStartTime" type="xs:dateTime"/>

<xs:attribute name="availabilityEndTime" type="xs:dateTime"/>

<xs:attribute name="mediaPresentationDuration" type="xs:duration"/>

<xs:attribute name="minimumUpdatePeriodMPD" type="xs:duration"/>

<xs:attribute name="minBufferTime" type="xs:duration"/>

<xs:attribute name="timeShiftBufferDepth" type="xs:duration"/>

<xs:attribute name="suggestedPresentationDelay" type="xs:duration"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Type of presentation - live or on-demand -->

<xs:simpleType name="PresentationType">

<xs:restriction base="xs:string">

<xs:enumeration value="OnDemand"/>

<xs:enumeration value="Live"/>

</xs:restriction>

</xs:simpleType>

<!-- Supplementary URL to the one given as attribute -->

<xs:complexType name="BaseURLType">

<xs:simpleContent>

<xs:extension base="xs:anyURI">

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<!-- Type for space delimited list of URIs -->

<xs:simpleType name="URIVectorType ">

<xs:list itemType="xs:anyURI"/>

</xs:simpleType>

8.4.2
Period

A Media Presentation consists of one or more Periods. A Period is defined by Period element in the MPD element.
The attributes and elements contained in the Period element are provided in Table 3 along with their semantics. The XML syntax or the Period element is provided in Table 4.
For live services, the @start attribute of the first Period shall be present. For on-demand services the @start attribute of the first Period, if present, shall be zero. If not present a default value of zero is assumed.

Each Period has a conceptual start time PeriodStart in the Media Presentation that is relative to the start of the first Period. Period elements shall be physically ordered in the MPD file in increasing order of their PeriodStart time.

The PeriodStart time is determined as follows:

· If the attribute @start is present in the Period, then PeriodStart is identical to the value of this attribute and it overrides any possibly present prior @duration attribute information.

· If the @start attribute is absent, the previous Period element shall contain the @duration attribute. Then the start time of the new Period PeriodStart is determined as the sum of the start time of the previous Period PeriodStart and the value of the attribute @duration of the previous Period.

For live services, the sum of the PeriodStart value of the Period and the value of the attribute MPD@availabilityStartTime specifies the availability start time of the Period in UTC, in particular the first Media Segment of each Representation in this Period. It also serves as an anchor for the deriving the availability start time of any other Segment in the Period.

Each Period extends until the PeriodStart of the next Period, or until the end of the Media Presentation in the case of the last Period.

PeriodStart times reflect the actual time that should elapse after playing the media of all prior Periods in this Media Presentation.

Table 0\IF >= 1 "A."

SEQ Table
3
: Semantics of Period Element

	Element or Attribute Name
	Use
	Description

	
	Period
	1…N
	Provides the information for a single Period.

	
	
	@xlink:href
	O
	provides a reference to an external Period element

	
	
	@xlink:actuate
	O

default:
onRequest
	provides the processing instructions, which can be either "onLoad" or "onRequest".

This attribute must not be present if the @xlink:href attribute is not present

	
	
	@id
	O
	Provides a unique identifier for this Period within the Media Presentation. The @id of the Period shall remain unchanged over an MPD update.

	
	
	@start
	O
	Provides the start time of the Period.

	
	
	@duration
	O
	Provides the duration of the Period.

	
	
	@segmentAlignmentFlag
	OD

Default:
false
	When set to ‘true’, indicates that all presentation start and end times of media components of any particular media type are temporally aligned in all Segments, except possibly the last one, across all Representations with the same value of the @duration attribute on Representation level in this Period.

	
	
	@bitstreamSwitchingFlag
	OD

Default:
false
	When this flag is set to ‘true’, the concatenation of any Initialisation Segment within the same Group in a Period, if present, with all consecutive Media Segments from any Representation within this same Group, starting with the first Media Segment, results in a syntactically valid bitstream (according to the specific bitstream format) that is also semantically correct (i.e. if the concatenation is played, the media content within this Period is correctly presented).

This flag shall not be set to ‘true’ when @segmentAlignmentFlag is set to ‘false’.

More detailed rules may be defined for specific Initialisation and Media Segment formats.

	
	
	SegmentInfoDefault
	0...1
	Provides default Segment information about Segment durations and, optionally, URL construction.

For more details see 8.4.4.

	
	
	Group
	0...N
	This element contains a description of a Group.

For more details see subsection 8.4.3.3.

	
	
	Representation
	0…N
	This element contains a description of a Representation.

For more details see subsection 8.4.3.4.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
4
: Syntax of Period Element
	
<!-- Period of a presentation -->

<xs:complexType name="PeriodType">

<xs:sequence>

<xs:element name="SegmentInfoDefault" type="SegmentInfoDefaultType" minOccurs="0"/>

<xs:element name="Representation" type="RepresentationType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Group" type="GroupType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute ref="xlink:href"/>

<xs:attribute ref="xlink:actuate" default="onRequest"/>

<xs:attribute name="start" type="xs:duration"/>

<xs:attribute name="id" type="xs:string" />

<xs:attribute name="duration" type="xs:duration"/>

<xs:attribute name="minBufferTime" type="xs:duration"/>

<xs:attribute name="segmentAlignmentFlag" type="xs:boolean" default="false"/>

<xs:attribute name="bitStreamSwitchingFlag" type="xs:boolean" default="false"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

8.4.3
Representation and Groups

8.4.3.1
Overview

Each Period consists of one or more Groups, which each consists of one or more Representations.

Groups are described by the Group element as defined in subsection 8.4.3.3 and are contained in the Period element.

Representations are described by the Representation element as defined in 8.4.3.4 contained in the Group element.

In case no Group element is present in a Period, Representation elements may be directly contained in a Period element. In this case a Representation shall be assigned to a Group by the @group attribute on both the Representation and the Group.

Representations are described in the same Group to signal that they are alternatives to each other and typically contain different encoded versions of the same source material. In this typical case, the ability for seamless switching is a desired feature. The media content within one Period is represented by:

10) either one Representation from Group 0, if present,

11) or the combination of at most one Representation from each non-zero Group.

Groups and Representations share some common elements and attributes as collected in 8.4.3.2.

For future releases or proprietary extensions, if different semantic or new non-compatible features are defined, such that HTTP Streaming clients can not properly render a Representation ignoring those extensions, then a new Representation element shall be defined, e.g. a new element Representation2010. In this example, an MPD may mix both Representation and Representation2010 elements.
8.4.3.2
Common Group and Representation Attributes and Elements

The elements Group and Representation have assigned common attributes and elements.

The attributes @width, @height, @lang, @mimeType, @group, @startWithRAP, and @frameRate may be present in all three elements. The semantics of these attributes are provided Table 5. The XML-syntax is provided in Table 6.
If a Representation element is contained in a Group element, then an attribute from the above list that is specified in both the Representation element and the containing Group element shall have the same value in both.

The @group attribute, when provided in a Group element, identifies the Group.

When provided in a Representation element the @group attribute identifies the Group to which the Representation belongs. If not provided for a Representation element which is not included within a Group element then the Representation shall be assumed to be in Group zero.

Table 0\IF >= 1 "A."

SEQ Table
5
: Common Group and Representation and Attributes and Elements

	Element or Attribute Name
	Use
	Description

	
	
	Group, Representation, SubRepresentation
	
	Element

	
	
	
	@width
	O
	Specifies the horizontal visual presentation size of the video media type in an alternative Representation.

	
	
	
	@height
	O
	Specifies the vertical visual presentation size of the video media type in an alternative Representation.

	
	
	
	@frameRate
	O
	Specifies the output frame rate or the output field rate of the video media type in the representation for progressive or interlaced video, respectively. If the frame or field rate is varying, the value is the average frame or field rate over the entire duration of the representation. In case of a multiview complementary Representation, the value indicates the frame or field rate of a single view.

	
	
	
	@lang
	O
	Declares the language code(s) for this Representation according to IETF RFC 5646 [13].

Note, multiple language codes may be declared as a white-space separated list and indicate that the representation may suit a preference for any of the indicated languages. For a full indication of what media is offered under each language, the Initialisation Segment or a Media Segment may have to be accessed.

	
	
	
	@mimeType
	M
	Gives the MIME type of the Initialisation Segment, if present; if the Initialisation Segment is not present it provides the MIME type of the first Media Segment.

Where applicable, this MIME type shall include the codec parameters for all media types. The codec parameters shall also include the profile and level information where applicable.

	
	
	
	@group
	O
	Specifies the group.

	
	
	
	@startWithRAP
	O
	When 'true', indicates that all Segments in the Representation start with a RAP (both in terms of data and in terms of presentation time). The presentation time of the RAP shall either be provided explicitly by the Segment Index or, if the @segmentAlignmentFlag is true, may be inferred from the presentation time of the last sample of the previous segment.

	
	
	
	ContentProtection
	0 … N
	Provides information about the use of content protection for this Representation or Group of Representation.

When not present the content is neither encrypted nor DRM protected.

When multiple elements are present, then the successful processing of one of the elements is sufficient to access the described Representations.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>..<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
6
: XML-Syntax of Common Group and Representation and Attributes and Elements
	
<!-- RepresentationBase type; extended by other Representation-related types -->

<xs:complexType name="RepresentationBaseType">

<xs:sequence>

<xs:element name="ContentProtection" type="ContentDescriptorType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="group" type="xs:unsignedInt"/>

<xs:attribute name="width" type="xs:unsignedInt"/>

<xs:attribute name="height" type="xs:unsignedInt"/>

<xs:attribute name="lang" type="LangVectorType"/>

<xs:attribute name="mimeType" type="xs:string"/>

<xs:attribute name="startWithRAP" type="xs:boolean"/>

<xs:attribute name="frameRate" type="xs:double"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Type for space delimited list of strings -->

<xs:simpleType name="StringVectorType ">

<xs:list itemType="xs:string"/>

</xs:simpleType>

 <!-- Type for space delimited list of language codes -->

<xs:simpleType name="LangVectorType">

<xs:list itemType="xs:language"/>

</xs:simpleType>

8.4.3.3
Group
Groups are described by the Group element. This element supports the description of ranges for the @bandwidth, @width, @height and @frameRate attributes defined for the Representation element, which provide a summary of all values for all the Representations within this Group. The Representations associated with a Group element shall not contain values outside the ranges documented for that Group.

The semantics of the attributes and elements within a Group element are provided in Table 7. The XML-syntax of the Period type is provided in Table 8.

Table 0\IF >= 1 "A."

SEQ Table
7
 — Semantics of Group element
	Element or Attribute Name
	Use
	Description

	
	
	Group
	
	Group description

	
	
	
	@xlink:href
	O
	reference to external Group element

	
	
	
	@xlink:actuate
	OD

default:
“onRequest”
	provides the processing instructions, which can be either "onLoad" or "onRequest".

	
	
	
	CommonAttributesElements
	-
	Common Representation and Group Attributes and Elements (see section 8.4.3.2)

	
	
	
	@minBandwidth
	O
	Minimum bandwidth value in all Representations in this Group.

	
	
	
	@maxBandwidth
	O
	Maximum bandwidth value in all Representations in this Group.

	
	
	
	@minWidth
	O
	Minimum width value in all Representations in this Group.

	
	
	
	@maxWidth
	O
	Maximum width value in all Representations in this Group.

	
	
	
	@minHeight
	O
	Minimum height value in all Representations in this Group.

	
	
	
	@maxHeight
	O
	Maximum height value in all Representations in this Group.

	
	
	
	@minFrameRate
	O
	Minimum frame rate value in all Representations in this Group.

	
	
	
	@maxFrameRate
	O
	Maximum frame rate value in all Representations in this Group.

	
	
	
	@segmentAlignmentFlag
	O
	If given, overrides Period@segmentAlignmentFlag in and specifies the value for all Representations in this Group.

	
	
	
	@bitStreamSwitchingFlag
	O
	If given, overrides Period@bitStreamSwitchingFlag and specifies the value for all Representations in this Group.

	
	
	
	SegmentInfoDefault
	0...1
	If present, replaces any possibly present Period@SegmentInfoDefault. For more details refer to section 8.4.4.

	
	
	
	Representation
	0… N
	See subsection 8.4.3.4.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory, F=Fixed.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @, List of elements and attributes is in italics bold

Table 0\IF >= 1 "A."

SEQ Table
8
 — XML-Syntax of Group element
	

<!-- Group to contain information common to a group;

extends RepresentationBaseType -->

<xs:complexType name="GroupType">

<xs:complexContent>

<xs:extension base="RepresentationBaseType">

<xs:sequence>

<xs:element name="Representation" type="RepresentationType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SegmentInfoDefault" type="SegmentInfoDefaultType" minOccurs="0"/>

</xs:sequence>

<xs:attribute ref="xlink:href"/>

<xs:attribute ref="xlink:actuate" default="onRequest"/>

<xs:attribute name="minBandwidth" type="xs:unsignedInt"/>

<xs:attribute name="maxBandwidth" type="xs:unsignedInt"/>

<xs:attribute name="minWidth" type="xs:unsignedInt"/>

<xs:attribute name="maxWidth" type="xs:unsignedInt"/>

<xs:attribute name="minHeight" type="xs:unsignedInt"/>

<xs:attribute name="maxHeight" type="xs:unsignedInt"/>

<xs:attribute name="minFrameRate" type="xs:double"/>

<xs:attribute name="maxFrameRate" type="xs:double"/>

<xs:attribute name="segmentAlignmentFlag" type="xs:boolean"/>

<xs:attribute name="bitStreamSwitchingFlag" type="xs:boolean"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

8.4.3.4
Representation

A Representation is one of the alternative choices of the media content or a subset thereof typically differing by the encoding choice, e.g. by bitrate, resolution, language, codec, etc.

A Representation starts at the start of the Period PeriodStart and continues to the end of the Period, i.e. the start of the next Period or the end of the Media Presentation.

A Representation consists of one or more Segments.

Each Representation either contains an Initialisation Segment or each Media Segment in the Representation is self-initialising.

Each Representation includes one or more media components, where each media component is an encoded version of one individual media type of continuous media such as audio, video, or timed text. Media components are time-continuous across boundaries of consecutive Media Segments within one Representation. The timing within each Representation is relative to the PeriodStart time or the Period that contains this Representation.

A Representation may contain zero or more Sub-Representations as defined in XXX.
The semantics of the attributes and elements within a Representation are provided in Table 9. The XML-syntax of the Representation element is provided in Table 10.

Table 0\IF >= 1 "A."

SEQ Table
9
: Semantics of Representation element
	Element or Attribute Name
	Use
	Description

	
	
	Representation
	M
	This element contains a description of a Representation.

	
	
	
	@id
	M
	Unique identifier for this Representation within the Period. The string shall only contain characters that permit to form a valid HTTP-URL according to RFC 1738.

	
	
	
	@bandwidth
	M
	The minimum bandwidth of a hypothetical constant bitrate channel in bits per second (bps) over which the Representation (i.e. the collection of all Segments of a Representation) can be continuously delivered such that a client, after buffering for exactly @minBufferTime when accessing a Representation at any RAP can be assured of having enough data for continuous playout.

	
	
	
	@qualityRanking
	O

	Provides a quality ranking of the Representation relative to other Representations in the Period. Lower values represent higher quality content. If not present then the ranking is undefined.

	
	
	
	CommonAttributesElements
	-
	Common Representation and Group Attributes and Elements (see section 8.4.3.2)

	
	
	
	SubRepresentation
	0 … N
	Provides information about a sub-representation that is embedded in the containing Representation.

	
	
	
	TrickMode
	0 … 1
	Provides the information for trick mode. It also indicates that the Representation may be used as a trick mode Representation.

	
	
	
	SegmentInfo
	1
	Provides Segment access information.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @, List of elements and attributes is in italics bold

Table 0\IF >= 1 "A."

SEQ Table
10
: XML-Syntax of Representation element
	
<!-- Representation of the presentation content for a specific Period;

extends RepresentationBaseType -->

<xs:complexType name="RepresentationType">

<xs:complexContent>

<xs:extension base="RepresentationBaseType">

<xs:sequence>

<xs:element name="SubRepresentation" type="SubRepresentationType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SegmentInfo" type="SegmentInfoType"/>

<xs:element name="TrickMode" type="TrickModeType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required"/>

<xs:attribute name="bandwidth" type="xs:unsignedInt" use="required"/>

<xs:attribute name="qualityRanking" type="xs:unsignedInt"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

8.4.3.5
Sub-Representation
Sub-Representations are embedded in regular Representations and are described by the SubRepresentation element. Sub-Representations are not offered as regular Representations, but typically provide the ability for accessing a lower quality version of the Representation in which they are contained. Sub-Representations for example allow extracting the audio track in a multiplexed Representation or may allow for efficient fast-forward operations if provided with lower frame rate. The media data for Sub-Representations is ordered into multiple levels, each providing an enhancement compared to the lower levels. Sub-Representations are essentially described by the same attributes as Representation.

If Sub-Representations are offered, then the initialisation segment and/or the media segments shall provide sufficient information such that the data can be easily accessed through HTTP partial GET requests.

The semantics of the attributes and elements within a Sub-Representation are provided in Table 11. The XML-syntax of the Sub-Representation element is provided in Table 12.
Table 0\IF >= 1 "A."

SEQ Table
11
: Semantics of SubRepresentation element
	Element or Attribute Name
	Use
	Description

	
	
	SubRepresentation
	M
	This element describes a Sub-Representation.

	
	
	
	@level
	M
	Specifies the sub-representation level.

	
	
	
	@bandwidth
	M
	Identical to the @bandwidth definition in Representation, but applied to this Sub-Representation

	
	
	
	@frameRate
	O
	Specifies the output frame rate or the output field rate of the video media type in the representation for progressive or interlaced video, respectively. If the frame or field rate is varying, the value is the average frame or field rate over the entire duration of the representation. In case of a multiview complementary Representation, the value indicates the frame or field rate of a single view.

	
	
	
	@trickModeApr
	O
	Specifies the maximum playout rate as a multiple of the regular playout rate, which this sub-representation supports with the same decoder profile and level requirements as the normal playout rate of the sub-representation.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold, List of elements and attributes is in italics bold

Table 0\IF >= 1 "A."

SEQ Table
12
: XML-Syntax of SubRepresentation element
	
<!-- SubRepresentation of the presentation content for a specific Period;

extends RepresentationBaseType -->

<xs:complexType name="SubRepresentationType">

<xs:attribute name="level" type="xs:unsignedInt" use="required"/>

<xs:attribute name="bandwidth" type="xs:unsignedInt" use="required"/>

<xs:attribute name="frameRate" type="xs:double"/>

<xs:attribute name="trickModeApr" type="xs:double"/>

</xs:complexType>

8.4.4
Segments and Segment Information
8.4.4.1
General

A Segment is defined as a unit that can be referenced by an HTTP-URL included in the MPD, where an HTTP-URL is defined as an <absolute-URI> according to RFC 3986 [16] , Subclause 4.3, with a fixed scheme of “http://” or https://, possibly restricted by a byte range if the Url@range attribute is provided. The byte range is expressed as a byte-range-set as defined in RFC 2616 [9], section 14.35.1. It is restricted to a single expression identifying a contiguous range of bytes.
The Initialisation Segment contains initialisation information for accessing the Representation. The Initialisation Segment shall not contain any media data. If the MPD contains information that is also documented in the Initialisation Segment, then the information in the MPD shall be such that no contradication between these two values occur.
A Media Segment contains media components that are either described within this Media Segment or described by the Initialisation Segment of this Representation. In addition, a Media Segment

· is assigned a Url element.

· is explicitly or implicitly assigned a start time relative to the start of the Representation provided by the MPD. The client can therefore download the appropriate Segments in regular play-out mode or after seeking. The start time shall be drift-free between the time indicated in the MPD and internal clock of the Media Segments, i.e. the accuracy of the start time documented in the MPD relative to the internal clock does not depend on the position of the Segment in the Representation.

· provides random access information, namely whether this Representation can be accessed within this Segment and if yes, how to randomly access the Media Presentation within this Segment, e.g. exact timing, byte position. There is no requirement that a Media Segment starts with a representation access point (RAP), but it is possible to signal in the MPD that all Segments within a Representation start with a RAP. The first Media Segment of a Representation shall always start with a RAP.

· when considered in conjunction with the information and structure of the MPD, contains sufficient information to time-accurately present each contained media component in the Representation without accessing any previous Media Segment in this Representation provided that the Media Segment contains a RAP. The time-accuracy enables seamlessly switching Representations and jointly presenting multiple Representations.
· may contain information for randomly accessing subsets of the Segment by using partial HTTP GET requests.
· if it is the first one in a Representation, is assigned presentation time 0 in the Media Presentation time line relative to the Period start time. If the first sample of any of the media components has a Media Presentation time relative to the Period start time greater than 0, then this presentation time shall be signalled in the Media Segment. No sample of any of the media components shall have Media Presentation time relative to the Period start time smaller than 0.

The Segments referenced through the HTTP-URLs in the MPD typically have assigned an availability duration, i.e. a time window in wall-clock time at which the Segments can be accessed at the resource specified by the HTTP-URL. The availability duration window is described by an availability start time and an availability end time for each resource.
Each Representation element shall contain at most one SegmentInfo element that together with the possibly present elements Period.SegmentInfoDefault, Group.SegmentInfoDefault and MPD.BaseURL as well as a document base URI shall contain sufficient information to determine the Segment Information.

If at least one of the elements Period.SegmentInfoDefault or Group.SegmentInfoDefault are present, then combination rules with the information in SegmentInfo apply to obtain a derived structure for the SegmentInfo element. These rules are provided in 8.4.4.2.

The rules to determine the Segment Information based on a SegmentInfo element are provided in 8.4.4.3. These rules apply to the derived SegmentInfo element after application of the rules in 8.4.4.2.

The semantics of the attributes and elements for the Segment Default element and Segment Information element are provided in Table 12 and Table 13, respectively. The XML-syntax of the Segment Information is provided in Table 14.
Table 0\IF >= 1 "A."

SEQ Table
12
: Semantics of SegmentInfoDefault element
	Element or Attribute Name
	Use
	Description

	
	
	SegmentInfoDefault
	0…1
	provides default Segment information

	
	
	
	@duration
	O
	Default duration of Media Segments

	
	
	
	@startIndex
	O
	Default start index

	
	
	
	@sourceURLTemplatePeriod
	O
	The string providing the media segment URL template on the level where the segment information is placed.

	
	
	
	InitialisationSegmentURL
	0…1
	default for Initialisation Segment URL

	
	
	
	BaseURL
	0…N
	Base URL element to be used for reference resolution

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
13
: Semantics of SegmentInfo element

	Element or Attribute Name
	Use
	Description

	
	
	
	SegmentInfo
	1
	Provides segment information.

	
	
	
	
	@duration
	O

	If present, gives the constant approximate segment duration.

All Segments within this Representation element have the same duration unless it is the last Segment within the Period, which could be significantly shorter.

	
	
	
	
	@startIndex
	O
	The index of the first accessible Media Segment in this Representation. In case of on-demand services or in case the first Media Segment of the Representation is accessible, then this value shall not be present or shall be set to 1.

	
	
	
	
	BaseURL
	0...N
	Base URL element that can be used for reference resolution

	
	
	
	
	InitialisationSegmentURL
	O
	This element references the Initialisation Segment.

	
	
	
	
	
	@sourceURL
	O
	The source string providing the URL. If not present, then any BaseURL element is mapped to the sourceURL attribute and the range attribute shall be present.

	
	
	
	
	
	@range
	O
	The byte range restricting the above URL. If not present, the resources referenced in the sourceURL are unrestricted. The format of the string shall comply with the format as specified in 0.

	
	
	
	
	UrlTemplate
	0 … 1
	The element includes attributes to generate a Segment list for the Representation associated with this element.

	
	
	
	
	
	@sourceURL
	O
	The string providing the template to create the Media Segment List.

	
	
	
	
	
	@endIndex
	O
	The index of the last accessible Media Segment in this Representation. If not present the endIndex is unknown.

	
	
	
	
	Url
	0 ... N
	Provides a set of explicit URL(s) for Segments.

Note: The URL element may contain a byte range.

	
	
	
	
	
	@sourceURL
	O
	The source string providing the URL. If not present, then any BaseURL element is mapped to the @sourceURL attribute and the @range attribute shall be present.

	
	
	
	
	
	@range
	O
	The byte range restricting the above URL. If not present, the resources referenced in the sourceURL are unrestricted. The format of the string shall comply with the format as specified in 8.4.4.

	
	
	
	
	SegmentList
	0 … N

	Provides a list of explicit URL(s) for Segments.

	
	
	
	
	
	@xlink:href
	O
	reference to external SegmentList element

	
	
	
	
	
	@xlink:actuate
	OD

default:
"onRequest"
	Processing set can be either "onLoad" or "onRequest"

	
	
	
	
	
	@startIndex
	O
	start index for this URL list.

	
	
	
	
	
	Url
	0 … N
	list of Media Segment URLs

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
14
: XML-Syntax of SegmentInfoDefault of SegmentInfo element
	 <!-- Default Segment access information -->

<xs:complexType name="SegmentInfoDefaultType">

<xs:sequence>

<xs:element name="InitialisationSegmentURL" type="UrlType" minOccurs="0"/>

<xs:element name="BaseURL" type="BaseURLType" minOccurs="0" maxOccurs="unbounded"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attributeGroup ref="SegmentInfoAttrGroup"/>

<xs:attribute name="sourceURLTemplatePeriod" type="xs:string"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Segment access information -->

<xs:complexType name="SegmentInfoType">

<xs:sequence>

<xs:element name="InitialisationSegmentURL" type="UrlType" minOccurs="0"/>

<xs:element name="BaseURL" type="BaseURLType" minOccurs="0" maxOccurs="unbounded"/>

<xs:choice minOccurs="0">

<xs:element name="UrlTemplate" type="UrlTemplateType" minOccurs="0"/>

<xs:sequence>

<xs:element name="Url" type="UrlType" maxOccurs="unbounded"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:element name="SegmentList" type="SegmentListType" minOccurs="0"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded"/>

</xs:choice>

</xs:sequence>

<xs:attributeGroup ref="SegmentInfoAttrGroup"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- grouping attributes common to SegmentInfo and SegmentInfoDefault -->

<xs:attributeGroup name="SegmentInfoAttrGroup" >

<xs:attribute name="duration" type="xs:duration"/>

<xs:attribute name="startIndex" type="xs:unsignedInt" default="1"/>

</xs:attributeGroup>

<!-- A Segment URL -->

<xs:complexType name="UrlType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="sourceURL" type="xs:anyURI"/>

<xs:attribute name="range" type="xs:string"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- A URL template -->

<xs:complexType name="UrlTemplateType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="sourceURL" type="xs:anyURI"/>

<xs:attribute name="endIndex" type="xs:unsignedInt"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- SegmentList allows xlink in addition to list of URLs -->

<xs:complexType name="SegmentListType">

<xs:sequence>

<xs:element name="Url" type="UrlType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute ref="xlink:href"/>

<xs:attribute ref="xlink:actuate" default="onRequest"/>

<xs:attribute name="startIndex" type="xs:unsignedInt"/>

</xs:complexType>

8.4.4.2
Combination Rules to obtain Derived SegmentInfo Element

Reference resolutions as defined in 8.2.3 and base URL selection as defined in 8.2.4 shall be applied to obtain a base URL value.

The following rules apply for the combination of Period.SegmentInfoDefault, Group.SegmentInfoDefault and Representation.SegmentInfo to obtain a derived SegmentInfo element.
First, an attempt is made to produce a derived SegmentInfoDefault element:
· If a Group.SegmentInfoDefault is present then this element is the derived SegmentInfoDefault element.

· If a Group.SegmentInfoDefault is not present, but a Period.SegmentInfoDefault is present then this Period.SegmentInfoDefault is the derived SegmentInfoDefault element.

· If no derived SegmentInfoDefault element has been produced, there must be a Representation.SegmentInfo element present and it is used as the derived SegmentInfo element.

At this point if the derived SegmentInfo element has been produced, processing is complete. Otherwise, the following applies:

· If no derived SegmentInfoDefault element has been produced, the MPD is invalid and processing stops.
· If no Representation.SegmentInfo element is present, then the following applies for mapping the derived SegmentInfoDefault element to the derived SegmentInfo element:

· Each element or attribute that is present in the derived SegmentInfoDefault is assigned to the corresponding element or attribute (with the same name) in the derived SegmentInfo element. This applies for InitialisationSegmentURL, @duration, and @startIndex.

· A possibly present SegmentInfoDefault@sourceURLTemplatePeriod attribute is assigned to the SegmentInfo.URLTemplate@sourceURL attribute.
· If a Representation.SegmentInfo element is present then the following applies for combining it with the derived SegmentInfoDefault to produce the derived SegmentInfo element.

· Each element or attribute that is present in the derived SegmentInfoDefault and not present in Representation.SegmentInfo is assigned to the corresponding element or attribute (with the same name) in the derived SegmentInfo element. This applies for InitialisationSegmentURL, @duration, and @startIndex.

· If SegmentInfo.URLTemplate@sourceURL is not present, but SegmentInfoDefault@sourceURLTemplatePeriod attribute is present, then this latter attribute us assigned to the attribute SegmentInfo.URLTemplate@sourceURL.
· If SegmentInfoDefault and Representation.SegmentInfo both contain one or more base URLs (specified using the BaseURL element), then this creates a level for reference resolution as defined in 8.2.3.

8.4.4.3
Segment Information based on Derived SegmentInfo element

8.4.4.3.1
Overview

The Segment Information is described in a SegmentInfo element (or in an derived structure after application of the rules in 8.4.4.2) and provides the following information:

· the presence or absence of Initialisation Segment information

· the HTTP-URL and byte range for each accessible Segment in each Representation,

· for live services, the segment availability start time and segment availability end time of each Segment relative to the PeriodStart time,

· the approximated media start time of a Media Segment in the media presentation timeline within the Period,

Any Segment URL, regardless whether provided explicitly or for example derived through Template-based Segment URL construction as defined in 8.4.4.4 may be relative or absolute. The resulting URLs shall be resolved with respect to a derived SegmentInfo.BaseURL element as defined in 8.2.3. Furthermore, if a derived SegmentInfo.BaseURL element is present, then alternative base URL selection as defined in 8.2.4 shall be applied.

The derivation of Initialisation and Media Segment Information is provided in subsection 8.4.4.3.2 and 8.4.4.3.3, respectively.

8.4.4.3.2
Initialisation Segment Information

Each Representation has assigned at most one Initialisation Segment. The Initialisation Segment is typically processed to initialise the media engines for enabling play-out of Media Segments of the containing Representation.

The presence of an Initialisation Segment is indicated either

· by the presence of the InitialisationSegmentURL element that contains the URL to the Initialisation Segment, possibly restricted by a byte range,

· or, by the presence of UrlTemplate@sourceURL. In this case the Template-based Segment URL construction in 8.4.4.4 shall be applied with Index set to 0 to obtain the URL to the Initialisation Segment.

If no Initialisation Segment URL is present for a Representation then each Media Segment within the Representation shall be self-initialising.

For live services, the segment availability start time of the Initialisation Segment is the PeriodStart time and the end time of the Initialisation Segment is the largest availability end time of any Media Segment in this Representation.

8.4.4.3.3
Media Segment Information

Each Representation has assigned a list of consecutive Media Segments. Each entry in the list of a media segment has assigned the following parameters:

· Media Segment URL, possibly restricted by a byte range

· index of the Media Segment in the Representation

· approximate start time of the Media Segment in the Representation

· approximate duration of the Media Segment

The following information in the SegmentInfo element determines these parameters: UrlTemplate, Url and SegmentList elements as well as @duration and @startIndex attribute. The example segment list generation process as specified in A.3 generates a list of Media Segments based on this information.
The list of Media Segments shall contain at least one entry. Therefore, the derived SegmentInfo element shall contain exactly one of the following choices to determine the Media Segment URL and the Index of the Media Segment:

· one UrlTemplate element: In this case the Template-based Segment URL construction in 8.4.4.4 shall be applied with the Index of the Media Segment in the media segment list. The first index in the list is determined by the value of the SegmentInfo@startIndex attribute, if present, or is 1 in case this attribute is not present. The last index in the list is determined by the value of the UrlTemplate@endIndex attribute, if present, or is infinite in case this attribute is not present.

· one or more Url elements: In this case the Url is directly assigned to the Media Segment URL. The first index in the list is determined by the value of the SegmentInfo@startIndex attribute, if present, or is 1 in case this attribute is not present. The last index is the sum of the first index and the number of list entries.

· one or more SegmentList elements that itself contains a list of Url elements for a consecutive list of Media Segment URLs. The first index in the list is determined by the value of the SegmentList@startIndex attribute, if present, or is identical to SegmentInfo@startIndex in case this attribute is not present. The sequence of multiple SegmentList elements within a Representation shall result in Media Segment List with consecutive indices.
· none of the above: In this case the same procedure shall be followed as for a single Url element containing an empty @sourceURL attribute.
For the derivation of the approximate start time and duration of each Media Segment in the list of media segments, the index of the media segment the following information is used.

· If neither @duration attribute nor SegmentTimeline element is present, then the Representation shall contain exactly one Media Segment. The start time is 0 and the duration is obtained as it would be the last Media Segment in the Representation (see below for more details).

· If @duration attribute is present, then the approximate start time of the Media Segment is determined as (Index-1) times the value of the duration of the attribute @duration. The duration of the Media Segment is determined as the value of the attribute @duration except for the duration of the last Media Segment (see below for more details).

· To determine the duration of the last Media Segment of any Representation in a Period, the MPD shall include sufficient information to determine the duration of the containing Period. For example, the MPD@mediaPresentationDuration, or add Period@duration, or next Period@start may be present.

The start time is relative to the start of the Representation provided by the MPD. The start time is approximate and does not reflect the exact media time. However, the start time shall be drift-free between the time indicated in the MPD and internal clock of the Media Segments, i.e. the accuracy of the start time documented in the MPD relative to the internal clock does not depend on the position of the Segment in the Representation.

For live services, the segment availability start time of a Media Segment is the sum of the PeriodStart time and the start time of the Media Segment in the Representation. The availability end time of a Media Segment is the sum of the PeriodStart time, the start time of the Media Segment in the Representation, the durations of the Media Segment and the value of the attribute MPD@timeShiftBufferDepth.

8.4.4.4
Template-based Segment URL Construction

The derived SegmentInfo Element may contain UrlTemplate element. The UrlTemplate@sourceURL attribute attribute each represent a string that contains one or more of the identifiers as listed in Table 15. The attributes shall contain the $Index$ identifier.

A sub-string "$<Identifier>$" names a substitution placeholder matching a mapping key of "<Identifier>". In the request URL, the substitution placeholder shall be replaced by the substitution parameter as defined in Table 15. Substitution is performed left to right and identifier matching is case-sensitive. Unrecognized identifiers cause the URL formation to fail. In this case it is expected that the DASH Client ignores the entire containing Representation element and the processing of the MPD continues as if this Representation element was not present.

It is the responsibility of the content author that the application if the substitution process results in valid Segment URLs.
Strings outside identifiers shall only contain characters that permit to form a valid HTTP-URL according to RFC 1738 [19].

Table 0\IF >= 1 "A."

SEQ Table
15
: Identifiers for URL Templates

	$<Identifier>$
	Substitution parameter

	$$
	Is an escape sequence, i.e. "$$" is replaced with a single "$"

	$RepresentationID$
	This identifier is substituted by the attribute Representation@id of the containing Representation.

	$Index$
	This identifier is substituted by the Index of the corresponding Segment. For an example DASH Client using this identifier to construct the list Media Segment URLs, refer to A.3.

8.5
MPD Update
8.5.1
General
For any time instant when the MPD is available on the server, the server maintains the MPD validity in a sense that an example client using the segment list generation process as provided in section A.3 would be able to access any available Segment in the Segment list for any Representation.
The server may update the MPD during the Media Presentation.

When the MPD is updated any Representation with the same id and within the same Period as a Representation appearing in the previous MPD shall be the identical to the previous one in a sense that all Representation attributes are identical and all segments with the same indexes within one Representation are identical.

Furthermore, if the MPD is updated, then the updates to the MPD shall be such that the updated MPD is compatible with the previous MPD in the following sense: An example client using the segment list generation process as provided in section A.3 would generate an identically functional Segment List from the updated MPD for any time up to the CheckTime as defined in section A.3.4 of the previous MPD as it would have done from the previous MPD.

The requirement ensures that

1. clients may immediately begin using the new MPD without synchronisation with the old MPD, since it is compatible with the old MPD before the update time; and
2. the update time needs not be synchronised with the time at which the actual change to the MPD takes place: i.e. changes to the MPD may be advertised in advance.
8.5.2
Media Presentation Description Delta

If the DeltaSupport element is present in the MPD element, the content provider indicates that MPD delta files, as defined in this section, are supported on the server. The URI of the MPD delta is provided in DeltaSupport @sourceURL. The DeltaSupport @availabilityDuration element, if present, indicates that the MPD delta file referenced by the URI is available for at least the value of the @availabilityDuration attribute (after this time, the server may redirect the client to the full MPD). If DeltaSupport @availabilityDuration is not present, then no information is conveyed about the availability of the MPD delta. If a client request for an MPD delta file results in an error, the client should request a full MPD.

The semantics of the attributes within the DeltaSupport element are provided in Table 17. The XML-syntax of DeltaSupport element is provided in Table 18.

Table 0\IF >= 1 "A."

SEQ Table
17
: Semantics of DeltaSupport element
	Element or Attribute Name
	Use
	Description

	
	DeltaSupport
	0 ... N
	If present, this element indicates that MPD delta files are supported by the server.

	
	
	@sourceURL
	M
	The source string providing the URL of the MPD delta. The URL may be relative to the baseURL on MPD level.

	
	
	@availabilityDuration
	O
	When provided, indicates the duration that the server guarantees the availability of the MPD delta file referenced in @sourceURL after the MPD has been updated. After that the client may be redirected to the full MPD.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
18
: XML-Syntax of DeltaSupport element
	
<!-- DeltaSupport for MPD -->

<xs:complexType name="DeltaSupportType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="sourceURL" type="xs:anyURI"/>

<xs:attribute name="availabilityDuration" type="xs:duration"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

An MPD delta is a text file that shall include the delta between the MPD that references it and the latest provided MPD. Note that the value of @sourceURL in successive MPDs is necessarily different because it is impossible for the delta between two different MPDs and the most recent MPD to be the same.

The output format consists of one or more hunks of differences. The changes are in decreasing line number order. The hunk format hunks look like this:

 change-command
 to-file-line
 to-file-line...
 .

There are three types of change commands change-command. Each consists of a line number or comma-separated range of lines in the first file and a single character indicating the kind of change to make. All line numbers are the original line numbers in the file. The types of change commands and the instructions are provided in Table X.

Table 0\IF >= 1 "A."

SEQ Table
17
: Change commands and the instructions for delta MPD files
	Change command
	Instruction
	Example

	la
	Add text from the second file after line l in the first file.
	‘8a’ means to add the following lines after line 8 of file 1

	rc
	Replace the lines in range r in the first file with the following lines. Like a combined add and delete, but more compact.
	‘5,7c’ means change lines 5–7 of file 1 to read as the text file 2.

	rd
	Delete the lines in range r from the first file.
	‘5,7d’ means delete lines 5–7 of file 1.

	Note: this is the format supported by the GNU diff utilities, see http://www.gnu.org/software/diffutils/manual/#Detailed-ed

Regardless of the presence of a DeltaSupport element, the full MPD shall always be available to clients for regular MPD updates as defined in section 7.3.4. MPD Delta related procedures are optional at the client.
8.6
Additional Descriptors
8.6.1
Introduction

Periods, Groups and Representation may have assigned auxiliary descriptors.
8.6.2
Program Information
Descriptive information on the program may be provided for each period within the ProgramInformation element. Attributes are provided to specify a URL for the mode information, the title, the source of the program, and some copyright information.

The semantics of the attributes within the ProgramInformation element are provided in Table 16. The XML-syntax of ProgramInformation element is provided in Table 17.

Table 0\IF >= 1 "A."

SEQ Table
16
: Semantics of ProgramInformation element
	Element or Attribute Name
	Use
	Description

	
	ProgramInformation
	0...1
	Provides descriptive information about the program

	
	
	@moreInformationURL
	O
	If specified, this attribute contains an absolute URL which provides more information about the Media Presentation in this Period.

	
	
	Title
	O
	May be used to provide a title for the Media Presentation

	
	
	Source
	O
	May be used to provide information about the original source (for example content provider) of the Media Presentation.

	
	
	Copyright
	O
	May be used to provide a copyright statement for the Media Presentation.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
17
: XML-Syntax of ProgramInformation element
	
<!-- Program information for a presentation -->

<xs:complexType name="ProgramInformationType">

<xs:sequence>

<xs:element name="Title" type="xs:string" minOccurs="0"/>

<xs:element name="Source" type="xs:string" minOccurs="0"/>

<xs:element name="Copyright" type="xs:string" minOccurs="0"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="moreInformationURL" type="xs:anyURI"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

8.6.3
Content Descriptors

8.6.3.1
General
Each Representation or per default each Group may have assigned certain content description elements. The content description elements are all structured in the same way, namely they contain a @schemeIdUri attribute to identify the scheme and optional SchemeInformation elements. The @schemeIdUri provides a URI to identify the scheme. The definition of this element is specific to the scheme employed. The scheme may be a URN or a URL. In this version of the specification, specific elements for content description are defined for
· ContentProtection: content protection scheme element as
The MPD does not provide any specific information on how to use these elements. It is up to the application that employs DASH formats to instantiate the content description elements with appropriate scheme information.

Content Descriptions on Representation Groups should be applied such that the information is sufficient to judge whether at least one Representation contained in this Representation Group can be accessed.

The semantics of the attributes within a Generic Content Descriptor element are provided in Table 18. The XML-syntax of a Generic Content Descriptor element is provided in Table 19. The specific descriptors follow these syntax and semantics.

Table 0\IF >= 1 "A."

SEQ Table
18
: Semantics of generic ContentDescriptor element
	Element or Attribute Name
	Use
	Description

	
	
	
	ContentDescriptor
	O
	This element provides information about the use of content description for this representation.

	
	
	
	
	@schemeIdUri
	M
	Provides a URI to identify the scheme. The definition of this element is specific to the scheme employed for content description. The URI may be a URN or a URL. The @schemeIdUri may be a URN or URL. When a URL is used, it should also contain a month-date in the form mmyyyy; the assignment of the URL must have been authorized by the owner of the domain name in that URL on or very close to that date, to avoid problems when domain names change ownership

	
	
	
	
	SchemeInformation
	O
	This element may provide the information about the used content description scheme and may be extended by the owners of the identified scheme to provide scheme specific information.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
19
: XML-Syntax of generic ContentDescriptor element
	
<!-- Generic named descriptive information about the content -->

<xs:complexType name="ContentDescriptorType">

<xs:sequence>

<xs:element minOccurs="0" name="SchemeInformation" type="xs:string"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="schemeIdUri" type="xs:anyURI" use="required"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

8.6.3.2
Content Protection

Editor's Note: Add introduction
The @schemeIdUri attribute is used to identify the content protection schemes employed. This attribute should provide sufficient information, possibly in conjunction with the SchemeInformation element, such as the DRM system(s), encryption algorithm(s), and key distribution scheme(s) employed, to enable a client to determine whether it can possibly play the protected content. The SchemeInformation element can be extended in a separate namespace to provide information specific to the content protection scheme (e.g., particular key management systems or encryption methods). Scheme-specific information can also be provided in the Initialization Segment(s) using the appropriate file format primitives instead of, or in addition to, the SchemeInformation element. The client may have to receive and analyze the protected content (typically only the Initialization Segment, if present), before it can determine whether it has already acquired a license and/or key for accessing the protected content, or to determine from where it can acquire a missing license and/or key, in case this information is not available from the SchemeInformation element.
8.6.4
Trick Mode Description

Representations may be assigned a TrickMode element. If present it indicates that this Representation may be advantageously used for trick modes, such as fast forward.

The semantics of the attributes within the TrickMode element are provided in Table 20. The XML-syntax of Trick Mode element is provided in Table 21.

Table 0\IF >= 1 "A."

SEQ Table
20
: Semantics of TrickMode element

	Element or Attribute Name
	Use
	Description

	
	
	
	TrickMode
	O
	Provides the information for trick mode. It also indicates that the Representation may be used as a trick mode Representation.

	
	
	
	
	@alternatePlayoutRate
	OD

default 1
	Specifies the maximum playout rate as a multiple of the regular playout rate, which this Representation supports with the same decoder profile and level requirements as the normal playout rate.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Table 0\IF >= 1 "A."

SEQ Table
21
: Semantics of TrickMode element
	
<!-- Gives information about trick mode -->

<xs:complexType name="TrickModeType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="alternatePlayoutRate" type="xs:string"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

9
DASH - Usage of 3GP File Format
9.1
Introduction

3GPP Dynamic Adaptive Streaming over HTTP uses many elements of fragmented 3GP files to define the segment formats. This provides segments according to the requirements defined in section 8.4.4.1 and enables reuse of existing content, easy encoding and recording, etc. This section introduces the features specified in TS 26.244 [4] that are used for the segment formats.

9.2
Segment Types and Formats

9.2.1
Segment Types
Editor's Note: Check all MIME types and possibly move some parts to the profiles
3GPP DASH defines a Segment format that is used in the delivery of media data over HTTP. A Segment shall contain one or more boxes in accordance with the boxed structure of the ISO-base media file format [11].

Three different Segment types are defined for 3GPP adaptive HTTP streaming.

1. Initialisation Segment which may use the MIME type as defined in Annex A of TS 26.244 [4] .

2. Media Segment which may use the MIME type “video/vnd.3gpp.segment” as defined in Annex A.1.4 of TS 26.244 [4] if accessed through a URL without byte ranges.

3. Self-Initialising Media Segment which may use the MIME type as defined in Annex A of TS 26.244 [4] .

For 3GPP DASH the following applies:

· In all cases for which a Representation contains more than one Media Segment, the following applies:

· The Initialisation Segment as defined in section 9.2.2 shall be present. The Initialisation Segment shall be available for the DASH Client before any Media Segment is processed within the Representation.

· Media Segments shall not be self-initialising. The Media Segment format is defined in section 9.2.3.

· In case a Representation contains only a single Media Segment, then either one of the following two options is used:

1. An Initialisation Segment as defined in section 9.2.2 and one Media Segment as defined in section 9.2.3.

2. One Self-Initialising Media Segment as defined in section 9.2.4.

9.2.2
Initialisation Segment Format

The Initialisation Segment is conformant with the 3GPP file format, adaptive streaming profile and shall carry “3gh9” as compatibility brand.

The Initialisation Segment consists of the “ftyp” box, the “moov” box, and optionally the “pdin” box. The “moov” box shall not contain any samples (i.e. the entry_count in the “stts”, “stsc”, and “stco” boxes shall be set to 0) and is then very small in size. This reduces the start-up time significantly as the Initialisation Segment needs to be downloaded before any Media Segment can be processed.

The “mvex” box shall be contained in the “moov” box to indicate that the client has to expect movie fragments. The “mvex” box also sets default values for the tracks and samples of the following movie fragments.

The Initialisation Segment provides the client with the metadata that describes the media content. The client uses the information in the “moov” box to identify the available media components and their characteristics.

The Initialisation Segment shall not contain any “moof” or “mdat” boxes.

9.2.3
Media Segment Format

A Media Segment conforming to the Media Segment Format for 3GP DASH shall carry ‘3gmA’ as a compatible_brand and is defined as follows:

· Each Media Segment may contain an ‘styp’ box.

· Each Media Segment shall contain one or more whole self-contained movie fragments. A whole, self-contained movie fragment is a movie fragment (‘moof’) box and a media data (‘mdat’) box that contains all the media samples that do not use external data references referenced by the track runs in the movie fragment box.

· Each ‘moof’ box shall contain at least one track fragment.

· The ‘moof’ boxes shall use movie-fragment relative addressing and the flag ‘default-base-is-moof’ shall also be set. Absolute byte-offsets shall not be used. In a movie fragment, the durations by which each track extends should be as close to equal as practical. In particular, as movie fragments are accumulated, the track durations should remain close to each other and there should be no 'drift'.
· Each ‘traf’ box may contain a ‘tfdt’ box.
· The track fragment adjustment box ‘tfad’ as defined in 3GPP TS26.244 [4] may also be present to maintain compatibility with earlier releases of this specification; care should be taken that the alignment established by the ‘tfdt’ and the time-shifting implied by the ‘tfad’ not be both applied, which would result in a double correction
· Each Media Segment may contain one or more ‘sidx’ boxes. If present, the first ‘sidx’ box shall be placed before any ‘moof’ box and the subsegment documented by the first Segment Index box shall be the entire segment.
· Further rules on media segments in combination with certain MPD attributes are provided in section 9.4.
9.2.4
Self-Initialising Media Segment Format

A Self-Initialising Media Segment conforms to the concatenation of an Initialisation Segment as defined in 9.2.2 and a Media Segment as defined in 9.2.3.
9.3
Usage on Server and Client

3GPP DASH uses 3GP files according to the 3GP Adaptive-Streaming profile as specified in TS 26.244 [4]. Content may be prepared as 3GP files according to the 3GP Adaptive-Streaming profile. Initialisation Segments and Media Segments may be generated by segmenting such 3GP files. Segment Index ‘sidx’ boxes may be pre-contained in 3GP files or may be generated during the segmentation process. Clients may store a concatenation of a received Initialisation Segment and a sequence of Media Segments to create a compliant 3GP file according to the Adaptive Streaming profile without accessing any media samples.

NOTE:
As specified in TS 26.244, the MPD may be linked or embedded in the ‘meta’ box of the ‘moov’ box. This enables clients to access the MPD from a 3GP file that was made available from other means than 3GPP Adaptive HTTP Streaming (e.g. progressive download).

9.4
Media Presentation Authoring Rules for specific MPD flags

9.4.1
General

The content, especially the segments across Representations at the same media time may have been prepared in a joint or at least coordinated manner. To expose these properties to the client, certain flags in the MPD can be set to true to indicate such coordinated content preparation. Clients consuming 3GP-DASH formatted media presentations may benefit from properly authored content when switching between or presenting Representations.

The content authoring rules for the media segments when certain flags are set to true or false are provided in the remainder of this section.

9.4.2
Segment Alignment
If the @segmentAlignmentFlag is set to 'true' it indicates that all presentation start and end times of media components of any particular media type are temporally aligned in all Segments across all Representations with the same value of the @duration attribute on Representation level in this Period.
9.4.3
Bitstream Switching

If the @bitstreamSwitchingFlag in a Period or in a Group is set to ‘true’, all following conditions shall be satisfied:

(a) The @segmentAlignmentFlag for the Period shall be set to ‘true’ and the value of the @duration attribute on Representation level is identical for all Representations in the Period for which bitstream switching can be applied.

(b) For any particular media type, all track fragments within any group in the Period have the same value of track_ID.

(c) Let X be the concatenation of an Initialization Segment with consecutive Media Segments of a single Representation within a Period, starting with the first Media Segment, and Y be the concatenation wherein the Media Segments with the same constraints come from at least two Representations within the same group. The following applies to all possible instances of X and Y: for any media sample commonly present in X and Y, the decoding time and composition time derived when playing X are identical to the decoding time and composition time, respectively, derived when playing Y, by a legacy player.

9.4.4 Sub-Representation

If a SubRepresentation element is present in a Representation in the MPD, then the media segments in this Representation shall include a Segment Index. The Initialisation Segment shall contain the Level Assignment (‘leva’) box.

The attribute @level specifies the level to which the described Sub-Representation is associated to in the Subsegment Index. Level n corresponds to the n-th level in the Subsegment Index. The information in Representation, Sub-Representation and in the Level Assignment (‘leva’) box contains information on the assignment of media data to levels.
For temporal level assignment, the sample grouping 'tele' as defined in clause C.4, shall be used.
10
Quality-of-Experience for DASH
10.1
General

An HSD client supporting Quality of Experience (QoE) shall report QoE metrics according to the QoE configuration. The client may select to not report metrics it does not support. The activation and configuration of QoE reporting framework can be accomplished in the MPD as specified in Section 7.3, or by a corresponding OMA-DM Managed Object as specified in Section 9.x. In both cases the reporting of metrics shall be done over HTTP according to Section 9.x.

Note: In this current version the client is not mandated to report each metric as the details of each metric need to be verified. It is the ambition to provide at least a subset of mandatory metrics in the final version of this specification.

A 3GP-DASH (3GP-PD) client supporting the QoE reporting feature shall report QoE metrics as configured by the OMA DRM QoE MO . Different sets of QoE metrics are defined for HTTP-based progressive download, i.e., 3GP-PD, and HTTP-based adaptive streaming, i.e., 3GP-DASH.

The general QoE metric definitions and measurement framework are described in Section 9.2, based on the observation points as depicted in the figure below. The recommendations on the set of QoE metrics to be used for 3G-PD and 3GP-DASH services are provided in Section 9.x.

[image: image7.png]
10.2
QoE Metric Definitions and Measurement Framework

Editor's Note: Verboseness in specification may be reduced to focus on normative aspects.

10.2.1
Introduction

This section provides the general QoE metric definitions and measurement framework. The mentioned timestamp values contain both the client wall-clock time and the media presentation time, so that the metrics can be evaluated both from the end-user and the content provider perspective.

Editor's Note: 'media presentation time' needs definitions where observed.

10.2.2
MPD Fetch Event

This metric is used to report a list of MPD fetch events that took place during the measurement interval. The metric name is “MPDFetchEvent”. For each MPD fetch event, the following parameters shall be reported:

· The MPD fetch time indicates the timestamp corresponding to the position in the media at which the MPD request was made either at the beginning or during the content consumption, e.g., with an HTTP GET request. The MPD fetch time is represented by the parameter “MPDFetchTime” expressed in milliseconds as an integer value. The observation point for this parameter is OP1.

· The MPD fetch duration indicates the total time that was used to fetch the MPD either at the beginning or during content consumption. More specifically, the MPD fetch duration is measured as the time that it takes from the requesting for the MPD, e.g., by sending an HTTP GET request, until the time of reception of the last byte of the MPD. The MPD fetch duration is represented by the parameter “MPDFetchDuration” expressed in milliseconds as an integer value. The observation point for this parameter is OP1.

Editor's Note: The details of this metric are currently TBD.

10.2.3
Initialisation Segment Fetch Event

This metric is used to report a list of initialisation segment fetch events that took place during the measurement interval. The metric name is “InitSegmentFetchEvent”. For each initialization segment fetch event, the following parameters shall be reported:

· The initialisation segment fetch time indicates the timestamp corresponding to the position in the media at which an initialisation segment request was made with an HTTP GET message either at the beginning or during the content consumption. The initialisation segment fetch time is represented by the parameter “InitSegmentFetchTime” expressed in milliseconds as an integer value. The observation point for this parameter is OP1.

· The initialisation segment fetch duration is used to report the total time that is used to fetch an initialisation segment either at the beginning or during content consumption. More specifically, the initialisation segment fetch duration is measured as the time that it takes from the transmission of the HTTP GET request for the initialisation segment until the time of reception of the last byte of the initialisation segment. The initialisation segment fetch duration is represented by the parameter "InitSegmentFetchDuration" expressed in milliseconds as an integer value. The observation point for this parameter is OP1.

This metric is not relevant when the accessed representation does not contain an initialisation segment or each media segment in the representation is self-initialising.
10.2.4
Representation Switch Event

This metric is used to report a list of representation switch events that took place during the measurement interval. The metric name is "RepresentationSwitchEvent". A representation switch event signals the client’s decision to perform a representation switch from a switch-from representation to a switch-to representation. For each representation switch event, the following parameters shall be reported:

· The representation switch time is the timestamp corresponding to the position within the media content at which the client initiated the representation switch by sending the first HTTP GET request for data from the switch-to representation. The representation switch time is given by the parameter “RepSwitchTime” expressed in milliseconds as an integer value. The observation point for this parameter is OP1.

· This representation switch duration indicates the time that elapses from deciding to perform a representation switch by sending the first HTTP GET request for data from the switch-to representation until the playback of the first media sample from the switch-to representation. The representation switch duration is given by the parameter “RepSwitchDuration” and metric unit is expressed in milliseconds as an integer value. The observation points for this parameter include OP1 for measuring the time of representation switch and one or more of OP2, OP3 and OP4 for determining the time of the playback of the first media sample from the switch-to representation.

For each representation switch event, information about the switch-from and the switch-to representations, position in the content timeline at which the switch was perceived by the client, i.e. the timestamp of the first rendered media unit from the switch-to representation, buffer status before and after the switch may also be reported.
Editor's Note: The details of this metric are currently TBD.

10.2.5
Client State

This metric is used to report information about a change of client state. The metric name is "ClientState", and can take the following values:

- Buffering:

Client will start to play when enough data is in the buffer
- PlayingAndBuffering:
Client is playing but has not yet fetched all future media data.
- Playing:

Client is playing and has fetched all future media data.
- Paused:

Client has been paused by user.
- Stopped:

Client has been stopped by user or due to end of media session.
The observation points for this metric include one or more of OP2, OP3 and OP4.

Editor's Note: The details of this metric are currently TBD.

10.2.6
Average Throughput

This metric indicates the average throughput that is observed by the client during the measurement interval. It is defined as the total number of streamed content bits received during the reporting period divided by the activity time during the reporting period. The activity time during the period is the time during which at least one GET request is still not completed (i.e. excluding inactivity time during the reporting period). The metric name is "AvgThroughput” and metric unit is expressed in kilobits per second and represented as an integer value. The observation point for this metric is OP1.

If the client requests the media segments from the server separately over multiple non-competing parallel TCP connections established over separate access network bearers named as “AccessBearer”, then the average throughput values should be reported as a list of events with average throughput for each access network and associated access network bearer information reported separately, following the same guidelines as described above.
Editor's Note: The details of this metric are currently TBD.

10.2.7
Average Segment Fetch Duration

This metric indicates the average segment fetch duration that is observed by the client during a measurement interval. It is defined as the average time difference between the time when the client requests a media segment (or sub-segment) by sending an HTTP GET message to the server and the time of receiving the last byte of the corresponding segment (averaged over all segments received during the measurement interval). The metric name is "AvgSegmentFetchDuration” and metric unit is expressed as in milliseconds as an integer value. The observation points for this metric include OP1 for measuring the time of the HTTP GET request and one or more of OP1, OP2 and OP3 for determining the time at which all bytes corresponding to the requested media segment have been received.

If the client requests the media segments from the server separately over multiple non-competing parallel TCP connections established over separate access network bearers named as “AccessBearer”, then the average segment fetch duration values should be reported as a list of events with average segment fetch duration for each access network and associated access network bearer information reported separately, following the same guidelines as described above.
Editor's Note: The details of this metric are currently TBD.

10.2.8
Download Jitter

This metric indicates the average download jitter that is observed by the client during a measurement interval. It is defined as the variation of segment download latency across media segments quantifying the deviation around the average segment fetch duration, where the segment download latency for a given segment is given by the time difference between the time when the client requests the media segment by sending an HTTP GET message to the server and the time of receiving the last byte of the corresponding segment (variation averaged over all segments received during the measurement interval). The metric name is "DownloadJitter” and metric unit is expressed as in milliseconds as an integer value. The observation points for this metric include OP1 for measuring the time of the HTTP GET request and one or more of OP1, OP2 and OP3 for determining the time at which all bytes corresponding to the requested media segment have been received.

Editor's Note: The details of this metric are currently TBD.

10.2.8
Inactivity Time

This metric is used to report a list of inactivity time events that took place during the measurement interval. An inactivity time event corresponds to a time period during which no pending (not yet completed) HTTP GET requests exist at the client. The metric name is “InactivityTime”. For each inactivity time event, the following parameters shall be reported:

The duration of any inactivity time event occurring during a measurement interval shall be reported. A given inactivity time event duration corresponds to the time between the reception of the last byte from the previous request and the time of transmission of the next HTTP GET request. Note that in case HTTP request pipelining is used, the values may be negative and these values shall not be reported. Hence, only the durations corresponding to time intervals for which no unfulfilled HTTP requests are outstanding shall be reported. The name of this parameter is “InactivityTimeEventDuration” expressed in milliseconds as an integer value. The observation point for this metric is OP1. Additionally, the type of the inactivity may also be indicated by a parameter named as “InactivityType”, if known and consistent throughout the reporting period. The inactivity may be due to a user request (e.g. Pause), a client measure to control the buffer, or due to an error case.
Editor's Note: The details of this metric are currently TBD.

10.2.9
Resource Not Accessible

This metric is used to report a list of events to capture errors on when the client is unable to fetch a specific media resource. The metric name is “ResourceNotAccessible”. For any resource not accessible error event, the following parameters shall be reported:

The metric value contains the media resource URL named as “ResourceNotAccessibleURL”, the type of the media resource, named as “ResourceNotAccessibleResourceType”, the requested byte range, named as “ResourceNotAccessibleByteRange”, the UTC time at which the fetch operation was unsuccessful, named as “ResourceNotAccessibleUTC”, and the resulting HTTP status code, named as “ResourceNotAccessibleStatusCode”. The observation point for this metric is OP1.Initial Playout Delay

This metric is used to report the total time that elapses from the time client requested to the MPD with an HTTP GET message to the time of the playout of the first media sample. The metric name is "InitPlayoutDelay". The metric unit is expressed in milliseconds as an integer value. The observation points for this metric include OP1 for measuring MPD Fetch Time, and OP4 for determining the time of rendering for the first media sample.
10.2.10
Buffer Level

This metric signals the existing amount of buffered media time at the client at the end of the measurement interval. The metric name is “BufferLevel” and the metric unit is expressed in milliseconds as an integer number. In case of a buffer underflow event at the time of reporting, the buffer level is reported as zero. The observation point for this metric is OP2.

Editor's Note: The details of this metric are currently TBD.

10.2.11
Rebuffering Event

This metric is used to report a list of rebuffering events that took place during the measurement interval. The metric name is "RebufferingEvent". A given rebuffering event starts when the playback is stopped due to non-availability of media data in the buffer for playback, due to several potential reasons such as a buffer underflow or the use of a trick mode operation such as seeking. The rebuffering event is considered terminated when the buffer level reaches the indicated minimum buffering time again. This metric reports all rebuffering events that have been terminated during the current reporting period. For each rebuffering event, the following parameters shall be reported:

The rebuffering time indicates the time of a buffer underflow event that led to rebuffering. Its value is derived based on the timestamp corresponding to the position in the media at which the buffer underflow occurred . The rebuffering time is expressed by the parameter “RebufferingTime” expressed in milliseconds as an integer number. The observation point for this parameter is OP2.

The rebuffering duration signals the duration between the time of the start of a rebuffering event and the time when the playout begins again (i.e., the rebuffering event is terminated). It is represented by the parameter “RebufferingDuration” expressed in milliseconds as an integer number. The observation points for this parameter include OP2 for measuring the time of the start of a rebuffering event and one or more of OP2, OP3 and OP4 for determining the time when the playout begins again.

Editor's Note: The details of this metric are currently TBD.

10.2.12
Audio Metrics

This metric is used to report a list of events describing the set of media parameters that characterizes the audio consumed during the measurement period, and also indicates any audio codec change events that took place during the measurement interval. The audio metrics shall be reported whenever the codec is changed, but also at the end of each measurement interval. The metric name is “AudioMetrics”. For each audio codec change event, the following parameters shall be reported:

· Audio Start: This parameter indicates the timestamp when a change of audio codec was done. It is named as “AudioStart” and is expressed in milliseconds as an integer number.
· Audio Codec: This parameter indicates codec-relevant information for the codec used before the change and is named as “AudioCodec”. The audio codec used at the time of reporting is indicated by its mime type, including profile and level, as included in the MPD.

· Audio Framerate: This metric indicates the average audio frame rate used since the last audio codec change (or since the start of the measurement interval). It is named as “AudioFramerate” and is reported in units of frames per second with fractions allowed.

· Audio Bitrate: This metric indicates the average audio bitrate used since the last audio codec change (or since the start of the measurement interval). It is named as “AudioBitrate” and is reported as an integer number in kilobits per second.

The observation points for the audio metrics include OP3 and OP4.

Editor's Note: The details of this metric are currently TBD.

10.2.13
Video Metrics

This metric is used to report a list of events describing the set of media parameters that characterizes the video consumed during the measurement period, and also indicates any video codec change events that took place during the measurement interval. The video parameters shall be reported whenever the codec is changed, but also at the end of each measurement interval. The metric name is “VideoMetrics”. For each video codec change event, the following parameters shall be reported:
· Video Start: This parameter indicates the timestamp when a change of video codec was done. It is named as “VideoStart” and is expressed in milliseconds as an integer number.

· Video Codec: This parameter indicates codec-relevant information for the codec used before the change and is named as “VideoCodec”. The video codec used at the time of reporting is indicated by its mime type, including profile and level, as included in the MPD.
· Video Framerate: This metric indicates the average video frame rate used since the last video codec change (or since the start of the measurement interval). It is named as “VideoFramerate” and is reported in units of frames per second with fractions allowed.

· Video Bitrate: This metric indicates the average video bitrate used since the last video codec change (or since the start of the measurement interval). It is named as “VideoBitrate” and is reported as an integer number in kilobits per second.

· Video Width: This metric indicates the video width in pixels used before the change of codec and is named "VideoWidth".

· Video Height: This metric indicates the video height in pixels used before the change of codec and is named "VideoHeight".

The observation points for the audio metrics include OP3 and OP4.

Editor's Note: The details of this metric are currently TBD.

10.2.14
QoE Metrics and OP Summary

The figure below provides the summary of the QoE metrics to be reported and their observation points for DASH:

[image: image8.png]
10.3 Report Format
The QoE report is formatted as an XML document that complies with the following XML schema:

Editor's Note: The types need to be carefully checked.

	

	<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:3gpp:metadata:2011:HSD:receptionreport"

xmlns="urn:3gpp:metadata:2011:HSD:receptionreport"

elementFormDefault="qualified">

<xs:element name="receptionReport" type="receptionReportType"/>

<xs:complexType name="receptionReportType">

<xs:choice>

<xs:element name="qoeReport" type="qoeReportType" minOccurs="0"

 maxOccurs="unbounded"/>

<xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>

<xs:attribute name="ContentURI" type="xs:anyURI" use="required"/>

<xs:attribute name="ClientID" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="qoeReportType">

<xs:sequence>

<xs:element name="qoeMetric" type="qoeMetricType" minOccurs="1" maxOccurs="unbounded"/>

 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="PeriodID" type="xs:string" use="required"/>

 <xs:attribute name="RepresentationID" type="xs:string" use="required"/>

<xs:attribute name="ReportTime" type="xs:dateTime" use="required"/>

<xs:attribute name="ReportPeriod" type="xs:unsignedInteger" use="required"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:complexType name="qoeMetricType">

<xs:choice>

<xs:element name="MPDFetchEvent" type="fetchEventType" maxOccurs="unbounded"/>

<xs:element name="InitSegmentFetchEvent" type="fetchEventType" maxOccurs="unbounded"/>

<xs:element name="RepresentationSwitchEvent" type="repSwitchEventType" maxOccurs="unbounded"/>

<xs:element name="ClientState" type="clientStateType" maxOccurs="unbounded"/>

<xs:element name="AvgThroughput" type="throughputType"/>

<xs:element name="AvgSegmentFetchDuration" type="xs:segmentFetchDurationType"/>

<xs:element name="DownloadJitter" type="xs:double"/>

<xs:element name="InactivityTime" type="xs:inactivityEventType" maxOccurs="unbounded"/>

<xs:element name="ResourceNotAccessible" type="resourceNotAccessibleType" maxOccurs="unbounded"/>

<xs:element name="InitialPlayoutDelay" type="xs:double"/>

<xs:element name="BufferLevel" type="xs:double"/>

<xs:element name="RebufferingEvent" type="xs:rebufferingEventType" maxOccurs="unbounded"/>

<xs:attribute name="AudioMetrics" type="xs:mediaStatType" maxOccurs="unbounded"/>

<xs:attribute name="VideoMetrics" type="xs:mediaStatType" maxOccurs="unbounded"/>

</xs:choice>

 <xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:complexType name="fetchEventType">

<xs:attribute name="Resource" type="xs:anyURI" use="required"/>

<xs:attribute name="FetchDuration" type="xs:unsignedInt" use="required"/>

<xs:attribute name="MediaTime" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="ClockTime" type="xs:dateTime" use="optional"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:complexType name="repSwitchEventType">

<xs:attribute name="OldRepId" type="xs:string" use="optional"/>

<xs:attribute name="NewRepId" type="xs:string" use="required"/>

<xs:attribute name="RepSwitchDuration" type="xs:unsignedInt" use="required"/>

<xs:attribute name="OldBufferDepth" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="NewBufferDepth" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="MediaTime" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="ClockTime" type="xs:dateTime" use="optional"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:complexType name="clientStateType">

<xs:attribute name="State" type="xs:clientStatesType" use="required"/>

<xs:attribute name="BufferDepth" type="xs:unsignedInt" use="required"/>

<xs:attribute name="MediaTime" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="ClockTime" type="xs:dateTime" use="optional"/>

 <xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:simpleType name="clientStatesType">

<xs:restriction base="xs:string">

<xs:enumeration value="Buffering" />

<xs:enumeration value="PlayingAndBuffering" />

<xs:enumeration value="Playing" />

<xs:enumeration value="Paused" />

<xs:enumeration value="Stopped" />

</xs:restriction>

</xs:simpleType>

<xs:complexType name="resourceNotAccessibleType" >

<xs:attribute name="Url" type="xs:anyURI" use="required" />

<xs:attribute name="Range" type="xs:string" use="optional" />

<xs:attribute name="StatusCode" type="xs:integer" use="required" />

 <xs:attribute name="Resource" type="resourceType" use="required" />

<xs:attribute name="MediaTime" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="ClockTime" type="xs:dateTime" use="optional"/>

</xs:complexType>

<xs:simpleType name="resourceType">

<xs:restriction base="xs:string">

<xs:enumeration value="MPD" />

<xs:enumeration value="InitSegment" />

<xs:enumeration value="MediaSegment" />

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="rebufferingEventType">

<xs:attribute name="RebufferingDuration" type="xs:unsignedInt" use="required"/>

<xs:attribute name="MediaTime" type="xs:unsignedInt" use="required"/>

<xs:attribute name="ClockTime" type="xs:dateTime" use="required"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:complexType name="inactivityEventType">

<xs:attribute name="InactivityTimeEventDuration" type="xs:unsignedInt" use="required"/>

 <xs:attribute name="InactivityType" type="xs:inactivityType" use="optional"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:simpleType name="inactivityType">

<xs:restriction base="xs:string">

<xs:enumeration value="Pause" />

<xs:enumeration value="BufferControl" />

<xs:enumeration value="Error" />

</xs:restriction>

</xs:simpleType>

<xs:complexType name="mediaStatType">

<xs:attribute name="Codec" type="xs:string" use="required"/>

<xs:attribute name="Bitrate" type="xs:unsignedInt" use="required"/>

<xs:attribute name="Framerate" type="xs:unsignedInt" use="required"/>

<xs:attribute name="Width" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="Height" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="MediaTime" type="xs:unsignedInt" use="optional"/>

<xs:attribute name="ClockTime" type="xs:dateTime" use="optional"/>

 <xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:simpleType name="throughputType">

<xs:simpleContent>

<xs:extension base="xs:unsignedInt">

<xs:attribute name="AccessBearer" type="xs:string" use="optional" />

</xs:extension>

</xs:simpleContent>

</xs:simpleType>

<xs:simpleType name="segmentFetchDurationType">

<xs:simpleContent>

<xs:extension base="xs:unsignedInt">

<xs:attribute name="AccessBearer" type="xs:string" use="optional" />

</xs:extension>

</xs:simpleContent>

</xs:simpleType>

<xs:simpleType name="doubleVectorType">

 <xs:list itemType="xs:double"/>

</xs:simpleType>

<xs:simpleType name="stringVectorType">

 <xs:list itemType="xs:string"/>

</xs:simpleType>

</xs:schema>

10.4 Metrics Feedback over HTTP

If a specific metrics server has been configured, the client may send QoE reports using the HTTP (RFC 2616) POST request carrying XML formatted metadata in its body. An example QoE reporting based on HTTP POST request signalling is shown below:
	POST http://www.exampleserver.com HTTP/1.1

Host: 192.68.1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0)

Content-Type: text/xml; charset=utf-8

Content-Length: 4408

	<?xml version="1.0" encoding="UTF-8"?>

<receptionReport ContentURI="http://www.example.com/content/content.mpd" ClientID="35848574673" xmlns="urn:3gpp:metadata:2011:HSD:receptionreport">
<qoeReport PeriodID="Period1" RepresentationID="Rep1" ReportTime="2011-02-16T09:00:00" ReportPeriod="500">
 <qoeMetric>
 <MPDFetchEvent Resource="http://www.example.com/content/content.mpd" FetchDuration="2050" MediaTime="0" ClockTime="2011-02-16T08:59:30" />

</qoeMetric>
 <qoeMetric>
 <InitSegmentFetchEvent Resource="http://www.example.com/content/initRep1.3gp" FetchDuration="450" MediaTime="0" ClockTime="2011-02-16T08:59:40" />

 <InitSegmentFetchEvent Resource="http://www.example.com/content/initRep2.3gp" FetchDuration="350" MediaTime="0" ClockTime="2011-02-16T08:59:41" />

 <InitSegmentFetchEvent Resource="http://www.example.com/content/initRep3.3gp" FetchDuration="650" MediaTime="0" ClockTime="2011-02-16T08:59:42" />

</qoeMetric>
 <qoeMetric>
 <InitialPlayoutDelay>10000</InitialPlayoutDelay>

 </qoeMetric>
 </qoeReport>
 <qoeReport PeriodID="Period1" RepresentationID="Rep3" ReportTime="2011-02-16T09:08:20" ReportPeriod="500">
 <qoeMetric>
 <BufferLevel>84673 93874 73987 69834</BufferLevel>

 </qoeMetric>
 <qoeMetric>
 <RepresentationSwitchEvent OldRepId="Rep1" NewRepId="Rep2" SwitchDuration="1500" OldBufferDepth="15674" NewBufferDepth="12050" MediaTime="305000" />

 <RepresentationSwitchEvent OldRepId="Rep2" NewRepId="Rep3" SwitchDuration="1900" OldBufferDepth="13270" NewBufferDepth="14700" MediaTime="620000" />

 </qoeMetric>
 <qoeMetric>
 <AvgThroughput AccessBearer="3G HSDPA">721000</AvgThroughput>

 </qoeMetric>
 </qoeReport>
</receptionReport>

In response, an example reply message from the server is shown below:

	HTTP/1.1 200 OK

	Date: Fri, 31 Jan 2011 19:54:08 GMT

Server: Video Stats Server

11
3GP-DASH: Profiles
11.1
General

Profiles of DASH are defined so as to enable interoperability and the signaling of the use of features etc.

A profile has an identifier and refers to a set of specific restrictions. Those restrictions might be on features of the media presentation description (MPD) document, usage of the network, media format(s), codec(s) used, protection formats, or on quantitative measures such as bit-rates, segment lengths, screen size, and so on. Profiles defined in this specification define restrictions on features of this specification, but may additionally impose restrictions on other aspects of media delivery.
A profile is a claim and a permission; it claims that the media presentation (MPD document and segment formats) conforms to the profile, and gives permission to a reader that implements that profile to read the media presentation, interpret what it recognizes, and ignore the material it does not understand.
The profiles with which an MPD complies are indicated in the MPD@profiles attribute. This element is a space-delimited list of profile identifiers each of which is a URI. Profile identifiers defined in this specification are URNs conforming to RFC 3406 [21]. URLs may also be used. When a URL is used, it should also contain a month-date in the form mmyyyy; the assignment of the URL must have been authorized by the owner of the domain name in that URL on or very close to that date, to avoid problems when domain names change ownership.
11.2
3GPP Adaptive HTTP Streaming (Release-9 AHS)
11.2.1
Introduction

Editor's Note: This needs adaptation
The Media Presentation framework as introduced in clause 7 is instantiated in this section using the 3GP File Format as specified in [4]. This instantiation is referred to as “3GPP Adaptive HTTP Streaming”. A 3GPP Adaptive HTTP Streaming service is described by an MPD as specified in section 7.3. The MIME type of the MPD shall be “application/dash+xml”. The mimeType attribute of each Representation shall be provided according to RFC 4281 [14] and Annex A of TS 26.244 [4]. Segment Types and Formats according to 8.2.2 shall be used.
11.2.2
Media Codecs

For HTTP-Streaming clients supporting a particular continuous media type, the corresponding media decoders are specified in TS 26.234 [3], section 7.2 for speech, 7.3 for audio, 7.4 for video and 7.9 for timed text.
Editor's Note: We need to refer to Rel-9 codecs. Does this work or do we need to mention explicitely?
11.2.3
Content Protection

Clients that support content protection may support OMA DRM 2.0 [15] or OMA DRM 2.1 [16]. Other content protection schemes may be supported. The ContentProtection element in the MPD should be used to convey content protection information.
When using OMA DRM V2.0 or OMA DRM V2.1 scheme for content protection, the non-streamable Packetized DRM Content Format (PDCF) shall be used. An OMA-DRM encrypted Representation shall include the brands “3gh9” and “opf2”.OMA-DRM [10] defines the procedures for acquiring the Rights Object from the Rights Issuer to decrypt PDCF protected content. The scheme is identified by a ContentProtection@schemeIdUri set to "urn:mpeg:mpegB:dash:mp4protection:odkm"
11.2.4
Transport Security

Transport security in adaptive HTTP streaming is achieved using the HTTPS (Hypertext Transfer Protocol Secure) specified in RFC 2818 [12]. HTTPS may be used to authenticate the server and to ensure secure transport of the content from server to client.

NOTE: The use of HTTPS for delivering Media Segments may inhibit caching at proxies and add overhead at the server and the client.
11.3
3GP-DASH Release-10 Profile

11.3.1
Introduction

Editor's Note: refer to 11.2.1
The MIME type of an MPD delta file shall be “application/dashdelta”.
Annex A
Client Behaviour
Editor's Note: Formatting still necessary
A.1
Introduction

The information on client behaviour is purely informative and does not imply any normative procedures on client implementations.

A.2
Overview

A 3GPP Adaptive HTTP Streaming client is guided by the information provided in the MPD. It is assumed that the client has access to the MPD that it fetched at time FetchTime. FetchTime is defined at the client as the time the client has succeeded in fetching an instance of an MPD. It is considered as a successful fetching either if the client obtains an updated MPD or the client verifies that the MPD has not been updated since the previous fetching. An example client behaviour is introduced. For providing a continuous streaming service to the user:

1. The client parses the MPD and creates a list of accessible Segments for each Representation for the actual client-local time NOW taking into account the procedures specified in section A.3.

2. The client selects one or multiple Representations based on the information in the Representation attributes and other information, e.g. available bandwidth and client capabilities. Representations assigned to group 0 are presented without any other Representation. Representations assigned to a non-zero group are typically presented in combination with Representations from groups other than their own, not including the group 0. For each Representation, the client acquires the Initialisation Segment, if present, and the Media Segments of the selected Representations.

3. The client accesses the content by requesting Segments or byte ranges of Segments. The client requests the Media Segment of the selected Representation by using the generated Segment list.

4. The client buffers media of at least minBufferTime duration before starting the presentation.
5. Once the presentation has started, the client continues consuming the media content by continuously requesting Media Segments or parts of Media Segments . The client may switch Representations taking into account updated MPD information and/or updated information from its environment, e.g. change of available bandwidth. With any request for a Media Segment containing a representation access point, the client may switch to a different Representation.
6. When moving forward, i.e. the NOW time advancing, the client consumes the accessible segments. With each advance in NOW the client possibly expands the list of accessible Segments for each Representation according to the procedures specified in section A.3. If

a. the mediaPresentationDuration attribute is not declared, or if any media described in the MPD does not reach to the end of the Media Presentation and

b. the current playback time gets within a threshold (typically described by the sum of the value of the minBufferTime attribute and the value of the duration attribute on Representation level) of the media described in the MPD for any consuming or to be consumed Representation

then the client should fetch a new MPD, with new fetch time FetchTime. Once received the client now takes into account the possibly updated MPD and the new FetchTime in the generation of the accessible Segment Lists.
In the following a brief overview on Segment list generation, seeking, support for trick modes and switching Representations are provided.

A.3
Segment List Generation

A.3.1
General

Assume that the HTTP-streaming client has access to an MPD. This section describes how a client may generate a Segment list as shown in Table 22 from an MPD at a specific client-local time NOW. In this description, the term NOW is used to refer to “the current value of the clock at the reference client when performing the construction of an MPD Instance from an MPD”. A client that is not synchronised with a HTTP Streaming server, which is in turn synchronised to UTC, may experience issues in accessing segments due to availability. HTTP Streaming clients should synchronize their clocks to a globally accurate time standard.

Table 0\IF >= 1 "A."

SEQ Table
22
: Segment List
	Parameter Name
	Cardinality
	Description

	Segments
	1
	Provides the Segment URL list.

	InitialisationSegment
	0, 1
	Describes the Initialisation Segment. If not present each Media Segment is self-initialising.

	URL
	1
	The URL where to access the Initialisation Segment (the client would restrict the URL with a byte range if one is provided in the MPD).

	MediaSegment
	1 … N
	Describes the accessible Media Segments.

	startTime
	1
	The approximate start time of the Media Segment in the Period relative to the start time of Period. To obtain the start time of the Media Segment in the Media Presentation, the start time of the Period needs to be added for On-Demand services. For live services, in addition also the value of the availabilityStartTime attribute needs to be added.

	URL
	1
	The URL where to access the Media Segment (the client would restrict the URL with a byte range if one is provided in the MPD).

Each SegmentInfo element is used to generate a list of accessible Segments for each Representation.

The following rules apply for SegmentInfoDefault elements or SegmentInfo elements in a MPD:

· The client uses URI reference resolution as discussed in section 7.2.4.2.1. If the MPD is known to be supplied using a URL and over a suitable protocol, that URL establishes a base URL for the segments URLs within the MPD. There may be a BaseURL element on MPD level or in the SegmentInfoDefault element on Period level or the SegmentInfo element. If the BaseURL element supplied at any level is absolute, it gives the base URL for the levels below it. Otherwise the base URL for levels below it is formed from the base URL of the higher level composed with the value of the BaseURL element. Normal URL composition may be used, using relative URLs, which are composed against a base URL. The composition of a relative URL with an effective base URL is done using normal URL Reference Resolution (see RFC 3986 [1], section 5.2).

· If the SegmentInfo element contains a URLtemplate element or a URLtemplate element is implied, then the procedures in section A.3.2 are used to generate a list of Media Segments.

· If the SegmentInfo element contains one or more Url elements providing a set of explicit URL(s) for Media Segments, then the procedures in section A.3.3 are used to generate a list of Media Segments.

· If the type attribute of the MPD is Live, then the restrictions on Media Segment Lists as provided in section A.3.4 need to be taken into account.

The client should only request Segments that are included in the Segment list at time instant NOW.

A.3.2
Template-based Generation of Media Segment List

If the SegmentInfo element contains a URLtemplate element or a URLtemplate element is implied, then the procedures in this section are used to generate a list of Media Segment parameters, i.e. segment URLs and start times, and no byte ranges are associated with the URLs.
The Segment information for a Representation is obtained by combining the SegmentInfo element with the SegmentInfoDefault element on Period level. The duration attribute of the SegmentInfo element overrides the same attribute of the SegmentInfoDefault element on Period level when both are present.

Assume that the Period end time documented in the current MPD with fetch time FetchTime is defined as PeriodEndTime. For any Period in the MPD except for the last one, the PeriodEndTimeis obtained as the value of the start attribute of the next Period. For the last Period in the MPD
· if the mediaPresentationDuration attribute is present, then PeriodEndTime is defined as the end time of the Media Presentation.

· if the mediaPresentationDuration attribute is not present, then PeriodEndTime is defined as FetchTime + minimumUpdatePeriodMPD).

If the SegmentInfo Element contains a UrlTemplate element containing a sourceURL attribute, then this UrlTemplate is used as the valid UrlTemplate for this Representation. Otherwise, the @sourceUrlTemplate attribute is present; in this case the $RepresentationID$ identifier in the @sourceUrlTemplate attribute is replaced by the value of the id attribute on Representation level and the result string is used as the sourceURL attribute in the UrlTemplate element that is valid for the current Representation.

Assume that Media Segments within a Representation have been assigned consecutive indices i=1,2,3…., i.e. the first Media Segment has been assigned the index i=1, the second Media Segment has been assigned the index i=2, and so on.

A valid list of Media Segments with Segment indices i, MediaSegment.StartTime[i] and MediaSegment.URL[i], i=startIndex, startIndex+1, …, is obtained as follows using the duration attribute for this Representation:

1. Set i=startIndex.

2. The start time of the first Media Segment is obtained as (startIndex-1)*duration, i.e. MediaSegment.StartTime[1] = (startIndex-1)*duration. If the duration attribute is not provided, then the MediaSegment.StartTime[1] of the only provided Segment is set to 0.
3. The URL of the Media Segment i, MediaSegment.URL[i], is obtained by replacing the $Index$ identifier by i in the sourceURL string of the valid UrlTemplate. Furthermore, any relative URLs are resolved as specified in section 7.2.4.2.1.

4. If ((Period.start + MediaSegment.StartTime[i] + duration) <= PeriodEndTime) and if applicable, the index i is smaller than value of the attribute endIndex
· then

· A new Media Segment is added to the list, i.e. i = i + 1;

· MediaSegment.StartTime[i] = MediaSegment.StartTime[i-1] + duration.

· Proceed with step 3.

· else

· The restrictions as specified in section A.3.4 are applied for the creation of the accessible list of Media Segments.

A.3.3
Playlist-based Generation of Media Segment List

If the SegmentInfo element contains one or more Url elements, then the procedures specified in this section apply to generate a valid list of accessible Media Segment URLs and start times described in each SegmentInfo element taking into account the procedures to integrate information from SegmentInfoDefault elements.

Assume that Media Segments within a Representation have been assigned consecutive indices i=1,2,3…., i.e. the first Media Segment has been assigned i=1, the second Media Segment has been assigned i=2, and so on.

A valid list of Media Segments with segment indices i=startIndex, startIndex+1, …, MediaSegment.StartTime[i] and MediaSegment.URL[i] is obtained as follows:

1. Set i=startIndex.
2. The URL of the Media Segment i, MediaSegment.URL[i], is obtained as the sourceURL attribute of the (i-startIndex+1)-th Url element in the SegmentInfo element taking into account URI reference resolution, restricted to the byte range specified in the range attribute of the same Url element, if present.

3. If the duration attribute is provided, then the MediaSegment.StartTime[i] of Media Segment i is obtained as (i-1)*duration. If the duration attribute is not provided, then the MediaSegment.StartTime[1] of the only provided Segment is set to 0.
4. If this is not the last Url element, a new Media Segment is added to the list, i.e. i = i + 1, and proceed with step 2; Otherwise proceed with step 5.
5. The restrictions as specified in section A.3.4 are applied for the creation of the accessible list of Media Segments.

A.3.4
Media Segment List Restrictions

The Media Segment List is restricted to a list of accessible Media Segments, which may be a subset of the Media Segments of the complete Media Presentation. The construction is governed by the current value of the clock at the client NOW.

Generally, Segments are only available for any time NOW between availabilityStartTime and availabilityEndTime. For times NOW outside this window, no Segments are available.

In addition, for live services, assume the variable CheckTime associated to an the MPD with FetchTime is defined as:

· If the minimumUpdatePeriodMPD attribute in the client is provided, then the check time is defined as the sum of the fetch time of this operating MPD and the value of this attribute, i.e. CheckTime = FetchTime + minimumUpdatePeriodMPD.
· If the minimumUpdatePeriodMPD attribute in the client is not provided, external means are used to determine CheckTime, such as a priori knowledge, or HTTP cache headers, etc.

The CheckTime is defined on the MPD-documented media time axis; when the client’s playback time reaches CheckTime it should fetch a new MPD.
Then, the Media Segment list is further restricted by the CheckTime together with the MPD attribute timeShiftBufferDepth such that only Media Segments for which the sum of the start time of the Media Segment and the Period start time falls in the interval [NOW-timeShiftBufferDepth-duration, min(CheckTime, NOW)] are included.

A.4
Seeking

Assume that a client attempts to seek to a specific presentation time tp in a Representation with start time PeriodStart. PeriodStart defines the absolute start time of the Media Segment in the Media Presentation, i.e. for On-Demand services the start time of the Period needs to be added and for live services, in addition also the value of the availabilityStartTime attribute needs to be added. Before accessing the Media Segments of a Representation, the client needs to download the Initialisation Segment, if present.

Based on the MPD, the client has access to the Media Segment start time and Media Segment URL of each Segment in the Representation. The Segment index segment_index of the Segment most likely to contain media samples for presentation time tp is obtained as the maximum Segment index i, for which the start time MediaSegment[i].StartTime is smaller or equal to the presentation time relative to the Representation start time tp-PeriodStart, i.e.

segment_index = max { i | MediaSegment[i].StartTime <= tp - PeriodStart }.

The Segment URL is obtained as MediaSegment[segment_index].URL.

Note that timing information in the MPD may be approximate due to issues related to placement of Representation access Points, alignment of media tracks and media timing drift. As a result, the Segment identified by the procedure above may begin at a time slightly after tp and the media data for presentation time tp may be in the previous Media Segment. In case of seeking, either the seek time may be updated to equal the first sample time of the retrieved file, or the preceeding file may be retrieved instead. However, note that during continuous playout, including cases where there is a switch between alternative versions, the media data for the time between tp and the start of the retrieved Segment is always available.

For accurate seeking to a presentation time tp, the HTTP-Streaming Client needs to access a representation access point (RAP). To determine the representation access point in a Media Segment in case of 3GPP Adaptive HTTP Streaming, the client may, for example, use the information in the ‘sidx’ box if present to locate the representation access points and the corresponding presentation time in the Media Presentation. In the case that a Segment is a 3GPP movie fragment, it is also possible for the client to use information within the ‘moof’ and ‘mdat’ boxes, for example, to locate RAPs and obtain the necessary presentation time from the information in the movie fragment and the segment start time derived from the MPD. If no RAP with presentation time before the requested presentation time tp is available, the client may either access the previous Segment or may just use the first representation access point as the seek result. When Media Segments start with a RAP, these procedures are simple.

Also note that not necessarily all information of the Media Segment needs to be downloaded to access the presentation time tp. The client may for example initially request the ‘sidx’ box from the beginning of the Media Segment using byte range requests. By use of the ‘sidx’, segment timing can be mapped to byte ranges of the Segment. By continuously using partial HTTP requests, only the relevant parts of the Media Segment may be accessed for improved user experience and low start-up delays.

A.5
Support for Trick Modes

The client may pause or stop a Media Presentation. In this case client simply stops requesting Media Segments or parts thereof. To resume, the client sends requests to Media Segments, starting with the next fragment after the last requested fragment.

If the MPD for a specific Representation contains the TrickMode element, then this Representation is explicitly enabled for the use with trick modes. The client may play the Representation with any speed up to the regular speed times the specified alternatePlayoutRate attribute with the same decoder profile and level requirements as the normal playout rate.

The client may use multiple Representations to support trick mode behaviour.

A.6
Switching Representations

Based on updated information during an ongoing Media Presentation, a client may decide to switch Representations. Switching to a “new” Representation is equivalent to tuning in or seeking to the new Representation from the time point where the "old" Representation has been presented. Once switching is desired, the client should seek to a RAP in the “new” Representation at a desired presentation time tp later than and close to the current presentation time. Presenting the “old” Representation up to the RAP in the “new” Representation enables seamless switching.

Aligning RAPs across different Representations may be advantageous in locating RAPs in other Representations.

A.7
Reaction to Error Codes

The HTTP Streaming client provides a streaming service to the user by issuing HTTP requests for Segments at appropriate times. The HTTP Streaming client may also update the MPD by using HTTP requests. In regular operation mode, the server typically responds to such requests with status code 200 OK (for regular GET) or status code 206 Partial Content (for partial GET) and the entity corresponding to the requested resource. Other Successful 2xx or Redirection 3xx status codes may be returned.

HTTP requests may result in a Client Error 4xx or Server Error 5xx status code. Some guidelines are provided in this section as to how an HTTP client may react to such error codes.

If the HTTP Client receives an HTTP client or server error (i.e. messages with 4xx or 5xx error code), the client should respond appropriately to the error code.

If the HTTP Client receives a repeated HTTP error for the request of an MPD, the appropriate response may involve terminating the streaming service.

If the HTTP Client receives an HTTP client error (i.e. messages with 4xx error code) for the request of an Initialisation Segment, the Period containing the Initialisation Segment may not be available anymore or may not be available yet. In this case the client should check if the precision of the time synchronization to a globally accurate time standard is sufficiently accurate. In case of repeated errors, the client should check for an update of the MPD.

If the HTTP Client receives an HTTP client error (i.e. messages with 4xx error code) for the request of a Media Segment, the requested Media Segment may not be available anymore or may not be available yet. In this case the client should check if the precision of the time synchronization to a globally accurate time standard is sufficiently accurate. In case of repeated errors, the client should check for an update of the MPD.

Upon receiving server errors (i.e. messages with 5xx error code), the client should check for an update of the MPD. The client may also check for alternative representations that are hosted on a different server.
A.8
Encoder Clock Drift Control

Non-alignment between the end of a Representation in one Period and the start time of the next Period may be caused by encoder clock inaccuracy. The client should align the media presentation time at each Period start. In addition, significant deviations of the start time of segments to the media time should be detected and drift-compensating measures may be applied even before the start of the next period is reached.
During long live streaming sessions, a difference in clock accuracy of the encoder and decoder may cause the playback to lag behind real-time or to interrupt temporarily due to the client trying to access data faster than real-time. Clients may avoid these anomalies by using the Producer Reference Time boxes as defined in section E.5 as follows. The pace r1 of the encoder clock in relation to the UTC is recovered from Producer Reference Time boxes. If the relative pace r1 is less than 1, equal to 1, or greater than 1, the encoder clock runs more slowly than the UTC, at an identical pace compared to the UTC, or faster than the UTC, respectively. The pace r2 of the receiver playout clock in relation to UTC is created by accessing a UTC source. A timescale multiplication factor c is equal to r1/r2. A presentation time on a timeline of the receiver playout clock is derived for each sample or access unit by multiplying the composition time of the sample (as indicated by the file format structures) or the presentation time of the access unit (as indicated by the respective Program Elementary Stream header) by the timescale multiplication factor c.
Annex B Media Presentation Description Schema

Editor's Note: to be updated
	<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009"

attributeFormDefault="unqualified"

elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009">

<xs:annotation>

<xs:appinfo>Media Presentation Description</xs:appinfo>

<xs:documentation xml:lang="en">

This Schema defines 3GPP Media Presentation Description!

</xs:documentation>

</xs:annotation>
<!-- MPD: main element -->

<xs:element name="MPD" type="MPDtype"/>
<!-- MPD Type -->

v<xs:complexType name="MPDtype">

<xs:sequence>

<xs:element minOccurs="0" name="ProgramInformation" type="ProgramInformationType"/>

 <xs:element minOccurs="0" name="DeltaSupport" type="DeltaSupportType"/>

<xs:element maxOccurs="unbounded" name="Period" type="PeriodType"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute default="OnDemand" name="type" type="PresentationType"/>

<xs:attribute name="availabilityStartTime" type="xs:dateTime"/>

<xs:attribute name="availabilityEndTime" type="xs:dateTime"/>

<xs:attribute name="mediaPresentationDuration" type="xs:duration"/>

<xs:attribute name="minimumUpdatePeriodMPD" type="xs:duration"/>

<xs:attribute name="minBufferTime" type="xs:duration" use="required"/>

<xs:attribute name="timeShiftBufferDepth" type="xs:duration"/>

<xs:attribute name="suggestedPresentationDelay" type="xs:duration"/>

<xs:attribute name="baseURL" type="xs:anyURI"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Type of presentation - live or on-demand -->

<xs:simpleType name="PresentationType">

<xs:restriction base="xs:string">

<xs:enumeration value="OnDemand"/>

<xs:enumeration value="Live"/>

</xs:restriction>

</xs:simpleType>

<!-- Period of a presentation -->

<xs:complexType name="PeriodType">

<xs:sequence>

<xs:element minOccurs="0" name="SegmentInfoDefault" type="SegmentInfoDefaultType"/>

<xs:element maxOccurs="unbounded" name="Representation" type="RepresentationType"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="start" type="xs:duration"/>

<xs:attribute name="id" type="xs:string"/>

<xs:attribute default="false" name="segmentAlignmentFlag" type="xs:boolean"/>

<xs:attribute default="false" name="bitStreamSwitchingFlag" type="xs:boolean"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Program information for a presentation -->

<xs:complexType name="ProgramInformationType">

<xs:sequence>

<xs:element minOccurs="0" name="Title" type="xs:string"/>

<xs:element minOccurs="0" name="Source" type="xs:string"/>

<xs:element minOccurs="0" name="Copyright" type="xs:string"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="moreInformationURL" type="xs:anyURI"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>
<!--DeltaSupport for the MPD -->

<xs:complexType name="DeltaSupportType">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="sourceURL" type="xs:anyURI" use="required"/>

 <xs:attribute name="availabilityDuration" type="xs:duration" />

 <xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>
<!-- Default Segment access information -->

<xs:complexType name="SegmentInfoDefaultType">

<xs:sequence>

<xs:element minOccurs="0" name="InitialisationSegmentURL" type="UrlType"/>
 <xs:element minOccurs="0" name="BaseURL" type="xs:anyURI"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="duration" type="xs:duration"/>

<xs:attribute name="startIndex" type="xs:unsignedInt"/>

<xs:attribute name="sourceUrlTemplate" type="xs:string"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- A Representation of the presentation content for a specific Period -->

<xs:complexType name="RepresentationType">

<xs:sequence>

<xs:element minOccurs="0" name="SegmentInfo" type="SegmentInfoType"/>

<xs:element name="SubRepresentation" type="SubRepresentionType"/>

<xs:element minOccurs="0" maxOccurs="unbounded" name="ContentProtection" type="ContentDescriptorType"/>

<xs:element minOccurs="0" name="TrickMode" type="TrickModeType"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required"/>

<xs:attribute name="bandwidth" type="xs:unsignedInt" use="required"/>

<xs:attribute default="0" name="group" type="xs:unsignedInt"/>

<xs:attribute name="width" type="xs:unsignedInt"/>

<xs:attribute name="height" type="xs:unsignedInt"/>

<xs:attribute name="lang" type="xs:string"/>

<xs:attribute name="mimeType" type="xs:string" use="required"/>

<xs:attribute default="false" name="startWithRAP" type="xs:boolean"/>

<xs:attribute name="qualityRanking" type="xs:unsignedInt"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>
<!-- A Representation of the presentation content for a specific Period -->

<xs:complexType name="SubRepresentationType">

<xs:sequence>

<xs:element minOccurs="0" name="TrickMode" type="TrickModeType"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="level" type="xs:unsignedInt" use="required"/>

<xs:attribute name="bandwidth" type="xs:unsignedInt" use="required"/>

<xs:attribute name="frameRate" type="xs:double"/>

<xs:attribute name="trickModeApr" type="xs:double"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Segment access information -->

<xs:complexType name="SegmentInfoType">

<xs:sequence>

 <xs:element minOccurs="0" name="BaseURL" type="xs:anyURI"/>

<xs:element minOccurs="0" name="InitialisationSegmentURL" type="UrlType"/>

<xs:choice minOccurs="0">

<xs:element minOccurs="0" name="UrlTemplate" type="UrlTemplateType"/>

<xs:sequence>

<xs:element maxOccurs="unbounded" name="Url" type="UrlType"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded"/>

</xs:choice>

</xs:sequence>

<xs:attribute name="duration" type="xs:duration"/>

<xs:attribute default="1" name="startIndex" type="xs:unsignedInt"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- A Segment URL -->

<xs:complexType name="UrlType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="sourceURL" type="xs:anyURI"/>

<xs:attribute name="range" type="xs:string"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- A URL template -->

<xs:complexType name="UrlTemplateType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="sourceURL" type="xs:anyURI"/>

<xs:attribute name="endIndex" type="xs:unsignedInt"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Gives information about the content protection -->

<xs:complexType name="ContentDescriptorType">

<xs:sequence>

<xs:element minOccurs="0" name="SchemeInformation" type="xs:string"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="schemeIdUri" type="xs:anyURI" use="required"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<!-- Gives information about trick mode -->

<xs:complexType name="TrickModeType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute default="1" name="alternatePlayoutRate" type="xs:string"/>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>
</xs:schema>

Namespaces may be used to extend functionalities. As with typical XML practice, any elements or attributes not supported by the terminal shall be ignored. Therefore, all extended elements and attributes added to a Representation in particular shall be such that they can be safely ignored by HTTP streaming clients.

An example for a valid MPD is as follows:

	<?xml version="1.0" encoding="UTF-8"?>

<MPD

type="Live"

baseUrl="http://www.example.com"

minimumUpdatePeriodMPD="PT20S"

minBufferTime="PT10S"

mediaPresentationDuration="PT2H"

availabilityStartTime="2010-04-01T09:30:47Z"

availabilityEndTime="2010-04-07T09:30:47Z"

timeShiftBufferDepth="PT30M"
xsi:schemaLocation="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009 3GPP-MPD-r1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009">

<ProgramInformation moreInformationURL="http://www.example.com">

<Title>Example</Title>

</ProgramInformation>

<Period start="PT0S">

<Representation

mimeType="video/3gpp; codecs=s263, samr"

bandwidth="256000"
 id="256">

<SegmentInfo duration="PT10S">

 <BaseURL>"rep1"</BaseURL>

<InitialisationSegmentURL sourceURL="seg-init.3gp"/>

<Url sourceURL="seg-1.3gp"/>

<Url sourceURL="seg-2.3gp"/>

<Url sourceURL="seg-3.3gp"/>

</SegmentInfo>

</Representation>

<Representation

mimeType="video/3gpp; codecs=mp4v.20.9, mp4a.E1"

bandwidth="128000"

 id="128">

<SegmentInfo duration="PT10S">

 <BaseURL>"rep2"</BaseURL>

<InitialisationSegmentURL sourceURL="seg-init.3gp"/>

<Url sourceURL="seg-1.3gp"/>

<Url sourceURL="seg-2.3gp"/>

<Url sourceURL="seg-3.3gp"/>

</SegmentInfo>

</Representation>

</Period>

<Period start="PT30S">

<SegmentInfoDefault

duration="PT10S"

sourceUrlTemplate="http://example.com/$RepresentationId$/$Index$.3gp"/>

<Representation

mimeType="video/3gpp; codecs=mp4v.20.9, mp4a.E1"

bandwidth="256000"

 id="1">

<SegmentInfo>

<InitialisationSegmentURL sourceURL="seg-init-1.3gp"/>

</SegmentInfo>

</Representation>

<Representation

mimeType="video/3gpp; codecs=mp4v.20.9, mp4a.E1"

bandwidth="128000"

 id="2">

<SegmentInfo>

<InitialisationSegmentURL sourceURL="seg-init-2.3gp"/>

</SegmentInfo>

</Representation>

</Period>

</MPD>

Annex C (informative):
MPD Examples
C.1 On-Demand Service
Editor's Note: to be provided
C.2 Live Service
Editor's Note: to be provided
C.3 XLink
Editor's Note: to be provided
C.4 MPD Deltas
In the following MPD example, the content is 30 minutes in duration. There are 3 Periods, each of 10 minutes duration. Each Period has 3 Representations and each Representation is contained within one 3gp file. Each Representation has audio encoded with Low Complexity-AAC. One Representation of each Period (p1rep1.3gp, p2rep1.3gp, and p3rep1.3gp) has video resolution 320x240 encoded with H.264 baseline profile level 1.1. Another Representation of each Period (p1rep2.3gp, p2rep2.3gp, and p3rep2.3gp) has resolution 320x240 encoded with H.264 baseline profile level 1.3. Finally, a third representation in each period (p1rep3.3gp, p2rep3.3gp, and p3rep3.3gp) has resolution 480x240 encoded with H.264 baseline profile level 2.1. One Representation of each Period has bandwidth of 239 kbps, a second representation has bandwidth of 478 kbps, and a third representation has bandwidth of 892 kbps.

Since each represention is contained in one file, the initialization segments and the media segments for a representation are accessed with byte ranges. Each “Url” element in the MPD contains a “range” and the corresponding byte range for the initialization segment or media segment. For the example each segment of all representations is 10 seconds in duration.

Line numbers of the MPD in the example are shown for clarity, although these would not be present in the MPD.

EXAMPLE1 (add)

The change of adding the ‘Url’ element for the last Segment to the Representation of the third Period with 239K bandwidth can be described as

517a
 <Url range="17339554-17642841"/>
.

The line number of the MPD where the delta is applied is 517. The following line is added

EXAMPLE2 (replace)

Consider the change of replacing the line containing the DeltaSupport element in the next MPD.

20c

 <DeltaSupport sourceURL="delta2.mpdd" availabilityDuration="120s"/>
.

EXAMPLE3(delete)

If lines 8 through 10 of the original MPD are deleted and not present in the updated MPD, the delta to express this is:

8,10d

.
Below is what the MPD looks like after 30 minutes. In this case, the MPD is updated approximately every 10 seconds.

	1<?xml version="1.0" encoding="UTF-8"?>

2<MPD

3 type="Live"

4 availabilityStartTime="2010-07-01T05:00:00Z"

5
 availabilityEndTime="2010-07-08T05:00:00Z"

6 mediaPresentationDuration="PT2H"

7 minimumUpdatePeriodMPD="PT10S"

8 minBufferTime="PT10S"

9 timeShiftBufferDepth="PT30M"

10 baseUrl="http://www.example.com/"

11 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

12 xsi:schemaLocation="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2010 3GPP-MPD-r2.xsd"

13 xmlns="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2010">

14
15
<ProgramInformation moreInformationURL="http://www.example.com">

16
 <Title>Example</Title>

17 <Source>Example</Source>

18 <Copyright>Example</Copyright>

19
</ProgramInformation>

20 <DeltaSupport sourceURL="delta1.mpdd" availabilityDuration="120s"/>

21
<Period start="PT0S" segmentAlignmentFlag="true" bitstreamSwitchingFlag="true">

22

<Representation Id="0" bandwidth="239000" width="320" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E00b, mp4a.40.2" >

23

<SegmentInfo duration="PT10S" baseURL="p1rep1.3gp">

24

<InitialisationSegmentURL range="0-985" />

25 <Url range="986-293761" />

26 <Url range="293762-592501" />

 .

 .

 .

84 <Url range="17600065-17894640" />

85

</SegmentInfo>

86

</Representation>

87

<Representation Id="1" bandwidth="478000" width="320" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E00d, mp4a.40.2" >

88

<SegmentInfo duration="PT10S" baseURL="p1rep2.3gp">

89

<InitialisationSegmentURL range="0-985" />

90 <Url range="986-586538" />

91 <Url range="586539-1184019" />

 .

 .

 .

149 <Url range="35199171-35788323" />

150

</SegmentInfo>

151 </Representation>

152 <Representation Id="2" bandwidth="892000" width="480" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E015, mp4a.40.2" >

153

<SegmentInfo duration="PT10S" baseURL="p1rep3.3gp">

154

<InitialisationSegmentURL range="0-985" />

155 <Url range="986-1093691" />

156 <Url range="1093692-2208656" />

 .

 .

 .

214 <Url range="65684646-66784068" />

215

</SegmentInfo>

216
</Representation>

217</Period>

217<Period start="PT10M0S" segmentAlignmentFlag="true" bitstreamSwitchingFlag="true">
218 <Representation Id="0" bandwidth="239000" width="320" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E00b, mp4a.40.2" >

219

<SegmentInfo duration="PT10S" baseURL="p2rep1.3gp">

220

<InitialisationSegmentURL range="0-985" />

221 <Url range="986-296011" />

222 <Url range="296012-595787" />

 .

 .

 .

280 <Url range="17647666-17946154" />

281

</SegmentInfo>

282 </Representation>

283 <Representation Id="1" bandwidth="478000" width="320" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E00d, mp4a.40.2" >

284

<SegmentInfo duration="PT10S" baseURL="p2rep2.3gp">

285

<InitialisationSegmentURL range="0-985" />

286 <Url range="986-591037" />

 <Url range="591038-1190590" />

 .

 .

 .

385 <Url range="35294377-35891354" />

386

</SegmentInfo>

387 </Representation>

388 <Representation Id="2" bandwidth="892000" width="480" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E015, mp4a.40.2" >

389

<SegmentInfo duration="PT10S" baseURL="p2rep3.3gp">

390

<InitialisationSegmentURL range="0-985" />

391 <Url range="986-1102088" />

392 <Url range="1102089-2220920" />

 .

 .

 .

450 <Url range="65862331-66976355" />

451
</SegmentInfo>

452
</Representation>

453</Period>

454<Period start="PT20M0S" segmentAlignmentFlag="true" bitstreamSwitchingFlag="true">

455
<Representation Id="0" bandwidth="239000" width="320" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E00b, mp4a.40.2" >

456

<SegmentInfo duration="PT10S" baseURL="p3rep1.3gp">

457

<InitialisationSegmentURL range="0-985" />

458 <Url range="986-302469" />

459 <Url range="302470-597839" />

 .

 .

 .
517 <Url range="17040002-17339553" />

518

</SegmentInfo>

519
</Representation>

520
<Representation Id="1" bandwidth="478000" width="320" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E00d, mp4a.40.2" >

521

<SegmentInfo duration="PT10S" baseURL="p3rep2.3gp">

522

<InitialisationSegmentURL range="0-985" />

523 <Url range="986-603953" />

524 <Url range="603954-1194693" />

 .

 .

 .
582 <Url range="34079046-34678149" />

583

</SegmentInfo>

584 </Representation>

585 <Representation Id="2" bandwidth="892000" width="480" height="240" lang="en" mimeType="video/3gpp; codecs=avc1.42E015, mp4a.40.2" >

586

<SegmentInfo duration="PT10S" baseURL="p3rep3.3gp">

587

<InitialisationSegmentURL range="0-985" />

588 <Url range="986-1126190" />

589 <Url range="1126191-2228575" />

 .

 .

 .
647 <Url range="63594383-64712374" />

648

</SegmentInfo>

649
</Representation>

650 </Period>

651</MPD>

Since the value of @sourceURL in the above MPD is “delta1.mpdd ”, delta1.mpdd is an empty file at the time of publication of the above MPD.

The following file is delta1.mpdd after the next MPD update. Notice that clients have access to the new value of @sourceURL referenced by the latest MPD via the delta.
	647a
 <Url range="64712375-65844316"/>
.

582a

 <Url range="34678150-35284727"/>
.

517a
 <Url range="17339554-17642841"/>
.

20c

 <DeltaSupport sourceURL="delta2.mpdd" availabilityDuration="120s"/>
.

At the next MPD update, “delta1.mpdd” would contain the cumulative update for 2 MPD updates.

	647a
 <Url range="64712375-65844316"/>
 <Url range="65844317-66966044"/>

.

582a

 <Url range="34678150-35284727"/>
 <Url range="35284728-35885833"/>

.

517a
 <Url range="17339554-17642841"/>
 <Url range="17642842-17943394"/>

.

20c

 <DeltaSupport sourceURL="delta3.mpdd" availabilityDuration="120s"/>
.

Annex D (informative):
Guidelines for Adaptive HTTP Streaming
D.1
Content-Preparation Modes
D.1.1
Introduction
The specification on adaptive HTTP Streaming is restricted to the interface between the HTTP -Streaming Client and the HTTP-Streaming Server. The content preparation on the network-side is out of scope of this specification. In this clause, guidelines on two different modes how the network can prepare the content to serve the HTTP requests issued by the HTTP-Streaming client.

D.1.2
Static Mode
Static content preparation mode is an approach for delivering media content over HTTP as static content. The server is not required to prepare the content in any way. Instead, the content preparation is done in advance, possibly offline, by a separate entity. The server may be a web server that serves the media file(s) as any other regular static file. Figure A.1 shows an example HTTP-Streaming architecture for the static content serving mode. Figure A.1 shows an example HTTP-Streaming architecture for the static content serving mode.
[image: image9.png]
Figure A.1: HTTP-Streaming Architecture for the Static Content Serving Mode
D.1.3
Dynamic Mode
In dynamic content serving mode, the streaming server dynamically tailors the streamed content to a client based on requests from the client. The HTTP streaming server interprets the incoming HTTP GET request and identifies the requested media samples from a given content. The server then locates the requested media samples in the content file(s) or from the live stream. It then extracts and envelopes the requested media samples in a container. Subsequently, the newly formed container with the media samples is delivered to the client in the HTTP GET response body. Figure A.2 shows an example HTTP-Streaming architecture for the dynamic content serving mode. Figure Q.2 shows an example HTTP-Streaming architecture for the dynamic content serving mode.

[image: image10.emf]HTTP Server

HTTP

Streaming

Client

Dynamic

Streaming

Server

1:

HTTP

Streaming

HTTP Cache

Content

Provider

Storage

3: CGI

or

REST

2:

Content

Delivery

Description

Figure A.2: HTTP-Streaming Architecture for the Dynamic Content Serving Mode

A.2
Mapping MPD structure and semantics to SMIL
A.2.1
General
The mapping presented in this Annex allows transformation of the MPD table and the XML schema defined in section 7.3 to a SMIL-based syntax. This transformation may be effected automatically, for instance, using XSLT, at the client or the server. The MPD structure and semantics will be retained in the SMIL-based syntax.

The first 3 columns of Table Q.1 below contain the elements and attributes from the MPD table 7.2. Column 1 contains an MPD element, column 2 lists its children elements and column 3 lists its attributes.

Column 4 indicates how elements/attributes from this structure can be mapped to elements/attributes in 3GPP SMIL. That is, it indicates which 3GPP SMIL attributes/elements can be used to provide equivalent functionality.

Note that “3GPP SMIL” as used in this document refers to the 3GPP SMIL Language profile defined in TS 26.246 [6].

In some cases to match the semantics from Table 7.2, new attributes/elements that are not defined in 3GPP SMIL, are required. Column 5 lists these attributes or elements. These would be added to 3GPP SMIL as extensions indicated by the “3g9” identifier defined in the same namespace as that for 3GPP HTTP streaming in section 7.3, viz., xmlns="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009".

In many cases deployments that do not use the new elements and attributes from column 5 are feasible– these elements and attributes are either optional or existing SMIL constructs can be used as an alternative (e.g., playlists can be used instead of templates). System deployers should only use constructs in column 4 if they want compatibility with legacy 3GPP SMIL clients. If support for extension elements and attributes has been added to 3GPP SMIL clients, deployments can leverage constructs in column 4 as well as 5.

Table Q.1: Mapping MPD structure, semantics and syntax to SMIL
	Element
	Children Elements
	Attribute
	Mapping to 3GPP SMIL
	Extension to 3GPP SMIL

	MPD
	BaseURL, Period, ProgramInformation
	
	body
	

	
	
	type
	
	type

	
	
	availabilityStartTime
	
	availabilityStartTime

	
	
	availabilityEndTime
	
	availabilityEndTime

	
	
	mediaPresentationDuration
	
	mediaPresentationDuration

	
	
	minimumUpdatePeriodMPD
	
	minimumUpdatePeriodMPD

	
	
	minBufferTime
	
	minBufferTime

	
	
	timeShiftBufferDepth
	
	timeShiftBufferDepth

	Period
	Representation, SegmentInfoDefault
	
	seq, switch
	

	
	
	start
	begin
	

	
	
	id
	id
	

	
	
	segmentAlignmentFlag
	
	segmentAlignmentFlag

	
	
	bitstreamSwitchingFlag
	
	bitStreamSwitchingFlag

	ProgramInformation
	Source, Copyright, Title
	
	meta
	

	
	
	moreInformationURL
	
	moreInformationURL

	BaseURL
	
	
	
	BaseURL

	Representation
	SegmentInfo, ContentProtection, TrickMode
	
	seq
	

	
	
	id
	id
	

	
	
	bandwidth
	systemBitrate
	

	
	
	width, height
	systemScreenSize
	

	
	
	lang
	systemLanguage
	

	
	
	mimeType
	systemComponent
	

	
	
	group
	
	group

	
	
	startWithRAP
	
	startWithRAP

	
	
	qualityRanking
	
	qualityRanking

	SegmentInfo
	InitialisationSegmentUrl, Url, UrlTemplate

BaseURL
	
	par, seq

When track alignment across Segments cannot be guaranteed, par should be used with each children URL containing begin and dur attributes.
	SegmentInfo element with playback semantics identical to those defined in section 12.2. That is, all children elements of SegmentInfo are time-continuous across boundaries of consecutive Media Segments within one Representation.

	
	
	duration
	dur specified for each Url in playlist, possibly in conjunction with begin
	

	
	
	startIndex
	
	startIndex

	InitialisationSegmentURL
	
	
	See Url below.

To identify initialization segments, either dur can be set to “0” or type can be set to “init”
	

	Url
	
	
	MEDIA-ELMS (ref, video, audio, etc.) as defined in 3GPP SMIL along with all attributes defined for those elements
	

	
	
	sourceURL
	src (only allows absolute URIs).
	sourceURL with URI resolution semantics defined in 12.2.4.2.1. This attribute is also defined for the MPD, SegmentInfo, SegmentInfoDefault and Url elements

	
	
	range
	
	range

	UrlTemplate
	
	
	Url playlists may be used as an alternative to urlTemplate
	UrlTemplate (along with attributes defined for UrlTemplate)

	SegmentInfoDefault
	UrlTemplate
	
	This element may be skipped and information provided directly at SegmentInfo level instead
	SegmentInfoDefault

	
	
	duration
	
	See duration in Segment

	
	
	startIndex
	
	startIndex

	
	
	sourceUrlTemplate
	
	sourceUrlTemplate

	ContentProtection
	SchemeInfo
	
	For 3GP files, content protection may be achieved through mechanisms defined in 3GP file format
	ContentProtection

	
	
	schemeId
	
	schemeId

	SchemeInformation
	
	
	
	SchemeInfo

	TrickMode
	alternatePlayoutMode
	
	
	TrickMode

The examples below illustrate the use of a SMIL-based syntax. The examples include 3GPP SMIL constructs as well as extensions to 3GPP SMIL.

A.2.2
Examples

A.2.2.1
Example 1: MPD for on-demand content with multiple Periods and alternate Representations
<smil xmlns="http://www.w3.org/2001/SMIL20/Language"

 xmlns:3g9="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009">

<body>

<!-- Period 1-->

<seq begin=”0s”>

<!-- alternate set of Representations available during this Period -->

<switch>

<!-- low bitrate Representation with 15-sec Segments -->

<seq systemBitrate=”128000”>

<video dur=”0s” src="http://server/path/rep1/clip_init.3gp"/>

<par>

<video begin=”0s” dur=”15s” src="http://server/path/rep1/clip_1.3gp"/>

 <video begin=”15s” dur=”15s” src="http://server/path/rep1/clip_1.3gp"/>

...

<video begin=”585s” dur=”15s” src="http://server/path/rep1/clip_40.3gp"/>

</par>

 </seq>

<!-- mid bitrate Representation with 30-sec Segments -->

<seq systemBitrate=”256000”>

<video dur=”0s” src="http://server/path/rep2/clip_init.3gp”/>

<par>

<video begin=”0s” dur=”30s” src="http://server/path/rep2/clip_1.3gp"/>

 ...

<video begin=”570s” dur=”30s” src="http://server/path/rep2/clip_20.3gp"/>

</par>

 </seq>

<!-- high bitrate Representation with 30-sec Segments-->

<seq systemBitrate=”512000”>

<video type=”init” dur=”0s” src="http://server/path/rep3/clip_init.3gp”/>

<par>

<video begin=”0s” dur=”30s” src="http://server/path/rep3/clip_1.3gp"/>

...

<video begin=”570s” dur=”30s” src="http://server/path/rep3/clip_20.3gp"/>

</par>

</seq>

</switch>

</seq> <!-- end of Period 1 -->

<!-- Period 2 begins 10 minutes after presentation start -->

<seq begin=”600s”>

<switch>

<!-- english ad -->

<seq systemLanguage=”en” >

<seq>

<video src=”http://adserver/getad.php?id=1“/>

</seq>

</seq>

<!-- french ad -->

<seq systemLanguage=”fr” >

<seq>

<video src=”http://adserver/getad.php?id=2“/>

</seq>

</seq>

</switch>

</seq>

<!--start of Period 3. Note that mid bitrate Representation is missing during this Period. Also the server used to deliver Segments is different than the one in the previous Period. The use of URL resolution as defined by sourceURL is illustrated -->

<seq begin=”630s” 3g9:sourceURL=”http://new-server/new-path/”>

<switch>

<!-- low bitrate -->

<seq systemBitrate=”128000” 3g9:baseURL=”rep1/”>

<!-- no initialisation Segment -->

<par>

<video begin=“0s“ dur=“15s“ 3g9:sourceURL="clip41.3gp”/>

...

</par>

</seq>

<!-- high bitrate -->

<seq systemBitrate=”512000” 3g9:baseURL=”rep3/”>

<video type=”init” dur=”0s' 3g9:sourceURL=”clip2x_init.3gp”/>

<par>

<!-- URLs can include a byte range -->

<video begin=”0s” dur=”30s” 3g9:sourceURL=”clip2x.3gp” 3g9:range=“500-2000”/>

<video begin=”30s” dur=”30s” 3g9:sourceURL=”clip2x.3gp” 3g9:range=“2001-2500”/>

…

</par>

</seq>

</switch>

 </seq>

 <!-- more Periods can go here as required -->

 …

</body>

</smil>

A.2.2.2
Example 2: MPD for live content
MPD that includes availabilityStartTime and availabilityEndTime extensions to enforce lifetime and the minimumUpdatePeriodMPD extension to help clients choose an update period. Note that Segment format used in the example is MPEG-2 TS.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language"

 xmlns:3g9="urn:3GPP:ns:PSS:AdaptiveHTTPStreamingMPD:2009">

<body 3g9: minimumUpdatePeriodMPD =”120s” 3g9:availabilityStartTime=”2010-01-27T13:00Z” 3g9:availabilityEndTime=”2010-01-27T15:00Z”3g9:minBufferTime=”10s” 3g9:type=”live”>

<!-- start of a Period -->

<seq begin=”0s”>

<!-- a single Representation -->

<seq>

<par>

<video begin=“0s“ dur=“10s“ src=“http://server/live_clip_1.m2ts“/>

…

<video begin=“110s“ dur=“10s“ src=”http://server/live_clip_12.m2ts”/>

</par>

</seq> <!-- end of Representation -->

 </seq> <!-- end of Period -->

</body>

</smil>

Annex E:
ISO base media file format extensions for 3GPP DASH support

E.1 Introduction
This section documents extensions to the ISO base media file format [11] for the support of 3GPP DASH. It is expected that these boxes will be integrated in an updated version of ISO/IEC 14496-12 [11].
E.2 Level Assignment Box
E.2.1
Definition

Box Type:
`leva’
Container:
Movie Extends Box (`mvex’)
Mandatory:
No
Quantity:

Zero or one
Levels specify subsets of the file. Samples mapped to level n may depend on any samples of levels m, where m <= n, and shall not depend on any samples of levels p, where p > n.

Levels cannot be specified for the initial movie. When the Level Assignment box is present, it applies to all movie fragments subsequent to the initial movie.

For the context of the Level Assignment box, a fraction is defined to consist of one or more Movie Fragment boxes and the associated Media Data boxes, possibly including only an initial part of the last Media Data Box. Within a fraction, data for each level shall appear contiguously. Data for levels within a fraction shall appear in increasing order of level value. All data in a fraction shall be assigned to levels.

NOTE: In the context of 3G DASH, each subsegment indexed within a Subsegment Index box is a fraction.

The Level Assignment box provides a mapping from features, such as temporal sub-sequences, to levels. A feature can be specified through a track or a sample grouping of a track.

The following assignment_types are defined; assignment_type values greater than 4 are reserved, while the semantics for the other values are specified as follows.
· 0: sample groups are used to specify levels, i.e., samples mapped to different sample group description indexes of a particular sample grouping lie in different levels within the identified track; other tracks are not affected and must have all their data in precisely one level;

· 1: as for assignment_type 0 except assignment is by a parameterized sample group;

· 2, 3: level assignment is by track (see the Subsegment Index Box for the difference in processing of these levels)
The sequence of assignment_types is restricted to be a set of zero or more of type 2 or 3, followed by zero or more of exactly one type.

E.2.2
Syntax
aligned(8) class LevelAssignmentBox extends FullBox(‘leva’, 0, 0) {
unsigned int(8)
level_count;

for (j=1; j <= level_count; j++) {

unsigned int(32)
track_id;

unsigned int(1)
padding_flag;

unsigned int(7)
assignment_type;

if (assignment_type == 0)

unsigned int(32)
grouping_type;

else if (assignment_type == 1) {

unsigned int(32)
grouping_type;

unsigned int(32)
grouping_type_parameter;

}

else if (assignment_type == 2) {} // no further syntax elements needed

else if (assignment_type == 3) {} // no further syntax elements needed
}
}

E.2.3
Semantics

level_count specifies the number of levels each fraction is grouped into. level_count shall be greater than or equal to 2.

track_id for loop entry j specifies the track identifier of the track assigned to level j.

padding_flag equal to 1 indicates that a conforming fraction can be formed by concatenating any positive integer number of levels within a fraction and padding the last Media Data box by zero bytes up to the full size that is indicated in the header of the last Media Data box. The semantics of padding_flag equal to 0 are unspecified.

assignment_type indicates the mechanism used to specify the assignment to a level. assignment_type values greater than 3 are reserved, while the semantics for the other values are specified as follows.
grouping_type and grouping_type_parameter, if present, specify the sample grouping used to map sample group description entries in the Sample Group Description box to levels. Level n contains the samples that are mapped to the sample group description entry having index n in the Sample Group Description box having the same values of grouping_type and grouping_type_parameter, if present, as those provided in this box.
E.3
Subsegment Index Box

E.3.1
Definition

Box Type:
`ssix’
Container:
File
Mandatory:
No
Quantity:
Zero or more
The Subsegment Index box ('ssix') provides a mapping from levels (as specified by the Level Assignment box) to byte ranges of the indexed subsegment. In other words, this box provides a compact index for how the data in is ordered according to levels into partial sub-segments. It enables a client to easily access data for partial subsegments by downloading contiguous ranges of data.

Samples of a partial subsegment may depend on any samples of preceding partial subsegments in the same subsegment, but not the other way around. For example, each partial subsegment contains samples having an identical temporal level (e.g., temporal sub-sequences) and partial subsegments appear in increasing temporal level order within the subsegment.
There may be 0 or 1 Subsegment Index boxes per each Segment Index box that does not refer to other Segment Index boxes, i.e. that only indexes subsegments but no segment indexes. A Subsegment Index box, if any, shall be the next box after the associated Segment Index box. A Subsegment Index box documents the subsegment that is indicated in the immediately preceding Segment Index box.

When a partial segment is accessed in this way, for all assignment_types other than 3, the final Media Data box may be incomplete, that is, less data is accessed than the length indication of the Media Data Box indicates is present. The length of the Media Data box may need adjusting, or padding used. The padding_flag in the Level Assignment Box indicates whether this missing data can be replaced by zeros. If not, the sample data for samples assigned to levels that are not accessed is not present, and care should be taken not to attempt to process such samples.

NOTE: assignment_type equal to 3 may be used, for example, when audio and video movie fragments (including the respective Media Data boxes) are interleaved. The first level can be specified to contain the audio movie fragments (including the respective Media Data boxes), whereas the second level can be specified to contain both audio and video movie fragments (including all Media Data boxes).

E.3.2
Syntax
aligned(8) class SubsegmentIndexBox extends FullBox(‘ssix’, 0, 0) {

unsigned int(32)
subsegment_count;

unsigned int(8)
subsegment_level_count;

for(i=1; i <= subsegment_count; i++)

for (j=1; j <= subsegment_level_count; j++)

unsigned int(32) accumulated_level_size;
}

E.3.3
Semantics
subsegment_count is a positive integer specifying the number of subsegments for which partial subsegment information is specified in this box. subsegment_count shall be equal reference_count (i.e., the number of movie fragment references) in the immediately preceding Segment Index box.
subsegment_level_count specifies the number of partial subsegment levels the media data is grouped into. subsegment_level_count shall be greater than or equal to 2.
accumulated_level_size, for the value of j equal to 1, indicates the size of the first partial subsegment. accumulated_level_size, for the value of j greater than 1, is equal to the previous value of accumulated_level_size plus the size of the partial subsegment with index j.
E.4
Temporal level sample grouping

E.4.1
Definition

Many video codecs support temporal scalability where it is possible to extract one or more subsets of frames that can be independently decoded. A simple case is the extraction of I frames for a bitstream with a regular I-frame interval, e.g,, IPPPIPPP…, where every 4th picture is an I frame. Also subsets of these I frames can be extracted for even lower frame rates. More elaborate situations with several temporal levels can be constructed using hierarchical B or P frames.

The Temporal Level sample grouping ('tele') provides a codec-independent sample grouping that can be used to group samples (access units) in a track (and potential track fragments) according to temporal level, where samples of one temporal level have no coding dependencies on samples of higher temporal levels. The temporal level equals the sample group description index (taking values 1, 2, 3, etc). The bitstream containing only the access units of from the first temporal level to a higher temporal level remains conforming to the coding standard.

A grouping according to temporal level facilitates easy extraction of temporal subsequences, for instance using the Subsegment Index box in section C.3.

E.4.2
Syntax

class TemporalLevelEntry() extends SampleGroupDescriptionEntry('tele')
{

bit(1)
level_independently_decodable;

bit(7)
reserved=0;
}
E.4.3
Semantics

The temporal level of samples in a sample group equals to the sample group description index.
level_independently_decodable is a flag. 1 indicates that all samples of this level have no coding dependencies on samples of other levels. 0 indicates that no information is provided.

E.5
Producer reference box

E.5.1
Definition

Box Type:
`prft’
Container:
File
Mandatory:
No
Quantity:
Zero or more
The producer reference time box supplies relative wall-clock times at which movie fragments, or files containing movie fragments (such as segments) were produced. When these files are both produced and consumed in real time, this can provide clients with information to enable them to synchronize consumption with the production and thus avoid buffer overflow or underflow.

This box is related to the next movie fragment box that follows it in bitstream order. It must follow any segment type or segment index box (if any) in the segment, and occur before the following movie fragment box (to which it refers). If a segment file contains any producer reference time boxes, then the first of them shall occur before the first movie fragment box in that segment.

The box contains a time value measured on a clock which increments at the same rate as a UTC-synchronized NTP clock, using NTP format. This is associated with a media time for one of the tracks in the movie fragment. That media time should be in the range of times in that track in the associated movie fragment.

E.5.2
Syntax

aligned(8) class ProducerReferenceTimeBox extends FullBox(‘srft’, version, 0) {

unsigned int(32) reference_track_ID;

unsigned int(64) ntp_timestamp;

if (version==0)

{

unsigned int(32)
media_time;

} else

{

unsigned int(64)
media_time;

}
}
E.5.3
Semantics
reference_track_ID provides the track_ID for the reference track.

ntp_timestamp indicates a UTC time in NTP format corresponding to decoding_time.

media_time corresponds to the same time as ntp_timestamp, but in the time units used for the reference track, and is measured on this media clock as the media is produced. Note that in most cases this timestamp will not be equal to the timestamp of the first sample of the adjacent segment of the reference track, but it is recommended it be in the range of the segment containing this producer reference time box.
Annex X (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2010-09
	49
	
	
	
	Presented for information
	
	1.0.0

_1319546099.vsd
HTTP Server

HTTP
Streaming Client

HTTP Cache

Dynamic Streaming Server

Content Provider

1:
HTTP Streaming

Storage

3: CGI or REST

2:
Content Delivery
Description

