3GPP TS 26.142 V1.0.0 (2006-11)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Dynamic and Interactive Multimedia Scenes;

(Release 7)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

Select keywords from list provided in specs database.

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

5Foreword

Introduction
5
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4
Overview and Architecture
6
5
Media-type Definition
7
5.1
Introduction
7
5.2
Media Type Components
7
5.3
Scene description
7
5.3.1
Base Scene Description
7
5.3.2
Scene Description Extensions
7
5.3.2.1
Introduction
7
5.3.2.2
Rectangular clipping of a graphical object
7
5.3.2.3
Fullscreen video
8
5.3.2.4
Fullscreen svg
8
5.4
Scene update mechanism
8
5.4.1
Primary-Stream Updates
8
5.4.1.1
Random Access Points in Primary Streams
8
5.4.2
Secondary-Stream Updates
8
5.4.2.1
Random Access Points in Secondary Streams
8
5.5
Overall timing model
9
6
Interaction, Scripting and State Management
9
6.1
Local interaction
9
6.2
Remote interaction
9
6.3
Scripting
10
6.4
State and Preferences Management
10
7
Compression
10
8
Transport
10
8.1
Overview
10
8.2
Tune-in and resynchronization
10
8.3
Embedding in existing protocols (HTTP etc.)
11
8.4
Download (including progressive download)
11
8.4.1
Storage in 3GP files
11
8.4.1.1
Introduction
11
8.4.1.2
Stream Type
11
8.4.1.3
Sample Entry Name and Format
11
8.4.1.4
Sample Format
12
8.4.1.5
Other Resources
12
8.4.1.6
Sync and Redundant Scenes
12
8.5
Error Resilience
12
8.5.1
Priority
13
8.5.2
Recovery Points
14
8.5.2.1
Recovery Point Syntax
15
8.5.2.2
Type 1 Recovery Unit Syntax
15
8.5.2.3
Type 2 Recovery Unit Syntax
15
8.6
Streaming
15
8.6.1
Error resilience
15
8.6.2
RTP Payload format for DIMS Streams
15
8.6.2.1
RTP Header Usage
15
8.6.2.2
Common Packet Header
16
8.6.2.3
Single DIMS unit
17
8.6.2.4
Aggregation Packets
17
8.6.2.5
Fragmentation Packets
18
8.6.3
MIME Parameters
19
8.6.4
SDP Parameters
20
9
Resource usage and device capabilities
21
9.1
Capability Exchange (UAProf etc.)
21
9.2
Profile
21
9.3
Level
21
10
Use of DIMS in existing subsystems
22
10.1
Codecs
22
10.2
PSS
22
10.3
MBMS
22
10.4
MMS
22
11
Content usage guidelines
22
12
Security and Content Protection Considerations
22
13
Registered Types
22
13.1
RTP Payload format MIME Type
22
13.2
‘Codecs’ Parameter for 3GP files
23
14
Open issues and considerations
23
14.1
Interaction outside the multimedia sub-system
23
14.1.1
Input modalities
23
14.1.2
Interface with existing applications and sub-systems
23
14.1.3
Notifications
23
14.2
Extensibility considerations
23
Annex A
(normative): Conformance Criteria
24
Annex B
(informative): Change history
25

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

DIMS is a dynamic, interactive, scene-based media system which enables display and interactive control of multimedia data such as audio, video, graphics, images and text. It ranges from a movie enriched with vector graphics overlays and interactivity (possibly enhanced with closed captions), to complex multi-step services with fluid interaction/interactivity and different media types at each step. The demand for such Rich Media service is increasing at a high pace, spurred by the development of the next generation mobile infrastructure and the generalization of TV content to new mobile environments.

Examples
1 Scope

DIMS defines a dynamic rich-media media system, including a media type, its transport, packaging, delivery, and interaction with the local terminal, user, and other local and remote sub-systems. Enhanced end-user experiences are provided by the coordinated management and synchronization of media and events, combined with end-user interaction. DIMS functionality is not restricted to or by the usage of a particular bearer; however, in 3GPP the DIMS system is currently scoped for use in MBMS, PSS and MMS.

The DIMS media type can be used as a generic media type, allowing creating dynamic interactive rich-media services and can also benefit, or be used in association with other media type (e.g.: audio codecs, video codecs, xhtml browser, etc.).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

1 SVG Tiny 1.2

2 ECMAScript Mobile Profile

3 ISO/IEC 14496-20:2006/COR1

4 ISO/IEC 14496-20:2006/AMD1
3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

[ed: these are all supplied by the editor and not yet reviewed or agreed]

Scene:
A complete scene, suitable for starting a session or completely replacing the current scene in a session. (Functions very similarly to an I-frame in video.)

Scene Update:
A set of differences that make changes to the scene in the current session. (Similar to a P-frame in video).

3.2 Symbols

For the purposes of the present document, the following symbols apply:

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

4 Overview and Architecture

[image: image3.wmf]

R

i

ch

M

ed

i

a

conte

n

t

(

s

cen

e

s,

sce

n

e

upda

t

e

s

,

discr

et

e

an

d

continuous

me

d

ia

Con

t

aine

r

Forma

t

 /

Transport

Pack

e

ts

Rich

M

edia

Se

r

ve

r

R

e

mo

t

e

In

t

er

a

c

t

ion

M

echa

n

is

m

s

Forward Tran

s

m

i

ssion

(Unic

a

s

t

, Mu

lt

i

c

as

t

,

Broad

c

a

s

t

Downl

o

ad

and St

r

e

a

m

ing

Protocols

T

r

anspo

r

t

 M

echanis

m

s

Loc

a

l

Inter

a

c

t

ion

M

echa

n

is

m

s

Rich

M

edia

C

l

ient

Ric

h

Me

d

ia

Play

e

r

Is th

e

playerÕ

s

reques

t

remo

t

e in

natur

e

?

send

reque

s

t

yes

no

Figure 1: GENERAL ARCHITECTURE OF THE RICH MEDIA SYSTEM

The rich media system can be perceived as client-server architecture, comprising 3 main components: The rich media server, transport mechanisms and the rich media client. Figure 1 illustrates the general architecture. The server takes as input, rich media content comprised of scene description, discrete (e.g. images) and continuous (e.g. audio, video) media. Scene description can be dynamically updated through scene updates. The rich media content can be encapsulated into a container format, containing additional information such as media synchronization, metadata, and hint tracks for packetization. The system then utilizes various transport mechanisms for 1-to-1 and 1-to-many protocols for download, progressive download and streaming scenarios. The content is played on the client, allowing for local and remote interactivity of feedback and data requests.
5 Media-type Definition

5.1 Introduction

The DIMS media type allows spatial and temporal layout of the multimedia scene. This scene can consist of any combination of still pictures, videos, audio channels and animated graphics. It includes an update mechanism that allows for partial updates of the existing scene, as well as updating the presentation with a completely new scene and stream tune-in functionality.
5.2 Media Type Components

The DIMS media type consists of:

· Base scene description from SVG Tiny 1.2 [ref]

· Scene description extensions

· Scene commands from LASER [ref]
5.3 Scene description

5.3.1 Base Scene Description

SVG Tiny 1.2 provides the basic DIMS scene functionality; layout, inclusion and referencing of objects, synchronization of object timelines and a rendering model.

The full syntax and semantics of SVG Tiny 1.2 shall be supported for DIMS scene functionality.
5.3.2 Scene Description Extensions

5.3.2.1 Introduction

Extensions defined here are designed so that
a) when the same functionality is present in profiles of SVG other than SVG Tiny 1.2, then the extension is compatible with that or a restricted version of that.
b) A terminal implementing both this specification and SVG (any version) can use a common implementation of the DOM tree, scene graph, rendering model etc. without having variant handling that depends on whether the scene was built using DIMS or SVG.
c) No extensions are required to be present in all documents; content authored to the SVG Tiny 1.2 specification may be used as the initial scene of a stream designed to this specification.
[Editors note: SA4 agrees to work towards aligning these extensions with W3C SVG specification]
The following extensions are defined here.
5.3.2.2 Rectangular clipping of a graphical object

The lsr:rectClip mechanism provides pixel aligned clipping defined as a transformable rectangle

The lsr:rectClip element SHALL be supported. The definition of lsr:rectClip is defined in subclause 6.8.36.2 of [3].
5.3.2.3 Fullscreen video

The fullscreen video feature consists in a new attribute lsr:fullscreen on the SVG video element.

The lsr:fullscreen element SHALL be supported. The lsr:fullscreen attribute is defined in subclause 6.8.40.2 of [3].
5.3.2.4 Fullscreen svg

The DIMS name space defines a new attribute ‘fullscreen’ to the <svg> element to hint that the DIMS scene should be rendered on the entire screen. The attribute can take two values “true” or “false”, with false (normall rendering) being the default value. With the attribute set to true the DIMS UE should negotiate the rendering area with its parent UE and get as large part of the screen as possible for the DIMS canvas.

The attribute is neither animatable nor inheritable.
5.4 Scene update mechanism

The scene update mechanism allows reception of updates that change parts of the current scene, without having to replace the entire scene.

To account for the different update scenarios two update mechanisms are defined:

· Primary-stream updates: Updates are delivered to the client in the same stream as the original scene. Note: A stream in this case can be a RTP stream or a track in a 3GP file.

· Secondary-stream updates: Updates are delivered to the client in separate streams from the original scene, e.g. in an interactive scenario or initiated from the scene mark-up.

The following LASeR commands from clauses 6.7 of [4] in LASeR ML format shall be supported.

· Insert

· Element

· attribute

· New value in list attribute

· Delete

· Element

· Attribute

· Value in list attribute

· Replace

· Element

· Attribute

· Value in list attribute

· Add

5.4.1 Primary-Stream Updates

In a primary-stream case, the updates and/or scene replacements are sent in the same stream as the initial scene. The temporal management of samples in a primary stream is based upon transport level timestamps.
5.4.1.1 Random Access Points in Primary Streams

A Random Access Point in a primary stream must either be an entire scene or a mechanism to build an entire scene. When used, this scene becomes the current scene and replaces all previous data
5.4.2 Secondary-Stream Updates

A secondary stream is a stream that does not contain the initial scene. A secondary stream is initiated directly from the DIMS mark-up using the ‘xxx’ element.
5.4.2.1 Random Access Points in Secondary Streams

A RAP in a secondary stream shall consist of an update and/or tune-in specific update. Both the tune-in update and the update are used when tuning in, whereas the tune-in update is ignored during normal playback. The tune-in update takes the scene in its current state, no matter which previous packets have been lost and cleans it up. Here the term cleaning refers to making the scene in such a state that when, after the update is applied the scene is correct and decoding can continue as normal.

A RAP in a secondary stream shall contain either:

1. A single tune-in specific update. This is simply a rex update located in a “tune-in” element. The tune-in element shall contain a single update child and no other children. The tune-in element should be ignored by clients not requiring tune-in.

2. A single non tune-in specific update.

3. Both a tune-in specific update and a non tune-in specific update as described in points 1 and 2.

An example of a RAP in a secondary stream is given below:

[ed: need an example worked in our chosen update syntax]

In this example advertisements are located in the node with id advertisement-node001. Tune in point is placed directly before a new advertisement, but these tune-in points can be placed arbitrarily in the stream. In this example tune-in is simple - the old advertisement is discarded and the new one put in its place.
5.5 Overall timing model

6 Interaction, Scripting and State Management

6.1 Local interaction

The supported local events and their management in DIMS are built upon the DOM Level 3 events model.

They include DOM Events (focus, activate, etc), SVG Events (connection, load, etc.) and general XML events (user events, timing, key, and pointer events).
The DOM Level 3 events and their description can be obtained from the SVG Tiny 1.2 draft specification [ref].

The following other events shall be supported:

Events for streaming:

[ed: Note: The streaming events will be completed based on the W3C Streaming Events specification if it is released in the DIMS timeframe.]

 [ed: we may well need extensions to specify DIMS-specific events]

6.2 Remote interaction

Client-server communication is possible in the DIMS system using three different mechanisms:

· The client can open a suitable URL. The set of valid URL forms is not specified in DIMS, and includes protocols such as HTTP, RTSP or MailTo. [ed: this could usefully be re-phrased]
· By establishing a socket connection between the client and the server using the Connection API in the uDOM [ref]

· By using the HTTP specific uDOM methods getURL or postURL [ref]

[ed: Maybe add examples of when and how to use the different methods.]
6.3 Scripting

SVG Tiny 1.2 contains a uDOM interface that provides linkage to a script engine and adds the possibility to modify the DOM representation of the scene from scripts.

ECMAScript mobile profile (MP) [xx] can be used in conjunction with the script and handler elements and SVG µDOM API (Appendix A of [w3c svgt 1.2]) in order to provide more powerful DOM manipulation, and interaction.

UEs supporting the DIMS media type shall support ECMAScript mobile profile (MP) [xx].

6.4 State and Preferences Management

[ed: there are requirements to manage user state and preferences on a persistent basis]

Laser commands “Save”, “restore”, and “clean” as defined in [ref] shall be supported.

7 Compression

Uncompressed XML shall be supported. XML compressed with GZIP [ref] shall be supported.
8 Transport

8.1 Overview

The transport mechanisms support rich media delivery in the following modes: Unicast download (HTTP/TCP or MMS protocol), broadcast/multicast download (FLUTE/UDP), unicast streaming and broadcast/multicast streaming (RTP/UDP). For download mode, reliability is guaranteed by existing mechanisms in the transport and network layers, and no error resilience tools need to be designed at the application layer for rich media delivery. However, rich media transport in streaming mode is more challenging with UDP being unreliable. Therefore, the RTP design should provide some error resilience tools to help the media decoder cope up with unreliable transport.

Rich media is a combination of continuous media and discrete media and relevant transport mechanisms for these two media types should be used. Rich media streaming is thus naturally realized by (a) streaming continuous media like scene streams, video and audio; and (b) downloading the discrete media, like images.
8.2 Tune-in and resynchronization

During a rich media service, it is important for the clients to be able to connect and access the current streamed content with minimal latency and data inaccuracy.

In a primary stream a tune-in point is a complete scene (or a mechanism to build a complete scene) and in a secondary stream a tune-in point is an update (or a mechanism to build a complete update). This is defined in sections 5.4.1.1 and 5.4.2.1
Tune-in points may be either essential or redundant. Essential tune-in points are even used by decoders not tuning in. Redundant tune-in points can and should be ignored by clients not needing to tune in. Redundant tune-in points are defined using the XRAP mechanism. All other tune-in points are required.
 [ed: This is either ‘Distributed RAP’ from S4-060458 or ‘Rolling RAP’ from section 4 etc, of S4-060429. The signalling at the transport level of the DRAP/ Rolling RAP functionality is needed in both cases and appears to be identical.]

[ed: synchronization is an overloaded term here]

Packets of data received by the client are associated with timestamps relative to the overall presentation time container. Further, the sequence numbers associated with the packets determine their ordering, and can be used to detect the occurrence of data loss and the potential need for re-synchronization.
8.3 Embedding in existing protocols (HTTP etc.)

8.4 Download (including progressive download)

8.4.1 Storage in 3GP files

8.4.1.1 Introduction

The ‘main’ scenes of multi-stream scenes, and single-stream scenes, are carried in 3GP files according to this section. The update streams for multi-stream files may be provided in any suitable way (e.g. RTP, download etc.)

[ed: do we need definition of 3GP download files containing only updates to another scene?]

8.4.1.2 Stream Type

Scenes are carried in scene tracks in ISO family files. They therefore use:

(a) a video media handler ‘vmhd’;

(b) a media handler type of ‘sdsm’ (scene description media handler);

(c) a derivative of the base SampleEntry in the sample description box.

The timescale for the stream should be suitably chosen to achieve the desired accuracy of timing of access units.
8.4.1.3 Sample Entry Name and Format

The [TB] registered sample entry four-character code for scenes is ‘dims’ or something. The configuration box MUST be present in the sample entry.

class SceneConfiguration extends FullBox (‘dimC’){

unsigned int(8) profile;

unsigned int(8) level;

string

content_format;

string

text_encoding;

string

content_script_type;
}
class MPEG4BitRateBox extends Box(‘btrt’){

unsigned int(32) bufferSizeDB;

unsigned int(32) maxBitrate;

unsigned int(32) avgBitrate;
}

class DIMSSampleEntry() extends SampleEntry (‘dims’){

SceneConfiguration

config;

// mandatory

MPEG4BitRateBox

bitrateinfo;
// optional

DIMSSpecificInfoBox
dimsInfo;

// TBD
}

The fields have the following semantics:

content_format - is a null terminated string specifying the encoding (compression) format of the content. If the content is transmitted as text it is defined in the same way as the content_encoding header in HTTP (Section 3.5 of RFC 2616). Permissible values are TBD, but possible values might include “identity”, “gzip”, “compress” and “deflate”.
text_encoding - is a null terminated string with possible values taken the XML specification for character encoding in entities (e.g. section 4.3.3 of XML 1.0 Third edition). It describes the text encoding after the content_encoding has been decoded (e.g. after deflating). This field is only applicable if the content is transmitted as (possibly encoded) text.
content_script_type - is a null terminated string that identifies the scripting language used. It takes a suitable MIME type from the IANA registry, such as “application/ecmascript” (see RFC 4329).
bufferSizeDB gives the size of the decoding buffer for the elementary stream in bytes. This is the size of the largest textual access unit, in bytes (i.e. after GZIP de-compression).
maxBitrate gives the maximum rate in bits/second over any window of one second

avgBitrate gives the average rate in bits/second over the entire presentation
Note that the content_format, text_encoding and content_script_type are required to be consistent over all the access units described by this sample entry. This simplifies processing. It is an error to have a mismatch between these values and those present in the XML of the access units themselves.

[ed: The definition, contents, and mandatory/optional status of the DIMS specific information is TBD. Note also that only one profile is intended for the first release of DIMS.]

8.4.1.4 Sample Format

In the case of plain text encoding, it is valid XML text (e.g. in Unicode UTF-8, or UTF-16 with a byte-order-mark, as defined by the XML specification), with full headers, to the end of the sample (there is neither a string length in front of the text, nor a trailing terminator).

The XML is self-describing. Sync samples must be valid entry points (that is, a Replacement scene). Difference frames are encoded as defined [elsewhere] as <whatever> documents.

8.4.1.5 Other Resources

Other resources may be carried in the meta-data directories of ISO files, in the track containing the scene, the movie containing that track, or the file containing that movie. If there is no actual meta-data (the meta-data block is there merely to carry resources), the meta-data handler type ‘null’ may be used.

URL forms to address these resources are defined in the ISO specification, and are relative to the file containing the resource.
The meta data box may also be used for multi-scene presentations where the meta box includes the initial SVG scene, and one of the tracks provides the updates.
8.4.1.6 Sync and Redundant Scenes

The sync sample table marks sync frames in the stream. Sync frames are points at which an entire initial (replacement) scene is present.

Redundant scenes may be stored in the file format using a separate track. These are structured the same as switch picture tracks in the AVC File Format (ISO/IEC 14496-15), using the support for SI pictures only. Briefly, a redundant scene is stored in a separate track where is has the appropriate timestamp. The switching track must be linked to the track into which it switches (the destination track) by a track reference of type ‘swto’ in the switching picture track.

Note: the use of the shadow sync box is deprecated.

8.5 Error Resilience

There are several error resilience mechanisms available in DIMS. Among these are:

· Priority: By separating essential and non-essential units one can determine if a loss need repair or not. This is described in section 8.5.1

· Recovery Points: Recovery points can be set periodically. Recovery points are described in section 8.5.2

· Periodic Tune-in Points: Tune-in points can be placed periodically in a stream. In the case of error one can tune-in to the channel again.

· Separation of static and dynamic data. This can even increase the efficiency of Distributed Random Access Points.

A combination of these methods can be used.

8.5.1 Priority

Priority (P) can be signalled by setting the P-bit. The P-bit set to 1 indicates a high-priority unit; the P-bit set to 0 indicates a low-priority unit. A unit should be marked as low-priority if all of the following are true and shall be marked as high-priority otherwise:

1 all succeeding packets can be decoded and operated on without error (i.e. their DOM updates do not depend on the possibly lost DOM update).

2 the visual and semantic nature of the scene is satisfactory to the content author.

Informative note: The setting of the priority field is, due to point 2, partly to the discretion of the content creator. An example of a simple method of evaluating point 2 is to see if, when the next packet is received, the DOM tree is identical to if the packet(s) had not been lost in the first place.

[ed: we should think hard about the possibly very bursty content, where a packet loss might not be detected for a long period.]
The counter (CTR) field is used to detect the loss of high priority units. The CTR field is incremented by one for each packet with high priority.
Informative note: A discontinuation in the sequence number indicates a lost packet. A discontinuation in the CTR field indicates the number of prioritized packets which have been lost.
An example of the use of the CTR and P bits is shown below:

[image: image4.wmf]

SU

P=1

CTR=5

SU

P=1

CTR=6

SU

P=0

CTR=6

SU

P=1

CTR=7

SU

P=1

CTR=0

Packe

t

l

o

s

t

A

s

 t

h

e

v

a

l

ue

o

f

C

TR

d

i

d

n

o

t

i

n

crease

dur

i

n

g t

h

e

p

a

cke

t

l

o

ss

i

t

ca

n

b

e

es

t

a

b

li

s

h

ed

 t

h

a

t

t

h

e

l

o

s

t

 packe

t

(s)

 h

ad

pr

i

o

r

i

t

y

 P=0.

SU

P=1

CTR=5

SU

P=1

CTR=6

SU

P=1

CTR=7

SU

P=0

CTR=7

SU

P=1

CTR=0

Packe

t

l

o

s

t

A

s

 t

h

e

v

a

l

ue

o

f

C

TR

i

n

creased

f

r

o

m

6

 t

o

7

d

u

r

i

n

g

 t

h

e

packe

t

l

o

ss

i

t

ca

n

b

e

es

t

a

b

li

s

h

ed

t

h

a

t

 1

p

r

i

o

r

i

t

i

zed

packe

t

 was

l

o

s

t.

Figure 2: Example of prioritization including detection of lost prioritized packets.

8.5.2 Recovery Points
Recovery points can be placed in a stream and are typically referred to later in the stream to enable a recovery. Each recovery point has a Recovery_ID which identifies the state at that point. If there is more than one recovery point with the same Recovery_ID it is possible to move directly between these in the case of error.
Recovery points can be set in any type of DIMS unit. This is indicated by a Recovery_ID which is non-zero. The recovery point refers to the state of the DIMS scene directly after decoding of the unit.

[image: image5]
Figure 1: DIMS example stream containing two recovery points with the same Recovery_ID (here =1). The alternate path between these recovery points is indicated with a dashed line.

A second and more general method of using recovery points is in combination with recovery units. A type 1 recovery unit provides an entry point back into the main stream from a recovery point with the same Recovery_ID. It contains an update which takes the client from a recovery point to the desired state. Such units can be ignored by a client during normal playback.

[image: image6]
Figure 2: DIMS example stream containing a single recovery point (here with Recovery ID=4) and a type 1 recovery unit (RU1). The alternate path between these points is indicated with a dashed line.

After decoding a recovery unit of type 1, decoding of the stream can continue like normal. This method makes it possible to add multiple recovery paths at arbitrary places in the stream. Note that the Recovery ID of a recovery unit indicates the state it requires before the update is applied and not the state after its application.

Finally a method to create an arbitrary recovery point in an arbitrary place of a stream is defined. Type 2 recovery units or packets take an arbitrary state and convert it to a recovery point with the help of an enclosed update. This makes it possible to increase robustness by being able to place the same recovery point at multiple places in an arbitrary stream. The obtained recovery point may also be signaled directly in the stream, although this is not necessary.

[image: image7]
Figure 3: DIMS example stream containing two type 2 recovery units (RU2). In this case the same recovery point is signaled in two different places in the stream. The scene states need not be the same in these places and the updates in the recovery units are not necessarily the same, but they result in equivalent recovery points, here marked with Recovery_ID=7.

8.5.2.1 Recovery Point Syntax

A recovery point is signalled in the RTP payload header in the case of RTP, or as a parameter associated with a sample in the case of a 3GP file.

8.5.2.2 Type 1 Recovery Unit Syntax

A type 1 Recovery Packet is signalled in the type (T) field of the RTP payload header, or associated with a sample in the case of a 3GP file. The Recovery_ID shall be non-zero. The syntax is otherwise identical to a DIMS update unit.

For the case of 3GP files, recovery units (samples) are similarly marked in the same track or stored in a separate track so that they can be skipped during normal playback.

8.5.2.3 Type 2 Recovery Unit Syntax

A type 2 Recovery Packet is signalled in the type (T) field in the RTP payload header, or associated with a sample in the case of a 3GP file. The Recovery_ID must be non-zero. The syntax is otherwise identical to a DIMS update unit.

For the case of 3GP files, recovery units (samples) are similarly marked or stored in a separate track so that they can be skipped during normal playback.

8.6 Streaming

8.6.1 Error resilience

8.6.2 RTP Payload format for DIMS Streams

The RTP payload format defines three basic packet structures; Single DIMS units, fragmentation units and aggregation units. DIMS units can be in the form of a scene or update, encoding information, or resilience data. Depending on the underlying network and the unit size, it may be desirable to split DIMS units or aggregate them. Fragmentation and aggregation units have been defined for this purpose.

8.6.2.1 RTP Header Usage

The RTP header is defined in RFC3550 and its use in this payload format is described below

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+
| timestamp |
+-+
| synchronization source (SSRC) identifier |
+=+
| contributing source (CSRC) identifiers |
| |
+-+

Figure 3: RTP HEADER

Marker bit (M): 1 bit - The marker bit is set for the last packet associated with a timestamp.
Informative note: This is useful when a scene is sent as a combination of a smaller scene and a series of scene updates. In this case the marker bit of the last scene update is to be set. This is in line with the normal use of the marker bit in video coding and enables efficient buffering.

Timestamp: 32 bits - The timestamp indicates the rendering instant of the DIMS sample. In the case of DIMS units without an inherent time property, the timestamp is to be ignored by the client.
Informative note: A typical way to assign a timestamp for packets that do not have an inherent time property is to associate the packet to the preceding or succeeding packet and copy its timestamp.
The usage of the remaining RTP header fields follows the rules of RFC 3550.

8.6.2.2 Common Packet Header

The RTP payload comprises of a set of common fields followed by specific fields for each header type and sample data. The first octet contains the fields common to all payload headers and has the following format:

+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
| T |A|P| CTR |R|
+---------------+

Figure 4: COMMON PAYLOAD HEADER

T: 2 bits
The payload type as defined in Table 1 below:

Table 1: Summary of RTP Payload Types and Descriptions
	Type
	Description

	0
	Single DIMS unit

	1
	Aggregation Packet

	2
	Fragmentation Packet

	3
	Reserved

A: 1 bit

When set to one, the A bit indicates that the packet either is, or contains, a random access point. If a random access unit is to be fragmented, the A bit is set in the first of the fragmented packets, and not set in the remaining packets.

The A-bit is set to 1 for replacement scenes, redundant scenes [ed: and as appropriate for other tune-in points TBD].
P: 1 bit

The P-bit is described above.

CTR: 3 bits

The CTR Field is described above.
Informative note: A discontinuation in the sequence number indicates a lost packet. A discontinuation in the CTR field indicates the number of prioritized packets which have been lost.

R: 1 bit

The R bit is reserved and must have the value 0 (zero).

8.6.2.3 Single DIMS unit

Type 0 packets contain a complete DIMS unit. The common header values are:

· Type: 0

· A (RAP): as needed

· P (priority) as needed

· CTR: as required for the P bit

The RTP payload is presented below.
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Header(Type=0)| RES |L| RES | DIMS Payload |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
: :
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |...OPTIONAL RTP padding |
+-+

Figure 5: Single DIMS unit payload format
The L flag (1 bit) when set indicates that the sample contains an audio, video, animation or image tag, i.e. that the DIMS unit embeds external audio, video, SVG or image content.

The RES fields are reserved and take the value 0, and MUST be ignored by the receiver.
8.6.2.4 Aggregation Packets

An aggregation packet contains 2 or more aggregation units (AU). An AU consists of an unsigned 16 bit size field and an unsigned 16 bit timestamp offset followed by the DIMS unit as if it was sent in its own RTP packet. The size field refers to the AU size in octets.
The TS offset enables units with otherwise differing timestamps to be sent in a single RTP packet. The timestamp offset MUST be zero for the “earliest” aggregation unit. Aggregation units must be packaged in the order they would have been sent in individual RTP packets.

Note: Earliest refers to the aggregation unit with the lowest extended timestamp if the aggregation units were sent as separate RTP packets. An extended timestamp is greater than 32 bits and can account for wraparound.

The timestamps of the remaining packets are calculated using (RTP timestamp + TS offset) % 4294967296, where % denotes the modulo operation.

The common header values are as follows.

Aggregation Header

· Type: 1

· A (RAP): is set to 1 if any of the included packets have A=1, else 0

· P (priority): is set to 1 if any of the included packets have P=1, else 0

· CTR: as required for the P bit

DIMS unit header inside aggregation packet

· Type: 0

· A (RAP): as needed

· P (priority) as needed

· CTR: not used, must be 0

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| RTP Header |
+-+
| Header(Type=1)| AU 1 Size | AU 1 TS offset.
+-+
..AU 1 TS offset|AU1 HDR(type=0)| AU 1 DATA |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : :
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | AU 2 Size |
+-+
| AU 2 TS offset |AU2 HDR(type=0)|
+-+
| AU 2 DATA |
: :
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+

Figure 6: AN AGGREGATION PACKET CONTAINING TWO AGGREGATION UNITS

8.6.2.5 Fragmentation Packets
Frames that exceed the networks maximum transmission unit (MTU) need to be fragmented before transmission. By fragmenting at the RTP level one need not rely on lower layer fragmentation, e.g. IP.

The payload format defines fragmentation of DIMS units into two or more RTP packets.
Note: Fragmentation on the RTP level should however be seen as a solution only when fragmentation on the DIMS level is not possible. Fragmentation can be performed by splitting for example a scene into a scene and a number of scene updates. In this way packets can be created that are smaller than MTUs and can be decoded individually, which gives better error resilience when packets are lost.

The common header values are as follows.

· Type: 2

· A (RAP): as needed in first fragment, and 0 in all other fragments

· P (priority) as needed, must take the same value in all fragments of a DIMS unit

· CTR: follows the rules for the P bit on each packet (i.e. increments for every fragment, or stays the same for every fragment)

The second octet of the payload of a fragmentation packet is a FU prefix and is defined as follows:

+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|S|E| R |
+---------------+

Figure 7: FU PREFIX
S: 1 bit

This bit is set to 1 for the first packet of a fragmented unit, and zero otherwise

E: 1 bit

This bit is set to 1 for the last packet of a fragmented unit, and zero otherwise

R: 6 bits

The Reserved bits MUST be equal to zero (0x0) and MUST be ignored by the receiver.
Fragments must be sent in consecutive order.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Header(type=2) | FU prefix | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| FU payload |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+

Figure 8: FRAGMENTATION PACKET FORMAT

8.6.3 MIME Parameters

Type name: application

Subtype name: dims+xml

Required parameters:

Version-profile - Specifies the profile of DIMS used, for example the value indicating Mobile Profile

Base-profile - Describes the minimum DIMS profile necessary to correctly render the content, for example the value indicating Mobile Profile

Level – Specifies the minimum DIMS level needed to be able to display the scene

Optional parameters:

content_format - is a null terminated string enclosed in double-quotes specifying the encoding (compression) format of the content. If the content is transmitted as text it is defined in the same way as the content_encoding header in HTTP (Section 3.5 of RFC 2616). Possible values include “identity”, “gzip”, “compress” and “deflate”. The default value is “identity”.
text_encoding - is a null terminated string enclosed in double-quotes with possible values taken the XML specification for character encoding in entities (e.g. section 4.3.3 of XML 1.0 Third edition). It describes the text encoding after the content_encoding has been decoded (e.g. after deflating). The default value is “UTF-8”. This field is only applicable if the content is transmitted as (possibly encoded) text.
content_script_type - is a string enclosed in double-quotes that identifies the scripting language used. It takes a suitable MIME type from the IANA registry, such as “application/ecmascript” (see RFC 4329), or the value “none”. The default value is “none”.

An example is given below:

Encoding considerations:

This media type is currently only defined for transport via RTP

Security considerations:

RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [REF] and any applicable RTP profile, e.g., AVP [REF].

Interoperability considerations:

TBD

Published specification:

TBD

Applications that use this media type:

DIMS Streaming applications

Additional information:

 Magic number(s): None

 File extension(s): None

 Macintosh file type code(s): None

Person & email address to contact for further information:

Clinton Priddle

clinton.priddle@ericsson.com
Multimedia Technologies, Ericsson

Intended usage:

COMMON

Restrictions on usage:

None

Author:

Clinton Priddle

Change controller:

TBD
[ed: this section needs to be consistent with 8.4.1.2, that is, they need to permit signalling of the same parameters]

8.6.4 SDP Parameters
[ed: this section is not agreed . The parameters will no doubt need work once the parameterization of the streams is clear also (i.e. what initialization information is needed).]

The Session Description specifies the SVG format, its clock rate, version profile, base profile and a set of sample descriptions. The fields in the Session Description Protocol (SDP) are defined as follows:

The media name in the "m=" line of SDP MUST be video

The encoding name in the "a=rtpmap" line of SDP MUST be DIMS+XML

The clock rate in the "a=rtpmap" line is not specified in this document. The resolution of the clock must be sufficient for the desired synchronization accuracy and for measuring packet arrival jitter. The clock rate of the referenced continuous media files within the presentation needs to be considered. For example, if the presentation contains referenced video which is to be synchronized with the presentation, the clock rate should be no less than 90,000.
The MIME parameters, when present, MUST be included in the "a=fmtp" line of SDP. These parameters are expressed as a MIME media type string, in the form of a semicolon separated list of parameter=value pairs.

An example of a media-level description in SDP format is shown below.

m=video 12345 RTP/AVP 96

a=rtpmap:96 DIMS+XML/100000

a=fmtp:96 Version-profile=10; Base-Profile=10; Level=20; content_format=”deflate”; content_script_type=”application/ecmascript”;

9 Resource usage and device capabilities

9.1 Capability Exchange (UAProf etc.)

9.2 Profile

A profile indicator in a stream indicates which features (also known as tools) are required to be supported on a terminal.

Profile indications are 8-bit integers. Only one profile is defined by this specification; other profiles may be defined in future or by other bodies [ed: how?].

Mobile Profile : Profile Indicator Value 10. This version of this specification also requires support of the referenced specifications below [ed: we should take the precise definitions of versions etc. of these to match other sub-systems in release 7].

· Graphics and spatial layout from SVG Tiny 1.2

· The DIMS scene extensions [ed: if any]

· ECMAScript [ed: some profile or version of it]

· The Laser commands [insert the precise required commands, so that the profile remains stable even if we later add more commands after the first specification is published]

· …
9.3 Level

Level indicators provide a way to measure the degree of support required in a terminal to render a given scene or scene stream satisfactorily. Levels are measured on the following axes:

1 Bitrate of the scene stream, including the initial scene, embedded graphics, audio, video etc. (That is, the minimum bit-rate channel over which the scene could be delivered in a real-time fashion).

2 The size of the DOM tree. This is measured by the number of nodes in the tree; the number of attributes, or the size of their values, is not calculated.

3 Required frame rate for animations.

4 The maximum number of simultaneously playing video streams.

5 The maximum number of simultaneously playing audio streams.

6 The maximum number of animations that run concurrently.

7 The minimum screen space needed to display the scene.

The following levels are defined:

	Level
	Rate
	DOM nodes
	Frame rate
	#Video
	#Audio
	#Anims
	Screen size

	10
	256 kbit/s
	300
	15
	1
	1
	10
	160x120

	20
	2 mbit/s
	1200
	30
	1
	1
	30
	320x240

[ed: clearly these are placeholder values; as the spec. advances, we may need to tinker with the axes, and surely with the points along them. On memory usage, the ideal would be to have reference software for DIMS and measure the memory use of the DOM tree by that software, and set limits for that.]
10 Use of DIMS in existing subsystems

10.1 Codecs

When DIMS is supported within MMS, PSS or MBMS, then the support for the following codecs is also required:

· Support for JPEG, PNG, GIF images [ed: again, some profile or version]

· Support for embedded audio in 3GP and AMR files; support for AAC-LC is required.

· Support for embedded video in 3GP files; support for H.263 and H.264 is required.

· Support for font formats; the required level of support for OpenType fonts and SVG fonts is under discussion
 [ed: this section is an indicator of work needing to be done and is not yet agreed. this is also an area where OMA RME alignment is expected to have an impact]

10.2 PSS

10.3 MBMS

FEC can be used to recover from packet loss in the MBMS framework [ref]. When DIMS content is used, suitable media level recovery (a random access point such as a replacement scene, redundant scene, etc.) should be present at the beginning of each FEC source block. This facilitates immediate rendering of the DIMS content after FEC decoding, thus reducing tune-in latency.
10.4 MMS

11 Content usage guidelines

12 Security and Content Protection Considerations

13 Registered Types

13.1 RTP Payload format MIME Type

[ed: surely 8.5.3 should be moved to here]

13.2 ‘Codecs’ Parameter for 3GP files

When DIMS content is supplied in 3GP files which are identified by MIME type, the ‘codecs’ parameter defined in RFC 4281 [ed: reference needed] may be used to indicate that DIMS content is present. The codecs parameter takes the sample entry name as defined above (that is, ‘dims’).

14 Open issues and considerations

14.1 Interaction outside the multimedia sub-system

14.1.1 Input modalities

14.1.2 Interface with existing applications and sub-systems

14.1.3 Notifications

14.2 Extensibility considerations

Annex A (normative):
Conformance Criteria

DIMS constructs scenes which are possibly updated over time. Conformant terminals must support the delivery of the scenes and updates in formats specified in the 'compression' section above, and in the transport environments specified in the 'transport' section.

For the initial scene, a DIMS document can be extracted from the transport, and de-compressed if necessary, yielding an XML document. This XML is referred to here as the "initial DIMS document". Similarly, after all updates for a given instant have been applied to the scene tree, there is logically an XML document that is equivalent to the scene DOM tree; these are called "subsequent DIMS documents" here.

Initial and subsequent DIMS documents must conform to all of:

· the conformance requirements of SVG Tiny 1.2;

· the conformance requirements of the DIMS extensions;

· the limitations of the profile and level indications under which they are delivered.

Conformance with SVG Tiny 1.2 is according to the conformance criteria in Appendix D of [the SVG Tiny 1.2 specification 20060810], with the following exceptions:

· The conformance criteria in the SVG spec regarding codecs shall not apply for the DIMS media type.

Note: Codecs supported are defined in 3gpp specification

· Section D4 is not in scope of DIMS

· Section D7 is not in scope for DIMS

[editors note:

· This section is under construction, and is not yet agreed or even complete

· Conformance criteria for scene extensions and laser commands will be added in this section

· The review of conformance criteria regarding binarisation shall be finalised by the next meeting

· Updates of the SVG Tiny 1.2 specification 20060810 annex D will be reviewed in particular section D6 bullet 4, the understanding is that fullscreen and rectclip follows the actual rules

· missing are statements about transport conformance, and other areas of the DIMS specification outside the scene tree]

Annex B (informative):
Change history

:

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	December 06
	34
	
	
	
	Version 1.0.0 presented at TSG SA#34 (for information)
	
	1.0.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

SU

SU

SU

SU

Recovery can be performed when any of these packets are lost.

...

Recovery_ID= 1

SU

Recovery_ID= 1

SU

SU

SU

SU

SU

SU

Recovery_ID= 4

SU

RU1

...

Recovery can be performed when any of these packets are lost.

Recovery_ID= 4

SU

SU

SU

SU

RU2

Recovery_ID= 7

SU

SU

SU

RU2

Recovery_ID= 7

_1089899549.doc
[image: image1.bmp]

As the value of CTR increased from 6 to 7 during the packet loss it can be established that 1 prioritized packet was lost.

Packet lost

SU

P=1

CTR=0

SU

P=0

CTR=7

SU

P=1

CTR=7

SU

P=1

CTR=6

SU

P=1

CTR=5

As the value of CTR did not increase during the packet loss it can be established that the lost packet(s) had priority P=0.

Packet lost

SU

P=1

CTR=0

SU

P=1

CTR=7

SU

P=0

CTR=6

SU

P=1

CTR=6

SU

P=1

CTR=5

_1089962766.doc

Rich Media content (scenes, scene updates, discrete and continuous media

Container Format /

Transport Packets

Rich Media Server

Remote Interaction Mechanisms

Forward Transmission (Unicast, Multicast, Broadcast Download and Streaming Protocols

Transport Mechanisms

Rich Media Client

Local Interaction Mechanisms

Rich Media Player

Is the player’s request remote in nature?

send

request

yes

no

_953458302.unknown

