3G TS 26.090 V3.0.1 (1999-08)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Mandatory Speech Codec speech processing functions

AMR speech codec; Transcoding functions
(3G TS 26.090 version 3.0.1)

[image: image1.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Reference

DTS/TSGSA-0426090U

Keywords

3GPP, SA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Contents

5Foreword

1
Scope
6
2
Normative references
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
8
3.3
Abbreviations
14
4
Outline description
14
4.1
Functional description of audio parts
14
4.2
Preparation of speech samples
15
4.2.1
PCM format conversion
15
4.3
Principles of the adaptive multi-rate speech encoder
16
4.4
Principles of the adaptive multi-rate speech decoder
18
4.5
Sequence and subjective importance of encoded parameters
19
5
Functional description of the encoder
19
5.1
Pre‑processing (all modes)
19
5.2
Linear prediction analysis and quantization
19
12.2 kbit/s mode
19
10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes
19
5.2.1
Windowing and auto‑correlation computation
20
12.2 kbit/s mode
20
10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes
21
5.2.2
Levinson‑Durbin algorithm (all modes)
21
5.2.3
LP to LSP conversion (all modes)
22
5.2.4
LSP to LP conversion (all modes)
23
5.2.5
Quantization of the LSP coefficients
24
12.2 kbit/s mode
24
10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes
25
5.2.6
Interpolation of the LSPs
25
12.2 kbit/s mode
25
10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes
26
5.2.7
Monitoring resonance in the LPC spectrum (all modes)
26
5.3
Open‑loop pitch analysis
27
12.2 kbit/s mode
27
10.2 kbit/s mode
28
7.95, 7.40, 6.70, 5.90 kbit/s modes
28
5.15, 4.75 kbit/s modes
29
5.4
Impulse response computation (all modes)
30
5.5
Target signal computation (all modes)
30
5.6
Adaptive codebook
30
5.6.1
Adaptive codebook search
30
12.2 kbit/s mode
31
7.95 kbit/s mode
32
10.2, 7.40 kbit/s mode
33
6.70, 5.90 kbit/s modes
33
5.15, 4.75 kbit/s modes
34
5.6.2 Adaptive codebook gain control (all modes)
34
5.7
Algebraic codebook
35
5.7.1
Algebraic codebook structure
35
12.2 kbit/s mode
35
10.2 kbit/s mode
35
7.95, 7.40 kbit/s modes
36
6.70 kbit/s mode
36
5.90 kbit/s mode
36
5.15, 4.75 kbit/s modes
37
5.7.2
Algebraic codebook search
37
12.2 kbit/s mode
38
10.2 kbit/s mode
39
7.95, 7.40 kbit/s modes
39
6.70 kbit/s mode
40
5.90 kbit/s mode
40
5.15, 4.75 kbit/s modes
40
5.8
Quantization of the adaptive and fixed codebook gains
41
5.8.1
Adaptive codebook gain limitation in quantization
41
5.8.2
Quantization of codebook gains
41
Prediction of the fixed codebook gain (all modes)
41
12.2 kbit/s mode
42
10.2 kbit/s mode
42
7.95 kbit/s mode
42
7.40 kbit/s mode
43
6.70 kbit/s mode
43
5.90, 5.15 kbit/s modes
43
4.75 kbit/s mode
43
5.8.3 Update past quantized adaptive codebook gain buffer (all modes)
43
5.9
Memory update (all modes)
43
4.75 kbit/s mode
44
6
Functional description of the decoder
44
6.1
Decoding and speech synthesis
44
6.2
Post‑processing
48
6.2.1
Adaptive post‑filtering (all modes)
48
12.2, 10.2 kbit/s modes
49
7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes
49
6.2.2
High-pass filtering and up-scaling (all modes)
49
7
Detailed bit allocation of the adaptive multi-rate codec
49
8
Homing sequences
54
8.1
Functional description
54
8.2
Definitions
54
8.3
Encoder homing
55
8.4
Decoder homing
55
9
Bibliography
59
Annex A:
Change history
60
History
61

Foreword

This Technical Specification has been produced by the 3GPP.

The present document describes the detailed mapping of the narrowband telephony speech service employing the Adaptive Multi-Rate (AMR) speech coder within the 3GPP system.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version 3.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
Indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the specification;

1
Scope

This Telecommunication Standard (TS) describes the detailed mapping from input blocks of 160 speech samples in 13‑bit uniform PCM format to encoded blocks of 95, 103, 118, 134, 148, 159, 204, and 244 bits and from encoded blocks of 95, 103, 118, 134, 148, 159, 204, and 244 bits to output blocks of 160 reconstructed speech samples. The sampling rate is 8 000 samples/s leading to a bit rate for the encoded bit stream of 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2 or 12.2 kbit/s. The coding scheme for the multi-rate coding modes is the so‑called Algebraic Code Excited Linear Prediction Coder, hereafter referred to as ACELP. The multi-rate ACELP coder is referred to as MR-ACELP.

In the case of discrepancy between the requirements described in this TS and the fixed point computational description (ANSI‑C code) of these requirements contained in [4], the description in [4] will prevail. The ANSI‑C code is not described in this TS, see [4] for a description of the ANSI‑C code.

The transcoding procedure specified in this TS is mandatory for systems using the AMR speech codec.

2
Normative references

This TS incorporates by dated and undated reference, provisions from other publications. These normative references are cited in the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

[1]
GSM 03.50: " Digital cellular telecommunications system (Phase 2); Transmission planning aspects of the speech service in the GSM Public Land Mobile Network (PLMN) system"

[2]
TS 26.101 : "AMR Speech Codec; Frame structure".

[3]
TS 26.094: "AMR Speech Codec; Voice Activity Detection (VAD)".

[4]
TS 26.073: "AMR Speech Codec; ANSI‑C code".

[5]
TS 26.074: "AMR Speech Codec; Test sequences".

[6]
ITU‑T Recommendation G.711 (1988): "Coding of analogue signals by pulse code modulation Pulse code modulation (PCM) of voice frequencies".

[7]
ITU‑T Recommendation G.726: "40, 32, 24, 16 kbit/s adaptive differential pulse code modulation (ADPCM)".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of this TS, the following definitions apply:

adaptive codebook:
The adaptive codebook contains excitation vectors that are adapted for every subframe. The adaptive codebook is derived from the long-term filter state. The lag value can be viewed as an index into the adaptive codebook.

adaptive postfilter:
This filter is applied to the output of the short-term synthesis filter to enhance the perceptual quality of the reconstructed speech. In the adaptive multi-rate codec, the adaptive postfilter is a cascade of two filters: a formant postfilter and a tilt compensation filter.

algebraic codebook:
A fixed codebook where algebraic code is used to populate the excitation vectors (innovation vectors). The excitation contains a small number of nonzero pulses with predefined interlaced sets of positions..

anti-sparseness processing:
An adaptive post-processing procedure applied to the fixed codebook vector in order to reduce perceptual artifacts from a sparse fixed codebook vector.

closed‑loop pitch analysis: This is the adaptive codebook search, i.e., a process of estimating the pitch (lag) value from the weighted input speech and the long term filter state. In the closed‑loop search, the lag is searched using error minimization loop (analysis‑by‑synthesis). In the adaptive multi-rate codec, closed‑loop pitch search is performed for every subframe.

direct form coefficients: One of the formats for storing the short term filter parameters. In the adaptive multi-rate codec, all filters which are used to modify speech samples use direct form coefficients.

fixed codebook:
The fixed codebook contains excitation vectors for speech synthesis filters. The contents of the codebook are non‑adaptive (i.e., fixed). In the adaptive multi-rate codec, the fixed codebook is implemented using an algebraic codebook.

fractional lags:
A set of lag values having sub‑sample resolution. In the adaptive multi-rate codec a sub‑sample resolution of 1/6th or 1/3rd of a sample is used.

frame:
A time interval equal to 20 ms (160 samples at an 8 kHz sampling rate).

integer lags:
A set of lag values having whole sample resolution.

interpolating filter:
An FIR filter used to produce an estimate of subsample resolution samples, given an input sampled with integer sample resolution.

inverse filter:
This filter removes the short term correlation from the speech signal. The filter models an inverse frequency response of the vocal tract.
lag:
The long term filter delay. This is typically the true pitch period, or its multiple or sub‑multiple.

Line Spectral Frequencies: (see Line Spectral Pair)
Line Spectral Pair:
Transformation of LPC parameters. Line Spectral Pairs are obtained by decomposing the inverse filter transfer function A(z) to a set of two transfer functions, one having even symmetry and the other having odd symmetry. The Line Spectral Pairs (also called as Line Spectral Frequencies) are the roots of these polynomials on the z-unit circle.

LP analysis window:
For each frame, the short term filter coefficients are computed using the high pass filtered speech samples within the analysis window. In the adaptive multi-rate codec, the length of the analysis window is always 240 samples. For each frame, two asymmetric windows are used to generate two sets of LP coefficient in the 12.2 kbit/s mode. For the other modes, only a single asymmetric window is used to generate a single set of LP coefficients. In the 12.2 kbit/s mode, no samples of the future frames are used (no lookahead). The other modes use a 5 ms lookahead.

LP coefficients:
Linear Prediction (LP) coefficients (also referred as Linear Predictive Coding (LPC) coefficients) is a generic descriptive term for the short term filter coefficients.

mode:
When used alone, refers to the source codec mode, i.e., to one of the source codecs employed in the AMR codec.

open‑loop pitch search:
A process of estimating the near optimal lag directly from the weighted speech input. This is done to simplify the pitch analysis and confine the closed‑loop pitch search to a small number of lags around the open‑loop estimated lags. In the adaptive multi-rate codec, an open‑loop pitch search is performed in every other subframe.

residual:
The output signal resulting from an inverse filtering operation.

short term synthesis filter: This filter introduces, into the excitation signal, short term correlation which models the impulse response of the vocal tract.

perceptual weighting filter: This filter is employed in the analysis‑by‑synthesis search of the codebooks. The filter exploits the noise masking properties of the formants (vocal tract resonances) by weighting the error less in regions near the formant frequencies and more in regions away from them.

subframe:
A time interval equal to 5 ms (40 samples at 8 kHz sampling rate).

vector quantization:
A method of grouping several parameters into a vector and quantizing them simultaneously.

zero input response:
The output of a filter due to past inputs, i.e. due to the present state of the filter, given that an input of zeros is applied.

zero state response:
The output of a filter due to the present input, given that no past inputs have been applied, i.e., given that the state information in the filter is all zeroes.

3.2
Symbols

For the purposes of this TS, the following symbols apply:

The inverse filter with unquantized coefficients

The inverse filter with quantized coefficients

The speech synthesis filter with quantized coefficients

The unquantized linear prediction parameters (direct form coefficients)

The quantified linear prediction parameters

The order of the LP model

The long‑term synthesis filter

The perceptual weighting filter (unquantized coefficients)

The perceptual weighting factors

Adaptive pre‑filter

The integer pitch lag nearest to the closed‑loop fractional pitch lag of the subframe

The adaptive pre‑filter coefficient (the quantified pitch gain)

The formant postfilter

Control coefficient for the amount of the formant post‑filtering

Control coefficient for the amount of the formant post‑filtering

Tilt compensation filter

Control coefficient for the amount of the tilt compensation filtering

A tilt factor, with

being the first reflection coefficient

The truncated impulse response of the formant postfilter

The length of

The auto‑correlations of

The inverse filter (numerator) part of the formant postfilter

The synthesis filter (denominator) part of the formant postfilter

The residual signal of the inverse filter

Impulse response of the tilt compensation filter

The AGC‑controlled gain scaling factor of the adaptive postfilter

The AGC factor of the adaptive postfilter

Pre‑processing high‑pass filter

,

LP analysis windows

Length of the first part of the LP analysis window

Length of the second part of the LP analysis window

Length of the first part of the LP analysis window

Length of the second part of the LP analysis window

The auto‑correlations of the windowed speech

Lag window for the auto‑correlations (60 Hz bandwidth expansion)

The bandwidth expansion in Hz

The sampling frequency in Hz

The modified (bandwidth expanded) auto‑correlations

The prediction error in the ith iteration of the Levinson algorithm

The ith reflection coefficient

The jth direct form coefficient in the ith iteration of the Levinson algorithm

Symmetric LSF polynomial

Antisymmetric LSF polynomial

Polynomial

 with root

 eliminated

Polynomial

 with root

 eliminated

The line spectral pairs (LSPs) in the cosine domain

An LSP vector in the cosine domain

The quantified LSP vector at the ith subframe of the frame n

The line spectral frequencies (LSFs)

A

th order Chebyshev polynomial

The coefficients of the polynomials

and

The coefficients of the polynomials

 and

The coefficients of either

 or

Sum polynomial of the Chebyshev polynomials

Cosine of angular frequency

Recursion coefficients for the Chebyshev polynomial evaluation

The line spectral frequencies (LSFs) in Hz

The vector representation of the LSFs in Hz

,

The mean‑removed LSF vectors at frame n

,

The LSF prediction residual vectors at frame n

The predicted LSF vector at frame n

The quantified second residual vector at the past frame

The quantified LSF vector at quantization index k

The LSP quantization error

LSP‑quantization weighting factors

The distance between the line spectral frequencies

 and

The impulse response of the weighted synthesis filter

The correlation maximum of open‑loop pitch analysis at delay k

The correlation maxima at delays

The normalized correlation maxima

 and the corresponding delays

 The weighted synthesis filter

The numerator of the perceptual weighting filter

The denominator of the perceptual weighting filter

The integer nearest to the fractional pitch lag of the previous (1st or 3rd) subframe

The windowed speech signal

The weighted speech signal

Reconstructed speech signal

The gain‑scaled post‑filtered signal

Post‑filtered speech signal (before scaling)

The target signal for adaptive codebook search

,

The target signal for algebraic codebook search

The LP residual signal

The fixed codebook vector

The adaptive codebook vector

The filtered adaptive codebook vector

The past filtered excitation

The excitation signal

The emphasized adaptive codebook vector

The gain‑scaled emphasized excitation signal

The best open‑loop lag

Minimum lag search value

Maximum lag search value

Correlation term to be maximized in the adaptive codebook search

The FIR filter for interpolating the normalized correlation term

The interpolated value of

 for the integer delay k and fraction t

The FIR filter for interpolating the past excitation signal

 to yield the adaptive codebook vector

Correlation term to be maximized in the algebraic codebook search at index k

The correlation in the numerator of

 at index k

The energy in the denominator of

 at index k

The correlation between the target signal

 and the impulse response

, i.e., backward filtered target

The lower triangular Toepliz convolution matrix with diagonal

 and lower diagonals

The matrix of correlations of

The elements of the vector d

The elements of the symmetric matrix

The innovation vector

The correlation in the numerator of

The position of the ith pulse

The amplitude of the ith pulse

The number of pulses in the fixed codebook excitation

The energy in the denominator of

The normalized long‑term prediction residual

The signal used for presetting the signs in algebraic codebook search

The sign signal for the algebraic codebook search

Sign extended backward filtered target

The modified elements of the matrix

, including sign information

,

The fixed codebook vector convolved with

The mean‑removed innovation energy (in dB)

The mean of the innovation energy

The predicted energy

The MA prediction coefficients

The quantified prediction error at subframe k

The mean innovation energy

The prediction error of the fixed‑codebook gain quantization

The quantization error of the fixed‑codebook gain quantization

The states of the synthesis filter

The perceptually weighted error of the analysis‑by‑synthesis search

The gain scaling factor for the emphasized excitation

The fixed‑codebook gain

The predicted fixed‑codebook gain

The quantified fixed codebook gain

The adaptive codebook gain

The quantified adaptive codebook gain

A correction factor between the gain

 and the estimated one

The optimum value for

Gain scaling factor

3.3
Abbreviations

For the purposes of this TS, the following abbreviations apply.

ACELP
Algebraic Code Excited Linear Prediction

AGC
Adaptive Gain Control

AMR
Adaptive Multi-Rate

CELP
Code Excited Linear Prediction

EFR
Enhanced Full Rate

FIR
Finite Impulse Response

ISPP
Interleaved Single‑Pulse Permutation

LP
Linear Prediction

LPC
Linear Predictive Coding

LSF
Line Spectral Frequency

LSP
Line Spectral Pair

LTP
Long Term Predictor (or Long Term Prediction)

MA
Moving Average

4
Outline description

This TS is structured as follows:

Section 4.1 contains a functional description of the audio parts including the A/D and D/A functions. Section 4.2 describes the conversion between 13‑bit uniform and 8‑bit A‑law or

-law samples. Sections 4.3 and 4.4 present a simplified description of the principles of the AMR codec encoding and decoding process respectively. In subclause 4.5, the sequence and subjective importance of encoded parameters are given.

Section 5 presents the functional description of the AMR codec encoding, whereas clause 6 describes the decoding procedures. In section 7, the detailed bit allocation of the AMR codec is tabulated.

4.1
Functional description of audio parts

The analogue‑to‑digital and digital‑to‑analogue conversion will in principle comprise the following elements:

1)
Analogue to uniform digital PCM

‑
microphone;

‑
input level adjustment device;

‑
input anti‑aliasing filter;

‑
sample‑hold device sampling at 8 kHz;

‑
analogue‑to‑uniform digital conversion to 13‑bit representation.

The uniform format shall be represented in two's complement.

2)
Uniform digital PCM to analogue

‑
conversion from 13‑bit/8 kHz uniform PCM to analogue;

‑
a hold device;

‑
reconstruction filter including x/sin(x) correction;

‑
output level adjustment device;

‑
earphone or loudspeaker.

In the terminal equipment, the A/D function may be achieved either

‑
by direct conversion to 13‑bit uniform PCM format;

‑
or by conversion to 8‑bit A‑law or

-law compounded format, based on a standard A‑law or

-law codec/filter according to ITU‑T Recommendations G.711 [6] and G.714, followed by the 8‑bit to 13‑bit conversion as specified in subclause 4.2.1.

For the D/A operation, the inverse operations take place.

In the latter case it should be noted that the specifications in ITU‑T G.714 (superseded by G.712) are concerned with PCM equipment located in the central parts of the network. When used in the terminal equipment, this TS does not on its own ensure sufficient out‑of‑band attenuation. The specification of out‑of‑band signals is defined in [1] in clause 2.

4.2
Preparation of speech samples

The encoder is fed with data comprising of samples with a resolution of 13 bits left justified in a 16‑bit word. The three least significant bits are set to '0'. The decoder outputs data in the same format. Outside the speech codec further processing must be applied if the traffic data occurs in a different representation.

4.2.1
PCM format conversion

The conversion between 8‑bit A‑Law or

-law compressed data and linear data with 13‑bit resolution at the speech encoder input shall be as defined in ITU‑T Rec. G.711 [6].

ITU‑T Rec. G.711 [6] specifies the A‑Law or

-law to linear conversion and vice versa by providing table entries. Examples on how to perform the conversion by fixed‑point arithmetic can be found in ITU‑T Rec. G.726 [7]. Section 4.2.1 of G.726 [7] describes A‑Law or

-law to linear expansion and subclause 4.2.8 of G.726 [7] provides a solution for linear to A‑Law or

-law compression.

4.3
Principles of the adaptive multi-rate speech encoder

The AMR codec consists of eight source codecs with bit-rates of 12.2, 10.2, 7.95, 7.40, 6.70, 5.90, 5.15 and 4.75 kbit/s.

The codec is based on the code‑excited linear predictive (CELP) coding model. A 10th order linear prediction (LP), or short‑term, synthesis filter is used which is given by:

,
(1)

where

 are the (quantified) linear prediction (LP) parameters, and

 is the predictor order. The long‑term, or pitch, synthesis filter is given by:

,
(2)

where

 is the pitch delay and

 is the pitch gain. The pitch synthesis filter is implemented using the so‑called adaptive codebook approach.

The CELP speech synthesis model is shown in figure 2. In this model, the excitation signal at the input of the short‑term LP synthesis filter is constructed by adding two excitation vectors from adaptive and fixed (innovative) codebooks. The speech is synthesized by feeding the two properly chosen vectors from these codebooks through the short‑term synthesis filter. The optimum excitation sequence in a codebook is chosen using an analysis‑by‑synthesis search procedure in which the error between the original and synthesized speech is minimized according to a perceptually weighted distortion measure.

The perceptual weighting filter used in the analysis‑by‑synthesis search technique is given by:

,
(3)

where

 is the unquantized LP filter and

 are the perceptual weighting factors. The values

 (for the 12.2 and 10.2 kbit/s mode) or

 (for all other modes) and

 are used. The weighting filter uses the unquantized LP parameters.

The coder operates on speech frames of 20 ms corresponding to 160 samples at the sampling frequency of 8 000 sample/s. At each 160 speech samples, the speech signal is analysed to extract the parameters of the CELP model (LP filter coefficients, adaptive and fixed codebooks' indices and gains). These parameters are encoded and transmitted. At the decoder, these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through the LP synthesis filter.

The signal flow at the encoder is shown in figure 3. LP analysis is performed twice per frame for the 12.2 kbit/s mode and once for the other modes. For the 12.2 kbit/s mode, the two sets of LP parameters are converted to line spectrum pairs (LSP) and jointly quantized using split matrix quantization (SMQ) with 38 bits. For the other modes, the single set of LP parameters is converted to line spectrum pairs (LSP) and vector quantized using split vector quantization (SVQ). The speech frame is divided into 4 subframes of 5 ms each (40 samples). The adaptive and fixed codebook parameters are transmitted every subframe. The quantized and unquantized LP parameters or their interpolated versions are used depending on the subframe. An open‑loop pitch lag is estimated in every other subframe (except for the 5.15 and 4.75 kbit/s modes for which it is done once per frame) based on the perceptually weighted speech signal.

Then the following operations are repeated for each subframe:

The target signal

 is computed by filtering the LP residual through the weighted synthesis filter

 with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).

The impulse response,

 of the weighted synthesis filter is computed.

Closed‑loop pitch analysis is then performed (to find the pitch lag and gain), using the target

 and impulse response

, by searching around the open‑loop pitch lag. Fractional pitch with 1/6th or 1/3rd of a sample resolution (depending on the mode) is used.

The target signal

 is updated by removing the adaptive codebook contribution (filtered adaptive codevector), and this new target,

, is used in the fixed algebraic codebook search (to find the optimum innovation).

The gains of the adaptive and fixed codebook are scalar quantified with 4 and 5 bits respectively or vector quantified with 6-7 bits (with moving average (MA) prediction applied to the fixed codebook gain).

Finally, the filter memories are updated (using the determined excitation signal) for finding the target signal in the next subframe.

The bit allocation of the AMR codec modes is shown in table 1. In each 20 ms speech frame, 95, 103, 118, 134, 148, 159, 204 or 244 bits are produced, corresponding to a bit-rate of 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2 or 12.2 kbit/s. More detailed bit allocation among the codec parameters is given in tables 9a-9h. Note that the most significant bits (MSB) are always sent first.

Table 1: Bit allocation of the AMR coding algorithm for 20 ms frame

Mode
Parameter
1st subframe
2nd subframe
3rd subframe
4th subframe
total per frame

2 LSP sets

38

12.2 kbit/s
Pitch delay
9
6
9
6
30

(GSM EFR)
Pitch gain
4
4
4
4
16

Algebraic code
35
35
35
35
140

Codebook gain
5
5
5
5
20

Total

244

LSP set

26

10.2 kbit/s
Pitch delay
8
5
8
5
26

Algebraic code
31
31
31
31
124

Gains
7
7
7
7
28

Total

204

LSP sets

27

7.95 kbit/s
Pitch delay
8
6
8
6
28

Pitch gain
4
4
4
4
16

Algebraic code
17
17
17
17
68

Codebook gain
5
5
5
5
20

Total

159

LSP set

26

7.40 kbit/s
Pitch delay
8
5
8
5
26

(TDMA EFR)
Algebraic code
17
17
17
17
68

Gains
7
7
7
7
28

Total

148

LSP set

26

6.70 kbit/s
Pitch delay
8
4
8
4
24

(PDC EFR)
Algebraic code
14
14
14
14
56

Gains
7
7
7
7
28

Total

134

LSP set

26

5.90 kbit/s
Pitch delay
8
4
8
4
24

Algebraic code
11
11
11
11
44

Gains
6
6
6
6
24

Total

118

LSP set

23

5.15 kbit/s
Pitch delay
8
4
4
4
20

Algebraic code
9
9
9
9
36

Gains
6
6
6
6
24

Total

103

LSP set

23

4.75 kbit/s
Pitch delay
8
4
4
4
20

Algebraic code
9
9
9
9
36

Gains
 8
8
16

Total

95

4.4
Principles of the adaptive multi-rate speech decoder

The signal flow at the decoder is shown in figure 4. At the decoder, based on the chosen mode, the transmitted indices are extracted from the received bitstream. The indices are decoded to obtain the coder parameters at each transmission frame. These parameters are the LSP vectors, the fractional pitch lags, the innovative codevectors, and the pitch and innovative gains. The LSP vectors are converted to the LP filter coefficients and interpolated to obtain LP filters at each subframe. Then, at each 40-sample subframe:

‑
the excitation is constructed by adding the adaptive and innovative codevectors scaled by their respective gains;

‑
the speech is reconstructed by filtering the excitation through the LP synthesis filter.

Finally, the reconstructed speech signal is passed through an adaptive postfilter.

4.5
Sequence and subjective importance of encoded parameters

The encoder will produce the output information in a unique sequence and format, and the decoder must receive the same information in the same way. In table 9a-9h, the sequence of output bits and the bit allocation for each parameter is shown.

The different parameters of the encoded speech and their individual bits have unequal importance with respect to subjective quality. The output and input frame formats for the AMR speech codec are given in [2], where a reordering of bits take place.

5
Functional description of the encoder

In this clause, the different functions of the encoder represented in figure 3 are described.

5.1
Pre‑processing (all modes)

Two pre‑processing functions are applied prior to the encoding process: high‑pass filtering and signal down‑scaling.

Down‑scaling consists of dividing the input by a factor of 2 to reduce the possibility of overflows in the fixed‑point implementation.

The high‑pass filter serves as a precaution against undesired low frequency components. A filter with a cut off frequency of 80 Hz is used, and it is given by:

.
(4)

Down‑scaling and high‑pass filtering are combined by dividing the coefficients at the numerator of

 by 2.

5.2
Linear prediction analysis and quantization

12.2 kbit/s mode

Short‑term prediction, or linear prediction (LP), analysis is performed twice per speech frame using the auto‑correlation approach with 30 ms asymmetric windows. No lookahead is used in the auto‑correlation computation.

The auto‑correlations of windowed speech are converted to the LP coefficients using the Levinson‑Durbin algorithm. Then the LP coefficients are transformed to the Line Spectral Pair (LSP) domain for quantization and interpolation purposes. The interpolated quantified and unquantized filter coefficients are converted back to the LP filter coefficients (to construct the synthesis and weighting filters at each subframe).

10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes

Short‑term prediction, or linear prediction (LP), analysis is performed once per speech frame using the auto‑correlation approach with 30 ms asymmetric windows. A lookahead of 40 samples (5 ms) is used in the auto‑correlation computation.

The auto‑correlations of windowed speech are converted to the LP coefficients using the Levinson‑Durbin algorithm. Then the LP coefficients are transformed to the Line Spectral Pair (LSP) domain for quantization and interpolation purposes. The interpolated quantified and unquantized filter coefficients are converted back to the LP filter coefficients (to construct the synthesis and weighting filters at each subframe).

5.2.1
Windowing and auto‑correlation computation

12.2 kbit/s mode

LP analysis is performed twice per frame using two different asymmetric windows. The first window has its weight concentrated at the second subframe and it consists of two halves of Hamming windows with different sizes. The window is given by:

(5)

The values

 and

 are used. The second window has its weight concentrated at the fourth subframe and it consists of two parts: the first part is half a Hamming window and the second part is a quarter of a cosine function cycle. The window is given by:

(6)

where the values

 and

 are used.

Note that both LP analyses are performed on the same set of speech samples. The windows are applied to 80 samples from past speech frame in addition to the 160 samples of the present speech frame. No samples from future frames are used (no lookahead). A diagram of the two LP analysis windows is depicted below.

Figure 1: LP analysis windows

The auto‑correlations of the windowed speech

, are computed by:

(7)

and a 60 Hz bandwidth expansion is used by lag windowing the auto‑correlations using the window:

,

(8)

where

 Hz is the bandwidth expansion and

 Hz is the sampling frequency. Further,

 is multiplied by the white noise correction factor 1.0001 which is equivalent to adding a noise floor at ‑40 dB.

10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes

LP analysis is performed once per frame using an asymmetric window. The window has its weight concentrated at the fourth subframe and it consists of two parts: the first part is half a Hamming window and the second part is a quarter of a cosine function cycle. The window is given by equation (6) where the values

 and

 are used.

The auto‑correlations of the windowed speech

, are computed by equation (7) and a 60 Hz bandwidth expansion is used by lag windowing the auto‑correlations using the window of equation (8). Further,

 is multiplied by the white noise correction factor 1.0001 which is equivalent to adding a noise floor at ‑40 dB.

5.2.2
Levinson‑Durbin algorithm (all modes)

The modified auto‑correlations

 and

 are used to obtain the direct form LP filter coefficients

 by solving the set of equations.

(9)

The set of equations in (9) is solved using the Levinson‑Durbin algorithm. This algorithm uses the following recursion:

The final solution is given as

.

The LP filter coefficients are converted to the line spectral pair (LSP) representation for quantization and interpolation purposes. The conversions to the LSP domain and back to the LP filter coefficient domain are described in the next clause.

5.2.3
LP to LSP conversion (all modes)

The LP filter coefficients

, are converted to the line spectral pair (LSP) representation for quantization and interpolation purposes. For a 10th order LP filter, the LSPs are defined as the roots of the sum and difference polynomials:

(10)

and

,
(11)

respectively. The polynomial

 and

 are symmetric and anti‑symmetric, respectively. It can be proven that all roots of these polynomials are on the unit circle and they alternate each other.

 has a root

 (

) and

 has a root

 (

). To eliminate these two roots, we define the new polynomials:

(12)

and

(13)

Each polynomial has 5 conjugate roots on the unit circle

, therefore, the polynomials can be written as

(14)

and

,
(15)

where

 with

 being the line spectral frequencies (LSF) and they satisfy the ordering property

. We refer to

 as the LSPs in the cosine domain.

Since both polynomials

 and

 are symmetric only the first 5 coefficients of each polynomial need to be computed. The coefficients of these polynomials are found by the recursive relations (for

 to 4):

(16)

where

 is the predictor order.

The LSPs are found by evaluating the polynomials

 and

 at 60 points equally spaced between 0 and

 and checking for sign changes. A sign change signifies the existence of a root and the sign change interval is then divided 4 times to better track the root. The Chebyshev polynomials are used to evaluate

 and

. In this method the roots are found directly in the cosine domain

. The polynomials

 or

 evaluated at

 can be written as:

,

with:

,
(17)

where

 is the

th order Chebyshev polynomial, and

 are the coefficients of either

 or

, computed using the equations in (16). The polynomial

 is evaluated at a certain value of

 using the recursive relation:

with initial values

 and

 The details of the Chebyshev polynomial evaluation method are found in P. Kabal and R.P. Ramachandran [4].

5.2.4
LSP to LP conversion (all modes)

Once the LSPs are quantified and interpolated, they are converted back to the LP coefficient domain

. The conversion to the LP domain is done as follows. The coefficients of

 or

 are found by expanding equations (14) and (15) knowing the quantified and interpolated LSPs

. The following recursive relation is used to compute

:

with initial values

 and

. The coefficients

 are computed similarly by replacing

 by

.

Once the coefficients

 and

 are found,

 and

 are multiplied by

 and

, respectively, to obtain

 and

; that is:

.
(18)

Finally the LP coefficients are found by:

.
(19)

This is directly derived from the relation

, and considering the fact that

 and

 are symmetric and anti‑symmetric polynomials, respectively.

5.2.5
Quantization of the LSP coefficients

12.2 kbit/s mode

The two sets of LP filter coefficients per frame are quantified using the LSP representation in the frequency domain; that is:

(20)

where

 are the line spectral frequencies (LSF) in Hz [0,4000] and

 is the sampling frequency. The LSF vector is given by

, with t denoting transpose.

A 1st order MA prediction is applied, and the two residual LSF vectors are jointly quantified using split matrix quantization (SMQ). The prediction and quantization are performed as follows. Let

 and

 denote the mean‑removed LSF vectors at frame

. The prediction residual vectors

 and

 are given by:

(21)
where

 is the predicted LSF vector at frame

. First order moving‑average (MA) prediction is used where:

,
(22)

where

 is the quantified second residual vector at the past frame.

The two LSF residual vectors

 and

 are jointly quantified using split matrix quantization (SMQ). The matrix

 is split into 5 submatrices of dimension 2 x 2 (two elements from each vector). For example, the first submatrix consists of the elements

,

,

, and

. The 5 submatrices are quantified with 7, 8, 8+1, 8, and 6 bits, respectively. The third submatrix uses a 256‑entry signed codebook (8‑bit index plus 1‑bit sign).

A weighted LSP distortion measure is used in the quantization process. In general, for an input LSP vector

 and a quantified vector at index

,

, the quantization is performed by finding the index

 which minimizes:

(23)

The weighting factors

, are given by

(24)

where

 with

 and

. Here, two sets of weighting coefficients are computed for the two LSF vectors. In the quantization of each submatrix, two weighting coefficients from each set are used with their corresponding LSFs.

10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes

The set of LP filter coefficients per frame is quantified using the LSP representation in the frequency domain using equation (20).

A 1st order MA prediction is applied, and the residual LSF vector is quantified using split vector quantization. The prediction and quantization are performed as follows. Let

 denote the mean‑removed LSF vectors at frame

. The prediction residual vectors

 is given by:

(25)
where

 is the predicted LSF vector at frame

. First order moving‑average (MA) prediction is used where:

,
(26)

where

 is the quantified residual vector at the past frame and

 is the prediction factor for the jth LSF.

The LSF residual vectors

 is quantified using split vector quantization. The vector

 is split into 3 subvectors of dimension 3, 3, and 4. The 3 subvectors are quantified with 7-9 bits according to table 2.

Table 2. Bit allocation split vector quantization of LSF residual vector.

Mode
Subvector 1
Subvector 2
Subvector 3

10.2 kbit/s
8
9
9

7.95 kbit/s
9
9
9

7.40 kbit/s
8
9
9

6.70 kbit/s
8
9
9

5.90 kbit/s
8
9
9

5.15 kbit/s
8
8
7

4.75 kbit/s
8
8
7

The weighted LSP distortion measure of equation (23) with the weighting of equation (24) is used in the quantization process.

5.2.6
Interpolation of the LSPs

12.2 kbit/s mode

The two sets of quantified (and unquantized) LP parameters are used for the second and fourth subframes whereas the first and third subframes use a linear interpolation of the parameters in the adjacent subframes. The interpolation is performed on the LSPs in the

 domain. Let

 be the LSP vector at the 4th subframe of the present frame

,

 be the LSP vector at the 2nd subframe of the present frame

, and

 the LSP vector at the 4th subframe of the past frame

. The interpolated LSP vectors at the 1st and 3rd subframes are given by:

(27)

The interpolated LSP vectors are used to compute a different LP filter at each subframe (both quantified and unquantized coefficients) using the LSP to LP conversion method described in subclause 5.2.4.

10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes

The set of quantified (and unquantized) LP parameters is used for the fourth subframe whereas the first, second, and third subframes use a linear interpolation of the parameters in the adjacent subframes. The interpolation is performed on the LSPs in the

 domain. The interpolated LSP vectors at the 1st, 2nd, and 3rd subframes are given by:

(28)

The interpolated LSP vectors are used to compute a different LP filter at each subframe (both quantified and unquantized coefficients) using the LSP to LP conversion method described in subclause 5.2.4.

5.2.7
Monitoring resonance in the LPC spectrum (all modes)

Resonances in the LPC filter are monitored to detect possible problem areas where divergence between the adaptive codebook memories in the encoder and the decoder could cause unstable filters in areas with highly correlated continuos signals. Typically, this divergence is due to channel errors.

The monitoring of resonance signals is performed using unquantized LSPs

. The LSPs are available after the LP to LSP conversion in section 5.2.3. The algorithm utilises the fact that LSPs are closely located at a peak in the spectrum. First, two distances,

 and

, are calculated in two different regions, defined as

, and

.

Either of these two minimum distance conditions must be fulfilled to classify the frame as a resonance frame and increase the resonance counter.

 is a fixed threshold while the second one is depending on

 according to:

12 consecutive resonance frames are needed to indicate possible problem conditions, otherwise the LSP_flag is cleared.

5.3
Open‑loop pitch analysis

Open‑loop pitch analysis is performed in order to simplify the pitch analysis and confine the closed‑loop pitch search to a small number of lags around the open‑loop estimated lags.

Open‑loop pitch estimation is based on the weighted speech signal

 which is obtained by filtering the input speech signal through the weighting filter

. That is, in a subframe of size

, the weighted speech is given by:

(29)

12.2 kbit/s mode

Open‑loop pitch analysis is performed twice per frame (each 10 ms) to find two estimates of the pitch lag in each frame.

Open‑loop pitch analysis is performed as follows. In the first step, 3 maxima of the correlation:

(30)

are found in the three ranges:

EMBED Equation.3

The retained maxima

, are normalized by dividing by

, respectively. The normalized maxima and corresponding delays are denoted by

. The winner,

 , among the three normalized correlations is selected by favouring the delays with the values in the lower range. This is performed by weighting the normalized correlations corresponding to the longer delays. The best open‑loop delay

 is determined as follows:

This procedure of dividing the delay range into 3 clauses and favouring the lower clauses is used to avoid choosing pitch multiples.

10.2 kbit/s mode

Open-loop pitch analysis is performed twice per frame (every 10 ms) to find two estimates of the pitch lag in each frame.

The open-loop pitch analysis is performed as follows. First, the correlation of weighted speech is determined for each pitch lag value d by:

,
(31)

where

 is a weighting function. The estimated pitch-lag is the delay that maximises the weighted correlation function

. The weighting emphasises lower pitch lag values reducing the likelihood of selecting a multiple of the correct delay. The weighting function consists of two parts: a low pitch lag emphasis function,

, and a previous frame lag neighbouring emphasis function,

:

.
(32)

The low pitch lag emphasis function is a given by:

(33)

where

 is defined by a table in the fixed point computational computational description (ANSI-C code) in [4]. The previous frame lag neighbouring emphasis function depends on the pitch lag of previous speech frames:

(34)

where

,

 is the median filtered pitch lag of 5 previous voiced speech half-frames, and v is an adaptive parameter. If the frame is classified as voiced by having the open-loop gain

, the v-value is set to 1.0 for the next frame. Otherwise, the v-value is updated by

. The open loop gain is given by:

(35)

where

 is the pitch delay that maximizes

. The median filter is updated only during voiced speech frames. The weighting depends on the reliability of the old pitch lags. If previous frames have contained unvoiced speech or silence, the weighting is attenuated through the parameter v.

7.95, 7.40, 6.70, 5.90 kbit/s modes

Open‑loop pitch analysis is performed twice per frame (each 10 ms) to find two estimates of the pitch lag in each frame.

Open‑loop pitch analysis is performed as follows. In the first step, 3 maxima of the correlation in equation (30) are found in the three ranges:

EMBED Equation.3

The retained maxima

, are normalized by dividing by

, respectively. The normalized maxima and corresponding delays are denoted by

. The winner,

 , among the three normalized correlations is selected by favouring the delays with the values in the lower range. This is performed by weighting the normalized correlations corresponding to the longer delays. The best open‑loop delay

 is determined as follows:

This procedure of dividing the delay range into 3 clauses and favouring the lower clauses is used to avoid choosing pitch multiples.

5.15, 4.75 kbit/s modes

Open‑loop pitch analysis is performed once per frame (each 20 ms) to find an estimate of the pitch lag in each frame.

Open‑loop pitch analysis is performed as follows. In the first step, 3 maxima of the correlation in equation (30) are found in the three ranges:

EMBED Equation.3

The retained maxima

, are normalized by dividing by

, respectively. The normalized maxima and corresponding delays are denoted by

. The winner,

 , among the three normalized correlations is selected by favouring the delays with the values in the lower range. This is performed by weighting the normalized correlations corresponding to the longer delays. The best open‑loop delay

 is determined as follows:

This procedure of dividing the delay range into 3 clauses and favouring the lower clauses is used to avoid choosing pitch multiples.

5.4
Impulse response computation (all modes)

The impulse response,

, of the weighted synthesis filter

 is computed each subframe. This impulse response is needed for the search of adaptive and fixed codebooks. The impulse response

 is computed by filtering the vector of coefficients of the filter

 extended by zeros through the two filters

 and

.

5.5
Target signal computation (all modes)

The target signal for adaptive codebook search is usually computed by subtracting the zero input response of the weighted synthesis filter

 from the weighted speech signal

. This is performed on a subframe basis.

An equivalent procedure for computing the target signal, which is used in this standard, is the filtering of the LP residual signal

 through the combination of synthesis filter

 and the weighting filter

. After determining the excitation for the subframe, the initial states of these filters are updated by filtering the difference between the LP residual and excitation. The memory update of these filters is explained in subclause 5.9.

The residual signal

 which is needed for finding the target vector is also used in the adaptive codebook search to extend the past excitation buffer. This simplifies the adaptive codebook search procedure for delays less than the subframe size of 40 as will be explained in the next clause. The LP residual is given by:

(36)

5.6
Adaptive codebook

5.6.1
Adaptive codebook search

Adaptive codebook search is performed on a subframe basis. It consists of performing closed‑loop pitch search, and then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag.

The adaptive codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In the adaptive codebook approach for implementing the pitch filter, the excitation is repeated for delays less than the subframe length. In the search stage, the excitation is extended by the LP residual to simplify the closed‑loop search.

12.2 kbit/s mode

In the first and third subframes, a fractional pitch delay is used with resolutions: 1/6 in the range

 and integers only in the range [95, 143]. For the second and fourth subframes, a pitch resolution of 1/6 is always used in the range

, where

 is nearest integer to the fractional pitch lag of the previous (1st or 3rd) subframe, bounded by 18...143.

Closed‑loop pitch analysis is performed around the open‑loop pitch estimates on a subframe basis. In the first (and third) subframe the range

, bounded by 18...143, is searched. For the other subframes, closed‑loop pitch analysis is performed around the integer pitch selected in the previous subframe, as described above. The pitch delay is encoded with 9 bits in the first and third subframes and the relative delay of the other subframes is encoded with 6 bits.

The closed‑loop pitch search is performed by minimizing the mean‑square weighted error between the original and synthesized speech. This is achieved by maximizing the term:

(37)

where

 is the target signal and

 is the past filtered excitation at delay

 (past excitation convolved with

). Note that the search range is limited around the open‑loop pitch as explained earlier.

The convolution

 is computed for the first delay

 in the searched range, and for the other delays in the search range

, it is updated using the recursive relation:

,
(38)

where

, is the excitation buffer. Note that in search stage, the samples

, are not known, and they are needed for pitch delays less than 40. To simplify the search, the LP residual is copied to

 in order to make the relation in equation (38) valid for all delays.

Once the optimum integer pitch delay is determined, the fractions from –3/6 to 3/6 with a step of 1/6 around that integer are tested. The fractional pitch search is performed by interpolating the normalized correlation in equation (37) and searching for its maximum. The interpolation is performed using an FIR filter

 based on a Hamming windowed

 function truncated at (23 and padded with zeros at (24 (

). The filter has its cut‑off frequency (‑3 dB) at 3 600 Hz in the over‑sampled domain. The interpolated values of

 for the fractions –3/6 to 3/6 are obtained using the interpolation formula:

(39)

where

corresponds to the fractions 0, 1/6, 2/6, 3/6, -2/6, and –1/6, respectively. Note that it is necessary to compute the correlation terms in equation (37) using a range

 to allow for the proper interpolation.

Once the fractional pitch lag is determined, the adaptive codebook vector

 is computed by interpolating the past excitation signal

 at the given integer delay

 and phase (fraction)

:

(40)

The interpolation filter

 is based on a Hamming windowed

 function truncated at (59 and padded with zeros at (60 (

). The filter has a cut‑off frequency (‑3 dB) at 3 600 Hz in the over‑sampled domain.

The adaptive codebook gain is then found by:

(41)

where

 is the filtered adaptive codebook vector (zero state response of

 to

).

The computed adaptive codebook gain is quantified using 4‑bit non‑uniform scalar quantization in the range [0.0,1.2].

7.95 kbit/s mode

In the first and third subframes, a fractional pitch delay is used with resolutions: 1/3 in the range

 and integers only in the range [85, 143]. For the second and fourth subframes, a pitch resolution of 1/3 is always used in the range

, where

 is nearest integer to the fractional pitch lag of the previous (1st or 3rd) subframe, bounded by 20...143.

Closed‑loop pitch analysis is performed around the open‑loop pitch estimates on a subframe basis. In the first (and third) subframe the range

, bounded by 20...143, is searched. For the other subframes, closed‑loop pitch analysis is performed around the integer pitch selected in the previous subframe, as described above. The pitch delay is encoded with 8 bits in the first and third subframes and the relative delay of the other subframes is encoded with 6 bits.

The closed‑loop pitch search is performed by minimizing the mean‑square weighted error between the original and synthesized speech. This is achieved by maximizing the term of equation (37). Note that the search range is limited around the open‑loop pitch as explained earlier.

The convolution

 is computed for the first delay

 in the searched range, and for the other delays in the search range

, it is updated using the recursive relation of equation (38).

Once the optimum integer pitch delay is determined, the fractions from –2/3 to 2/3 with a step of 1/3 around that integer are tested. The fractional pitch search is performed by interpolatingthe normalized correlation in equation (37) and searching for its maximum. Once the fractional pitch lag is determined, the adaptive codebook vector

 is computed by interpolating the past excitation signal

 at the given integer delay and phase (fraction). The interpolation is performed using two FIR filters (Hamming windowed sinc functions); one for interpolating the term in equation (37) with the sinc truncated at (11 and the other for interpolating the past excitation with the sinc truncated at (29. The filters have their cut‑off frequency (‑3 dB) at 3 600 Hz in the over‑sampled domain.

The adaptive codebook gain is then found as in equation (41).

The computed adaptive codebook gain is quantified using 4‑bit non‑uniform scalar quantization as described in section 5.8.

10.2, 7.40 kbit/s mode

In the first and third subframes, a fractional pitch delay is used with resolutions: 1/3 in the range

 and integers only in the range [85, 143]. For the second and fourth subframes, a pitch resolution of 1/3 is always used in the range

, where

 is nearest integer to the fractional pitch lag of the previous (1st or 3rd) subframe, bounded by 20...143.

Closed‑loop pitch analysis is performed around the open‑loop pitch estimates on a subframe basis. In the first (and third) subframe the range

, bounded by 20...143, is searched. For the other subframes, closed‑loop pitch analysis is performed around the integer pitch selected in the previous subframe, as described above. The pitch delay is encoded with 8 bits in the first and third subframes and the relative delay of the other subframes is encoded with 5 bits.

The closed‑loop pitch search is performed by minimizing the mean‑square weighted error between the original and synthesized speech. This is achieved by maximizing the term of equation (37). Note that the search range is limited around the open‑loop pitch as explained earlier.

The convolution

 is computed for the first delay

 in the searched range, and for the other delays in the search range

, it is updated using the recursive relation of equation (38).

Once the optimum integer pitch delay is determined, the fractions from –2/3 to 2/3 with a step of 1/3 around that integer are tested. The fractional pitch search is performed by interpolatingthe normalized correlation in equation (37) and searching for its maximum. Once the fractional pitch lag is determined, the adaptive codebook vector

 is computed by interpolating the past excitation signal

 at the given integer delay and phase (fraction). The interpolation is performed using two FIR filters (Hamming windowed sinc functions); one for interpolating the term in equation (37) with the sinc truncated at (11 and the other for interpolating the past excitation with the sinc truncated at (29. The filters have their cut‑off frequency (‑3 dB) at 3 600 Hz in the over‑sampled domain.

The adaptive codebook gain is then found as in equation (41).

The computed adaptive codebook gain (and the fixed codebook gain) is quantified using 7‑bit non‑uniform vector quantization as described in section 5.8.

6.70, 5.90 kbit/s modes

In the first and third subframes, a fractional pitch delay is used with resolutions: 1/3 in the range

 and integers only in the range [85, 143]. For the second and fourth subframes, integer pitch resolution is used in the range

, where

 is nearest integer to the fractional pitch lag of the previous (1st or 3rd) subframe, bounded by 20...143. Additionally, a fractional resolution of 1/3 is used in the range

.

Closed‑loop pitch analysis is performed around the open‑loop pitch estimates on a subframe basis. In the first (and third) subframe the range

, bounded by 20...143, is searched. For the other subframes, closed‑loop pitch analysis is performed around the integer pitch selected in the previous subframe, as described above. The pitch delay is encoded with 8 bits in the first and third subframes and the relative delay of the other subframes is encoded with 4 bits.

The closed‑loop pitch search is performed by minimizing the mean‑square weighted error between the original and synthesized speech. This is achieved by maximizing the term of equation (37). Note that the search range is limited around the open‑loop pitch as explained earlier.

The convolution

 is computed for the first delay

 in the searched range, and for the other delays in the search range

, it is updated using the recursive relation of equation (38).

Once the optimum integer pitch delay is determined, the fractions from –2/3 to 2/3 with a step of 1/3 around that integer are tested. The fractional pitch search is performed by interpolatingthe normalized correlation in equation (37) and searching for its maximum. Once the fractional pitch lag is determined, the adaptive codebook vector

 is computed by interpolating the past excitation signal

 at the given integer delay and phase (fraction). The interpolation is performed using two FIR filters (Hamming windowed sinc functions); one for interpolating the term in equation (37) with the sinc truncated at (11 and the other for interpolating the past excitation with the sinc truncated at (29. The filters have their cut‑off frequency (‑3 dB) at 3 600 Hz in the over‑sampled domain.

The adaptive codebook gain is then found as in equation (41).

The computed adaptive codebook gain (and the fixed codebook gain) is quantified using vector quantization as described in section 5.8.

5.15, 4.75 kbit/s modes

In the first subframe, a fractional pitch delay is used with resolutions: 1/3 in the range

 and integers only in the range [85, 143]. For the second, third, and fourth subframes, integer pitch resolution is used in the range

, where

 is nearest integer to the fractional pitch lag of the previous subframe, bounded by 20...143. Additionally, a fractional resolution of 1/3 is used in the range

.

Closed‑loop pitch analysis is performed around the open‑loop pitch estimates on a subframe basis. In the first subframe the range Top (5, bounded by 20...143, is searched. For the other subframes, closed‑loop pitch analysis is performed around the integer pitch selected in the previous subframe, as described above. The pitch delay is encoded with 8 bits in the first subframe and the relative delay of the other subframes is encoded with 4 bits.

The closed‑loop pitch search is performed by minimizing the mean‑square weighted error between the original and synthesized speech. This is achieved by maximizing the term of equation (37). Note that the search range is limited around the open‑loop pitch as explained earlier.

The convolution

 is computed for the first delay

 in the searched range, and for the other delays in the search range

, it is updated using the recursive relation of equation (38).

Once the optimum integer pitch delay is determined, the fractions from –2/3 to 2/3 with a step of 1/3 around that integer are tested. The fractional pitch search is performed by interpolatingthe normalized correlation in equation (37) and searching for its maximum. Once the fractional pitch lag is determined, the adaptive codebook vector

 is computed by interpolating the past excitation signal

 at the given integer delay and phase (fraction). The interpolation is performed using two FIR filters (Hamming windowed sinc functions); one for interpolating the term in equation (37) with the sinc truncated at (11 and the other for interpolating the past excitation with the sinc truncated at (29. The filters have their cut‑off frequency (‑3 dB) at 3 600 Hz in the over‑sampled domain.

The adaptive codebook gain is then found as in equation (41).

The computed adaptive codebook gain (and the fixed codebook gain) is quantified using vector quantization as described in section 5.8.

5.6.2 Adaptive codebook gain control (all modes)

The average adaptive codebook gain is calculated if the LSP_flag is set and the unquantized adaptive codebook gain exceeds the gain threshold

.

The average gain is calculated from the present unquantized gain and the quantized gains of the seven previous subframes. That is,

, where n is the current subframe. If the average adaptive codebook gain exceeds the

, the unquantized gain is limited to the threshold value and the GpC_flag is set to indicate the limitation.

The GpC_flag is used in the gain quantization in section 5.8.

5.7
Algebraic codebook

5.7.1
Algebraic codebook structure

The algebraic codebook structure is based on interleaved single‑pulse permutation (ISPP) design.

12.2 kbit/s mode

In this codebook, the innovation vector contains 10 non‑zero pulses. All pulses can have the amplitudes +1 or ‑1. The 40 positions in a subframe are divided into 5 tracks, where each track contains two pulses, as shown in table 3.

Table 3: Potential positions of individual pulses in the algebraic codebook, 12.2 kbit/s.

Track
Pulse
Positions

1
i0, i5
0, 5, 10, 15, 20, 25, 30, 35

2
i1, i6
1, 6, 11, 16, 21, 26, 31, 36

3
i2, i7
2, 7, 12, 17, 22, 27, 32, 37

4
i3, i8
3, 8, 13, 18, 23, 28, 33, 38

5
i4, i9
4, 9, 14, 19, 24, 29, 34, 39

Each two pulse positions in one track are encoded with 6 bits (total of 30 bits, 3 bits for the position of every pulse), and the sign of the first pulse in the track is encoded with 1 bit (total of 5 bits).

For two pulses located in the same track, only one sign bit is needed. This sign bit indicates the sign of the first pulse. The sign of the second pulse depends on its position relative to the first pulse. If the position of the second pulse is smaller, then it has opposite sign, otherwise it has the same sign than in the first pulse.

All the 3‑bit pulse positions are Gray coded in order to improve robustness against channel errors. This gives a total of 35 bits for the algebraic code.

10.2 kbit/s mode

In this codebook, the innovation vector contains 8 non‑zero pulses. All pulses can have the amplitudes +1 or ‑1. The 40 positions in a subframe are divided into 4 tracks, where each track contains two pulses, as shown in table 4.

Table 4: Potential positions of individual pulses in the algebraic codebook, 10.2 kbit/s.

Track
Pulse
Positions

1
i0, i4
0, 4, 8, 12, 16, 20, 24, 28, 32, 36

2
i1, i5
1, 5, 9, 13, 17, 21, 25, 29, 33, 37

3
i2, i6
2, 6, 10, 14, 18, 22, 26, 30, 34, 38

4
i3, i7
3, 7, 11, 15, 19, 23, 27, 31, 35, 39

The pulses are grouped into 3, 3, and 2 pulses and their positions are encoded with 10, 10, and 7 bits, respectively (total of 27 bits). The sign of the first pulse in each track is encoded with 1 bit (total of 4 bits).

For two pulses located in the same track, only one sign bit is needed. This sign bit indicates the sign of the first pulse. The sign of the second pulse depends on its position relative to the first pulse. If the position of the second pulse is smaller, then it has opposite sign, otherwise it has the same sign than in the first pulse.

This gives a total of 31 bits for the algebraic code.

7.95, 7.40 kbit/s modes

In this codebook, the innovation vector contains 4 non‑zero pulses. All pulses can have the amplitudes +1 or ‑1. The 40 positions in a subframe are divided into 4 tracks, where each track contains one pulse, as shown in table 5.

Table 5: Potential positions of individual pulses in the algebraic codebook, 7.95, 7.40 kbit/s.

Track
Pulse
Positions

1
i0
0, 5, 10, 15, 20, 25, 30, 35

2
i1
1, 6, 11, 16, 21, 26, 31, 36

3
i2
2, 7, 12, 17, 22, 27, 32, 37

4
i3
3, 8, 13, 18, 23, 28, 33, 38,

4, 9, 14, 19, 24, 29, 34, 39

The pulse positions are encoded with 3, 3, 3, and 4 bits (total of 13 bits), and the sign of the each pulse is encoded with 1 bit (total of 4 bits). This gives a total of 17 bits for the algebraic code.

6.70 kbit/s mode

In this codebook, the innovation vector contains 3 non‑zero pulses. All pulses can have the amplitudes +1 or ‑1. The 40 positions in a subframe are divided into 3 tracks, where each track contains one pulse, as shown in table 6.

Table 6: Potential positions of individual pulses in the algebraic codebook, 6.70 kbit/s.

Track
Pulse
Positions

1
i0
0, 5, 10, 15, 20, 25, 30, 35

2
i1
1, 6, 11, 16, 21, 26, 31, 36,

3, 8, 13, 18, 23, 28, 33, 38

3
i2
2, 7, 12, 17, 22, 27, 32, 37,

4, 9, 14, 19, 24, 29, 34, 39

The pulse positions are encoded with 3, 4, and 4 bits (total of 11 bits), and the sign of the each pulse is encoded with 1 bit (total of 3 bits). This gives a total of 14 bits for the algebraic code.

5.90 kbit/s mode

In this codebook, the innovation vector contains 2 non‑zero pulses. All pulses can have the amplitudes +1 or ‑1. The 40 positions in a subframe are divided into 2 tracks, where each track contains one pulse, as shown in table 7.

Table 7: Potential positions of individual pulses in the algebraic codebook, 5.90 kbit/s.

Track
Pulse
Positions

1
i0
1, 6, 11, 16, 21, 26, 31, 36,

3, 8, 13, 18, 23, 28, 33, 38

2
i1
0, 5, 10, 15, 20, 25, 30, 35,

1, 6, 11, 16, 21, 26, 31, 36,

2, 7, 12, 17, 22, 27, 32, 37,

4, 9, 14, 19, 24, 29, 34, 39

The pulse positions are encoded with 4 and 5 bits (total of 9 bits), and the sign of the each pulse is encoded with 1 bit (total of 2 bits). This gives a total of 11 bits for the algebraic code.

5.15, 4.75 kbit/s modes

In this codebook, the innovation vector contains 2 non‑zero pulses. All pulses can have the amplitudes +1 or ‑1. The 40 positions in a subframe are divided into 5 tracks. Two subsets of 2 tracks each are used for each subframe with one pulse in each track. Different subsets of tracks are used for each subframe. The pulse positions used in each subframe are shown in table 8.

Table 8: Potential positions of individual pulses in the algebraic codebook, 5.15, 4.75 kbit/s.

Subframe
Subset
Pulse
Positions

1
i0
0, 5, 10, 15, 20, 25, 30, 35

1

i1
2, 7, 12, 17, 22, 27, 32, 37

2
i0
1, 6, 11, 16, 21, 26, 31, 36

i1
3, 8, 13, 18, 23, 28, 33, 38

1
i0
0, 5, 10, 15, 20, 25, 30, 35

2

i1
3, 8, 13, 18, 23, 28, 33, 38

2
i0
2, 7, 12, 17, 22, 27, 32, 37

i1
4, 9, 14, 19, 24, 29, 34, 39

1
i0
0, 5, 10, 15, 20, 25, 30, 35

3

i1
2, 7, 12, 17, 22, 27, 32, 37

2
i0
1, 6, 11, 16, 21, 26, 31, 36

i1
4, 9, 14, 19, 24, 29, 34, 39

1
i0
0, 5, 10, 15, 20, 25, 30, 35

4

i1
3, 8, 13, 18, 23, 28, 33, 38

2
i0
1, 6, 11, 16, 21, 26, 31, 36

i1
4, 9, 14, 19, 24, 29, 34, 39

One bit is needed to encoded the subset used. The two pulse positions are encoded with 3 bits each (total of 6 bits), and the sign of the each pulse is encoded with 1 bit (total of 2 bits). This gives a total of 9 bits for the algebraic code.

5.7.2
Algebraic codebook search

The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesized speech. The target signal used in the closed‑loop pitch search is updated by subtracting the adaptive codebook contribution. That is:

(42)

where

 is the filtered adaptive codebook vector and

 is the quantified adaptive codebook gain. If

 is the algebraic codevector at index

, then the algebraic codebook is searched by maximizing the term:

,
(43)

where

 is the correlation between the target signal

 and the impulse response

,

 is a the lower triangular Toepliz convolution matrix with diagonal

 and lower diagonals

, and

 is the matrix of correlations of

. The vector

 (backward filtered target) and the matrix

 are computed prior to the codebook search. The elements of the vector

 are computed by

,
(44)

and the elements of the symmetric matrix

 are computed by:

.
(45)

The algebraic structure of the codebooks allows for very fast search procedures since the innovation vector

 contains only a few nonzero pulses. The correlation in the numerator of Equation (43) is given by:

,
(46)

where

 is the position of the

th pulse,

 is its amplitude, and

 is the number of pulses (

). The energy in the denominator of equation (43) is given by:

(47)

To simplify the search procedure, the pulse amplitudes are preset by the mere quantization of an appropriate signal

. This is simply done by setting the amplitude of a pulse at a certain position equal to the sign of

 at that position. The simplification proceeds as follows (prior to the codebook search). First, the sign signal

 and the signal

 are computed. Second, the matrix

 is modified by including the sign information; that is,

. The correlation in equation (46) is now given by:

(48)

and the energy in equation (47) is given by:

(49)

12.2 kbit/s mode

In this case the signal

, used for presetting the amplitudes, is a sum of the normalized

 vector and normalized long‑term prediction residual

:

(50)

is used. Having preset the pulse amplitudes, as explained above, the optimal pulse positions are determined using an efficient non‑exhaustive analysis‑by‑synthesis search technique. In this technique, the term in equation (43) is tested for a small percentage of position combinations.

First, for each of the five tracks the pulse positions with maximum absolute values of

 are searched. From these the global maximum value for all the pulse positions is selected. The first pulse i0 is always set into the position corresponding to the global maximum value.

Next, four iterations are carried out. During each iteration the position of pulse i1 is set to the local maximum of one track. The rest of the pulses are searched in pairs by sequentially searching each of the pulse pairs {i2,i3}, {i4,i5}, {i6,i7} and {i8,i9} in nested loops. Every pulse has 8 possible positions, i.e., there are four 8x8‑loops, resulting in 256 different combinations of pulse positions for each iteration.

In each iteration all the 9 pulse starting positions are cyclically shifted, so that the pulse pairs are changed and the pulse i1 is placed in a local maximum of a different track. The rest of the pulses are searched also for the other positions in the tracks. At least one pulse is located in a position corresponding to the global maximum and one pulse is located in a position corresponding to one of the 4 local maxima.

A special feature incorporated in the codebook is that the selected codevector is filtered through an adaptive pre‑filter

 which enhances special spectral components in order to improve the synthesized speech quality. Here the filter

 is used, where

 is the nearest integer pitch lag to the closed‑loop fractional pitch lag of the subframe, and

 is a pitch gain. In this standard,

 is given by the quantified pitch gain bounded by [0.0,1.0]. Note that prior to the codebook search, the impulse response

 must include the pre‑filter

. That is,

.

The fixed codebook gain is then found by:

(51)

where

 is the target vector for fixed codebook search and

 is the fixed codebook vector convolved with

,

(52)

10.2 kbit/s mode

In this case the signal

, used for presetting the amplitudes, is given by eq. (50). Having preset the pulse amplitudes, as explained above, the optimal pulse positions are determined using an efficient non‑exhaustive analysis‑by‑synthesis search technique. In this technique, the term in equation (43) is tested for a small percentage of position combinations.

A special feature incorporated in the codebook is that the selected codevector is filtered through an adaptive pre‑filter

 which enhances special spectral components in order to improve the synthesized speech quality. Here the filter

 is used, where

 is the nearest integer pitch lag to the closed‑loop fractional pitch lag of the subframe, and

 is a pitch gain. In this standard,

 is given by the quantified pitch gain bounded by [0.0,0.8]. Note that prior to the codebook search, the impulse response

 must include the pre‑filter

. That is,

.

The fixed codebook gain is then found by equation (51).

7.95, 7.40 kbit/s modes

In this case the signal

, used for presetting the amplitudes, is equal to the signal

. Having preset the pulse amplitudes, as explained above, the optimal pulse positions are determined using an efficient non‑exhaustive analysis‑by‑synthesis search technique. In this technique, the term in equation (43) is tested for a small percentage of position combinations.

A special feature incorporated in the codebook is that the selected codevector is filtered through an adaptive pre‑filter

 which enhances special spectral components in order to improve the synthesized speech quality. Here the filter

 is used, where

 is the nearest integer pitch lag to the closed‑loop fractional pitch lag of the subframe, and

 is a pitch gain. In this standard,

 is given by the quantified pitch gain bounded by [0.0,0.8]. Note that prior to the codebook search, the impulse response

 must include the pre‑filter

. That is,

.

The fixed codebook gain is then found by equation (51).

6.70 kbit/s mode

In this case the signal

, used for presetting the amplitudes, is equal to the signal

. Having preset the pulse amplitudes, as explained above, the optimal pulse positions are determined using an efficient non‑exhaustive analysis‑by‑synthesis search technique. In this technique, the term in equation (43) is tested for a small percentage of position combinations.

A special feature incorporated in the codebook is that the selected codevector is filtered through an adaptive pre‑filter

 which enhances special spectral components in order to improve the synthesized speech quality. Here the filter

 is used, where

 is the nearest integer pitch lag to the closed‑loop fractional pitch lag of the subframe, and

 is a pitch gain. In this standard,

 is given by the quantified pitch gain bounded by [0.0,0.8]. Note that prior to the codebook search, the impulse response

 must include the pre‑filter

. That is,

.

The fixed codebook gain is then found by equation (51).

5.90 kbit/s mode

In this case the signal

, used for presetting the amplitudes, is equal to the signal

. Having preset the pulse amplitudes, as explained above, the optimal pulse positions are determined using an exhaustive analysis‑by‑synthesis search technique.

A special feature incorporated in the codebook is that the selected codevector is filtered through an adaptive pre‑filter

 which enhances special spectral components in order to improve the synthesized speech quality. Here the filter

 is used, where

 is the nearest integer pitch lag to the closed‑loop fractional pitch lag of the subframe, and

 is a pitch gain. In this standard,

 is given by the quantified pitch gain bounded by [0.0,0.8]. Note that prior to the codebook search, the impulse response

 must include the pre‑filter

. That is,

.

The fixed codebook gain is then found by equation (51).

5.15, 4.75 kbit/s modes

In this case the signal

, used for presetting the amplitudes, is equal to the signal

. Having preset the pulse amplitudes, as explained above, the optimal pulse positions are determined using an exhaustive analysis‑by‑synthesis search technique. Note that both subsets are searched.

A special feature incorporated in the codebook is that the selected codevector is filtered through an adaptive pre‑filter

 which enhances special spectral components in order to improve the synthesized speech quality. Here the filter

 is used, where

 is the nearest integer pitch lag to the closed‑loop fractional pitch lag of the subframe, and

 is a pitch gain. In this standard,

 is given by the quantified pitch gain bounded by [0.0,0.8]. Note that prior to the codebook search, the impulse response

 must include the pre‑filter

. That is,

.

The fixed codebook gain is then found by equation (51).

5.8
Quantization of the adaptive and fixed codebook gains

5.8.1
Adaptive codebook gain limitation in quantization

If the GpC_flag is set, the limited adaptive codebook gain is used in the gain quantization in section 5.8.2. The quantization codebook search range is limited to only include adaptive codebook gain values less than

. This is performed in the quantization search for all modes.

5.8.2
Quantization of codebook gains

Prediction of the fixed codebook gain (all modes)

The fixed codebook gain quantization is performed using MA prediction with fixed coefficients. The 4th order MA prediction is performed on the innovation energy as follows. Let

 be the mean‑removed innovation energy (in dB) at subframe

, and given by:

,
(53)

where

 is the subframe size,

 is the fixed codebook excitation, and

 (in dB) is the mean of the innovation energy. The predicted energy is given by:

,
(54)

where

 are the MA prediction coefficients, and

 is the quantified prediction error at subframe

. The predicted energy is used to compute a predicted fixed‑codebook gain

 as in equation (53) (by substituting

 by

 and

 by

). This is done as follows. First, the mean innovation energy is found by:

(55)

and then the predicted gain

 is found by:

.
(56)

A correction factor between the gain

 and the estimated one

 is given by:

.
(57)

Note that the prediction error is given by:

(58)

12.2 kbit/s mode

The correction factor

 is computed using a mean energy value,

 dB. The correction factor

 is quantified using a 5‑bit codebook. The quantization table search is performed by minimizing the error:

.
(59)

Once the optimum value

 is chosen, the quantified fixed codebook gain is given by

.

10.2 kbit/s mode

The correction factor

 is computed using a mean energy value,

 dB. The adaptive codebook gain

and the correction factor

 are jointly vector quantized using a 7-bit codebook. The gain codebook search is performed by minimizing equation (63).

7.95 kbit/s mode

The correction factor

 is computed using a mean energy value,

 dB. The same scalar codebooks as for the 12.2 kbit/s mode is used for quantization of the adaptive codebook gain

 and the correction factor

. The search of the codebooks starts with finding 3 candidates for the adaptive codebook gain. These candidates are the best codebook value in scalar quantization and the two adjacent codebook values. These 3 candidates are searched together with the correction factor codebook minimizing the term of equation (63).

An adaptor based on the coding gain in the adaptive codebook decides if the coding gain is low. If this is the case, the correction factor codebook is searched once more minimizing a modified criterion in order to find a new quantized fixed codebook gain. The modified criterion is given by:

(60)

where

 and

 are the energy (the squared norm) of the LP residual and the total exictation, respectively. The criterion is searched with the already quantized adaptive codebook gain and the correction factor

 that minimizes (60) is selected. The balance factor

 decides the amount of energy matching in the modified criterion. This factor is adaptively decided based on the coding gain in the adaptive codebook as computed by:

.
(61)

If the coding gain ag is less than 1 dB, the modified criterion is employed, except when an onset is detected. An onset is said to be detected if the fixed codebook gain in the current subframe is more than twice the value of the fixed codebook gain in the previous subframe. A hangover of 8 subframes is used in the onset detection so that the modified criterion is not used for the next 7 subframes either if an onset is detected. The balance factor

 is computed from the median filtered adaptive coding gain. The current and the ag-values for the previous 4 subframes are median filtered to get

. The

-factor is computed by:

.
(62)

7.40 kbit/s mode

The correction factor

 is computed using a mean energy value,

 dB. The adaptive codebook gain

and the correction factor

 are jointly vector quantized using a 7-bit codebook. The gain codebook search is performed by minimizing the square of the weighted error between original and reconstructed speech which is given by

(63)

where

 is the target vector,

 is the filtered adaptive codebook vector, and

 is the filtered fixed codebook vector.

6.70 kbit/s mode

The correction factor

 is computed using a mean energy value,

 dB. The adaptive codebook gain

and the correction factor

 are jointly vector quantized using a 7-bit codebook. The gain codebook search is performed by minimizing equation (63).

5.90, 5.15 kbit/s modes

The correction factor

 is computed using a mean energy value,

 dB. The adaptive codebook gain

and the correction factor

 are jointly vector quantized using a 6-bit codebook. The gain codebook search is performed by minimizing equation (63).

4.75 kbit/s mode

The correction factors

 are computed using a mean energy value,

 dB. The adaptive codebook gains

and the correction factors

 are jointly vector quantized every 10 ms. This is done by minimizing a weighted sum of the error criterion (63) for each of the two subframes. The default values on the weighing factors are 1. If the energy of the second subframe is more than two times the energy of the first subframe, the weight of the first subrame is set to 2. If the energy of the first subframe is more than four times the energy of the first subframe, the weight of the second subrame is set to 2.

5.8.3 Update past quantized adaptive codebook gain buffer (all modes)

After the gain quantization, the buffer with past adaptive codebook gains is updated, regardless of the value of the GpC_flag. That is,

.

5.9
Memory update (all modes)

An update of the states of the synthesis and weighting filters is needed in order to compute the target signal in the next subframe.

After the two gains are quantified, the excitation signal,

, in the present subframe is found by:

,
(64)

where

 and

 are the quantified adaptive and fixed codebook gains, respectively,

 the adaptive codebook vector (interpolated past excitation), and

 is the fixed codebook vector (algebraic code including pitch sharpening). The states of the filters can be updated by filtering the signal

 (difference between residual and excitation) through the filters

 and

 for the 40‑sample subframe and saving the states of the filters. This would require 3 filterings. A simpler approach which requires only one filtering is as follows. The local synthesized speech,

, is computed by filtering the excitation signal through

. The output of the filter due to the input

 is equivalent to

. So the states of the synthesis filter

 are given by

. Updating the states of the filter

 can be done by filtering the error signal

 through this filter to find the perceptually weighted error

. However, the signal

 can be equivalently found by:

,
(65)

Since the signals

,

, and

 are available, the states of the weighting filter are updated by computing

 as in equation (65) for

. This saves two filterings.

4.75 kbit/s mode

The memory update in the first and third subframes use the unquantized gains in equation (64). After the second and fourth subframes respectively, when the gains are quantized, the state is recalculated using the quantized gains.

6
Functional description of the decoder

The function of the decoder consists of decoding the transmitted parameters (LP parameters, adaptive codebook vector, adaptive codebook gain, fixed codebook vector, fixed codebook gain) and performing synthesis to obtain the reconstructed speech. The reconstructed speech is then post‑filtered and upscaled. The signal flow at the decoder is shown in figure 4.

6.1
Decoding and speech synthesis

The decoding process is performed in the following order:

Decoding of LP filter parameters: The received indices of LSP quantization are used to reconstruct the quantified LSP vectors. The interpolation described in subclause 5.2.6 is performed to obtain 4 interpolated LSP vectors (corresponding to 4 subframes). For each subframe, the interpolated LSP vector is converted to LP filter coefficient domain

, which is used for synthesizing the reconstructed speech in the subframe.

The following steps are repeated for each subframe:

1)
Decoding of the adaptive codebook vector: The received pitch index (adaptive codebook index) is used to find the integer and fractional parts of the pitch lag. The adaptive codebook vector

 is found by interpolating the past excitation

 (at the pitch delay) using the FIR filter described in subclause 5.6.

2)
Decoding of the innovative codebook vector: The received algebraic codebook index is used to extract the positions and amplitudes (signs) of the excitation pulses and to find the algebraic codevector

. If the integer part of the pitch lag, T, is less than the subframe size 40, the pitch sharpening procedure is applied which translates into modifying

 by

, where

 is the decoded pitch gain,

, bounded by [0.0,1.0] or [0.0,0.8], depending on mode.

3)
Decoding of the adaptive and fixed codebook gains: In case of scalar quantization of the gains (12.2 kbit/s and 7.95 kbit/s modes) the received indices are used to readily find the quantified adaptive codebook gain,

, and the quantified fixed codebook gain correction factor,

, from the corresponding quantization tables. In case of vector quantization of the gains (all other modes), the received index gives both the quantified adaptive codebook gain,

, and the quantified fixed codebook gain correction factor,

. The estimated fixed codebook gain

 is found as described in subclause 5.7. First, the predicted energy is found by:

(66)

and then the mean innovation energy is found by:

.
(67)

The predicted gain

 is found by:

.
(68)

The quantified fixed codebook gain is given by:

.
(69)

4)
Smoothing of the fixed codebook gain (10.2, 6.70, 5.90, 5.15, 4.75 kbit/s modes): An adaptive smoothing of the fixed codebook gain is performed to avoid unnatural fluctuations in the energy contour. The smoothing is based on a measure of the stationarity of the short-term spectrum in the q domain. The smoothing strength is computed from this measure. An averaged q-value is computed for each frame n by:

.
(70)

For each subframe m, a difference measure between the averaged vector and the quantized and interpolated vector is computed by:

,
(71)

where j runs over the 10 LSPs. Furthermore, a smoothing factor,

, is computed by:

,
(72)

where the constants are set to

 and

. A hangover period of 40 subframes is used where the

-value is set 1.0 if the

 has been above 0.65 for 10 consecutive frames. A value of 1.0 corresponds to no smoothing. An averaged fixed codebook gain value is computed for each subframe by:

EMBED Equation.3
.
(73)

The fixed codebook gain used for synthesis is now replaced by a smoothed value given by:

.
(74)

5)
Anti-sparseness processing (7.95, 6.70, 5.90, 5.15, 4.75 kbit/s modes): An adaptive anti-sparseness post-processing procedure is applied to the fixed codebook vector

in order to reduce perceptual artifacts arising from the sparseness of the algebraic fixed codebook vectors with only a few non-zero samples per subframe. The anti-sparseness processing consists of circular convolution of the fixed codebook vector with an impulse response. Three pre-stored impulse responses are used and a number

 is set to select one of them. A value of 2 corresponds to no modification, a value of 1 corresponds to medium modification, while a value of 0 corresponds to strong modification. The selection of the impulse response is performed adaptively from the adaptive and fixed codebook gains. The following procedure is employed:

Detect onset by comparing the fixed codebook gain to the previous fixed codebook gain. If the current value is more than twice the previous value an onset is detected.

If not onset and

, the median filtered value of the current and the previous 4 adaptive codebook gains are computed. If this value is less than 0.6,

.

If not onset, the

-value is restricted to increase by one step from the previous subframe.

If an onset is declared, the

-value is increased by one if it is less than 2.

6)
Computing the reconstructed speech: The excitation at the input of the synthesis filter is given by:

.
(75)

Before the speech synthesis, a post‑processing of excitation elements is performed. This means that the total excitation is modified by emphasizing the contribution of the adaptive codebook vector:

(76)

Adaptive gain control (AGC) is used to compensate for the gain difference between the non‑emphasized excitation

 and emphasized excitation

 The gain scaling factor (for the emphasized excitation is computed by:

(77)

The gain‑scaled emphasized excitation signal

 is given by:

.
(78)

The reconstructed speech for the subframe of size 40 is given by:

.
(79)

where

 are the interpolated LP filter coefficients.

7)
Additional instability protection: An additional instability protection is implemented in the speech decoder which is monitoring overflows in the synthesis filter. If an overflow has occurred in the synthesis part, the whole adaptive codebook memory,

 is scaled down by a factor of 4, and the synthesis filtering is repeated using this down-scaled memory. I.e. in this case step 6) is repeated, except that the post-processing in (76) - (78) of the excitation signal is by-passed.

The synthesized speech

 is then passed through an adaptive postfilter which is described in the following clause.

6.2
Post‑processing

6.2.1
Adaptive post‑filtering (all modes)

The adaptive postfilter is the cascade of two filters: a formant postfilter, and a tilt compensation filter. The postfilter is updated every subframe of 5 ms.

The formant postfilter is given by:

(80)

where

 is the received quantified (and interpolated) LP inverse filter (LP analysis is not performed at the decoder), and the factors

 and

 control the amount of the formant post‑filtering.

Finally, the filter

 compensates for the tilt in the formant postfilter

 and is given by:

(81)

where

 is a tilt factor, with

 being the first reflection coefficient calculated on the truncated (

) impulse response,

, of the filter

.

 is given by:

.
(82)

The post‑filtering process is performed as follows. First, the synthesized speech

 is inverse filtered through

 to produce the residual signal

. The signal

 is filtered by the synthesis filter

. Finally, the signal at the output of the synthesis filter

 is passed to the tilt compensation filter

 resulting in the post‑filtered speech signal

.

Adaptive gain control (AGC) is used to compensate for the gain difference between the synthesized speech signal

 and the post‑filtered signal

. The gain scaling factor

 for the present subframe is computed by:

.
(83)

The gain‑scaled post‑filtered signal

 is given by:

(84)

where

 is updated in sample‑by‑sample basis and given by:

(85)

where

 is a AGC factor with value of 0.9.

12.2, 10.2 kbit/s modes

The adaptive post‑filtering factors are given by:

,

 and

.
(86)

7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes

The adaptive post‑filtering factors are given by:

,

 and

.

6.2.2
High-pass filtering and up-scaling (all modes)

The high-pass filter serves as a precaution against undesired low frequency components. A filter cut-off frequency of 60 Hz is used, and the filter is given by

.
(87)

Up‑scaling consists of multiplying the post‑filtered speech by a factor of 2 to compensate for the down‑scaling by 2 which is applied to the input signal.

7
Detailed bit allocation of the adaptive multi-rate codec

The detailed allocation of the bits in the adaptive multi-rate speech encoder is shown for each mode in table 9a-9h. These tables show the order of the bits produced by the speech encoder. Note that the most significant bit (MSB) of each codec parameter is always sent first

Table 9a: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 244 bits/20 ms, 12.2 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 ‑ s7
index of 1st LSF submatrix

s8 ‑ s15
index of 2nd LSF submatrix

s16 ‑ s23
index of 3rd LSF submatrix

s24
sign of 3rd LSF submatrix

s25 ‑ s32
index of 4th LSF submatrix

s33 ‑ s38
index of 5th LSF submatrix

subframe 1

s39 ‑ s47
adaptive codebook index

s48 ‑ s51
adaptive codebook gain

s52
sign information for 1st and 6th pulses

s53 ‑ s55
position of 1st pulse

s56
sign information for 2nd and 7th pulses

s57 ‑ s59
position of 2nd pulse

s60
sign information for 3rd and 8th pulses

s61 ‑ s63
position of 3rd pulse

s64
sign information for 4th and 9th pulses

s65 ‑ s67
position of 4th pulse

s68
sign information for 5th and 10th pulses

s69 ‑ s71
position of 5th pulse

s72 ‑ s74
position of 6th pulse

s75 ‑ s77
position of 7th pulse

s78 ‑ s80
position of 8th pulse

s81 ‑ s83
position of 9th pulse

s84 ‑ s86
position of 10th pulse

s87 ‑ s91
fixed codebook gain

subframe 2

s92 ‑ s97
adaptive codebook index (relative)

s98 ‑ s141
same description as s48 ‑ s91

subframe 3

s142 ‑ s194
same description as s39 ‑ s91

subframe 4

s195 ‑ s244
same description as s92 ‑ s141

Table 9b: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 204 bits/20 ms, 10.2 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 – s8
index of 1st LSF subvector

s9 ‑ s17
index of 2nd LSF subvector

s18 – s26
index of 3rd LSF subvector

subframe 1

s27 – s34
adaptive codebook index

s35
sign information for 1st and 5th pulses

s36
sign information for 2nd and 6th pulses

s37
sign information for 5th and 7th pulses

s38
sign information for 4th and 8th pulses

s39-s48
position for 1st, 2nd, and 5th pulses

s49-s58
position for 3rd, 6th, and 7th pulses

s59-s65
position for 4th and 7th pulses

s66 – s72
codebook gains

subframe 2

s73 – s77
adaptive codebook index (relative)

s78 – s115
same description as s35 – s72

subframe 3

s116 – s161
same description as s27 – s72

subframe 4

s162 – s204
same description as s73 – s115

Table 9c: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 159 bits/20 ms, 7.95 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 – s9
index of 1st LSF subvector

s10 ‑ s18
index of 2nd LSF subvector

s19 – s27
index of 3rd LSF subvector

subframe 1

s28 – s35
adaptive codebook index

s36 – s38
position of 1st pulse

s39 – s41
position of 2nd pulse

s42 – s44
position of 3rd pulse

s45 – s48
position of 4th pulse

s49
sign information for 1st pulse

s50
sign information for 2nd pulse

s51
sign information for 3rd pulse

s52
sign information for 4th pulse

s53 – s56
adaptive codebook gain

s57 – s61
fixed codebook gain

subframe 2

s62 – s67
adaptive codebook index (relative)

s68 – s93
same description as s36 – s61

subframe 3

s94 – s127
same description as s28 – s61

subframe 4

s128 – s159
same description as s62 – s93

Table 9d: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 148 bits/20 ms, 7.40 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 – s8
index of 1st LSF subvector

s9 ‑ s17
index of 2nd LSF subvector

s18 – s26
index of 3rd LSF subvector

subframe 1

s27 – s34
adaptive codebook index

s35 – s37
position of 1st pulse

s38 – s40
position of 2nd pulse

s41 - s43
position of 3rd pulse

s44 – s47
position of 4th pulse

s48
sign information for 1st pulse

s49
sign information for 2nd pulse

s50
sign information for 3rd pulse

s51
sign information for 4th pulse

s52 – s58
codebook gains

subframe 2

s59 – s63
adaptive codebook index (relative)

s64 – s87
same description as s35 – s58

subframe 3

s88 – s119
same description as s27 – s58

subframe 4

s120 – s148
same description as s59 – s87

Table 9e: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 134 bits/20 ms, 6.70 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 – s8
index of 1st LSF subvector

s9 ‑ s17
index of 2nd LSF subvector

s18 – s26
index of 3rd LSF subvector

subframe 1

s27 – s34
adaptive codebook index

s35 – s37
position of 1st pulse

s38 – s41
position of 2nd pulse

s42 – s45
position of 3rd pulse

s46
sign information for 1st pulse

s47
sign information for 2nd pulse

s48
sign information for 3rd pulse

s49 – s55
codebook gains

subframe 2

s56 – s59
adaptive codebook index (relative)

s60 – s80
same description as s35 – s55

subframe 3

s81 – s109
same description as s27 – s55

subframe 4

s110 – s134
same description as s56 – s80

Table 9f: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 118 bits/20 ms, 5.90 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 – s8
index of 1st LSF subvector

s9 ‑ s17
index of 2nd LSF subvector

s18 – s26
index of 3rd LSF subvector

subframe 1

s27 – s34
adaptive codebook index

s35 – s38
position of 1st pulse

s39 – s43
position of 2nd pulse

s44
sign information for 1st pulse

s45
sign information for 2nd pulse

s46 – s51
codebook gains

subframe 2

s52 – s55
adaptive codebook index (relative)

s56 – s72
same description as s35 – s51

subframe 3

s73 – s97
same description as s27 – s51

subframe 4

s98 – s118
same description as s52 – s72

Table 9g: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 103 bits/20 ms, 5.15 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 – s8
index of 1st LSF subvector

s9 ‑ s16
index of 2nd LSF subvector

s17 – s23
index of 3rd LSF subvector

subframe 1

s24 – s31
adaptive codebook index

s32
position subset

s33 – s35
position of 1st pulse

s36 – s38
position of 2nd pulse

s39
sign information for 1st pulse

s40
sign information for 2nd pulse

s41 – s46
codebook gains

subframe 2

s47 – s50
adaptive codebook index (relative)

s51 – s65
same description as s32 – s46

subframe 3

s66 – s84
same description as s47 – s65

subframe 4

s85 – s103
same description as s47 – s65

Table 9h: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 95 bits/20 ms, 4.75 kbit/s mode.

Bits (MSB‑LSB)
Description

s1 – s8
index of 1st LSF subvector

s9 ‑ s16
index of 2nd LSF subvector

s17 – s23
index of 3rd LSF subvector

subframe 1

s24 – s31
adaptive codebook index

s32
position subset

s33 – s35
position of 1st pulse

s36 – s38
position of 2nd pulse

s39
sign information for 1st pulse

s40
sign information for 2nd pulse

s41 – s48
codebook gains

subframe 2

s49 – s52
adaptive codebook index (relative)

s53 – s61
same description as s32 – s40

subframe 3

s62 - s65
same description as s49 – s52

s66 – s82
same description as s32– s48

subframe 4

s83 – s95
same description as s49 – s61

8 Homing sequences

8.1
Functional description

The adaptive multi-rate speech codec is described in a bit‑exact arithmetic to allow for easy type approval as well as general testing purposes of the adaptive multi-rate speech codec.

The response of the codec to a predefined input sequence can only be foreseen if the internal state variables of the codec are in a predefined state at the beginning of the experiment. Therefore, the codec has to be put in a so called home state before a bit‑exact test can be performed. This is usually done by a reset (a procedure in which the internal state variables of the codec are set to their defined initial values). The codec mode of the speech encoder and speech decoder shall be set to the tested codec mode by external means at reset.

To allow a reset of the codec in remote locations, special homing frames have been defined for the encoder and the decoder, thus enabling a codec homing by inband signalling.

The codec homing procedure is defined in such a way, that in either direction (encoder or decoder) the homing functions are called after processing the homing frame that is input. The output corresponding to the first homing frame is therefore dependent on the used codec mode and the codec state when receiving that frame and hence usually not known. The response of the encoder to any further homing frame is by definition the corresponding decoder homing frame for the used codec mode. The response of the decoder to any further homing frame is by definition the encoder homing frame. This procedure allows homing of both, the encoder and decoder from either side, if a loop back configuration is implemented, taking proper framing into account.

8.2
Definitions

Encoder homing frame: The encoder homing frame consists of 160 identical samples, each 13 bits long, with the least significant bit set to "one" and all other bits set to "zero". When written to 16‑bit words with left justification, the samples have a value of 0008 hex. The speech decoder has to produce this frame as a response to the second and any further decoder homing frame if at least two decoder homing frames were input to the decoder consecutively. The encoder homing frame is identical for all codec modes.

Decoder homing frame: There exist eight different decoder homing frames, which correspond to the eight AMR codec modes. Using one of these codec modes, the corresponding decoder homing frame is the natural response of the speech encoder to the second and any further encoder homing frame if at least two encoder homing frames were input to the encoder consecutively. In [4], for each decoder homing frame the parameter values are given.

8.3
Encoder homing

Whenever the adaptive multi-rate speech encoder receives at its input an encoder homing frame exactly aligned with its internal speech frame segmentation, the following events take place:

Step 1:
The speech encoder performs its normal operation including VAD and SCR and produces in accordance with the used codec mode a speech parameter frame at its output which is in general unknown. But if the speech encoder was in its home state at the beginning of that frame, then the resulting speech parameter frame is identical to that decoder homing frame, which corresponds to the used codec mode (this is the way how the decoder homing frames were constructed).

Step 2:
After successful termination of that operation the speech encoder provokes the homing functions for all sub‑modules including VAD and SCR and sets all state variables into their home state. On the reception of the next input frame, the speech encoder will start from its home state.

NOTE:
Applying a sequence of N encoder homing frames will cause at least N‑1 decoder homing frames at the output of the speech encoder.

8.4
Decoder homing

Whenever the speech decoder receives at its input a decoder homing frame, which corresponds to the used codec mode, then the following events take place:

Step 1:
The speech decoder performs its normal operation and produces a speech frame at its output which is in general unknown. But if the speech decoder was in its home state at the beginning of that frame, then the resulting speech frame is replaced by the encoder homing frame. This would not naturally be the case but is forced by this definition here.

Step 2:
After successful termination of that operation the speech decoder provokes the homing functions for all sub‑modules including the comfort noise generator and sets all state variables into their home state. On the reception of the next input frame, the speech decoder will start from its home state.

NOTE 1:
Applying a sequence of N decoder homing frames will cause at least N‑1 encoder homing frames at the output of the speech decoder.

NOTE 2:
By definition (!) the first frame of each decoder test sequence must differ from the decoder homing frame at least in one bit position within the parameters for LPC and first subframe. Therefore, if the decoder is in its home state, it is sufficient to check only these parameters to detect a subsequent decoder homing frame. This definition is made to support a delay‑optimized implementation in the TRAU uplink direction.

[image: image2.wmf]A(z)

1

s(n)

^

+

v(n)

c(n)

u(n)

g

c

fixed

codebook

adaptive codebook

g

p

LP synthesis

post-filtering

s'(n)

^

Figure 2: Simplified block diagram of the CELP synthesis model

Figure 3: Simplified block diagram of the adaptive multi-rate encoder

Figure 4: Simplified block diagram of the adaptive multi-rate decoder

9
Bibliography

1)
M.R. Schroeder and B.S. Atal, "Code‑Excited Linear Prediction (CELP): High quality speech at very low bit rates," in Proc. ICASSP'85, pp. 937‑940, 1985.

2)
L.R. Rabiner and R.W. Schaefer. Digital processing of speech signals. Prentice‑Hall Int., 1978.

3)
F. Itakura, "Line spectral representation of linear predictive coefficients of speech signals," J. Acoust. Soc. Amer., vol. 57, Supplement no. 1, S35, 1975.

4)
F.K. Soong and B.H. Juang, "Line spectrum pair (LSP) and speech data compression", in Proc. ICASSP'84, pp. 1.10.1‑1.10.4.

5)
K.K Paliwal and B.S. Atal, "Efficient vector quantization of LPC parameters at 24 bits/frame", IEEE Trans. Speech and Audio Processing, vol. 1, no 1, pp. 3‑14, 1993.

6)
P. Kabal and R.P. Ramachandran, "The computation of line spectral frequencies using Chebyshev polynomials", IEEE Trans. on ASSP, vol. 34, no. 6, pp. 1419‑1426, Dec. 1986.

7)
K. Järvinen, J. Vainio, P. Kapanen, T. Honkanen, P. Haavisto, R. Salami, C. Laflamme, and J.-P. Adoul, “GSM enhanced full rate speech codec”, in Proc. ICASSP’97, pp. 771‑774.

8)
T. Honkanen, J. Vainio, K. Järvinen, P. Haavisto, R. Salami, C. Laflamme, and J.-P. Adoul, “Enhanced full rate speech codec for IS-136 digital cellular system”, in Proc. ICASSP’97, pp. 731‑734.

9)
R. Hagen, E. Ekudden, B. Johansson, and W.B. Kleijn, “Removal of sparse-excitation artifacts in CELP”, in Proc. ICASSP’98, pp. I-145‑I-148.

Annex A:
Change history

Document history

V. 0.1.0
March 1999
First Draft based on GSM 06.90 2.0.0, CHC text removed, DTX->SCR

V. 0.1.1
April 1999
References updated, CHE reference removed

V. 1.0.0
April 22, 1999
Minor editorial changes

V. 2.0.0
June 15, 1999
Homing CR from SMG 11 included

V 3.0.0
June 22, 1999
Approved at 3GPP TSG SA#4 Plenary meeting

V 3.0.1
August 22, 1999
reformatting in 3GPP style

History

Document history

_990982773

_990982919.unknown

_990983074.unknown

_990983153.unknown

_990983230.unknown

_990983312.unknown

_990983346.unknown

_990983363.unknown

_991048529.unknown

_991048533.unknown

_991048636.unknown

_991048677.unknown

_991048713.unknown

_991048772.unknown

_991048638.unknown

_991048535.unknown

_991048634.unknown

_991048635.unknown

_991048536.unknown

_991048534.unknown

_991048531.unknown

_991048532.unknown

_991048530.unknown

_990983367.unknown

_990983373.unknown

_991048527.unknown

_991048528.unknown

_990983374.unknown

_990983375.unknown

_990983371.unknown

_990983372.unknown

_990983369.unknown

_990983365.unknown

_990983366.unknown

_990983364.unknown

_990983355.unknown

_990983359.unknown

_990983361.unknown

_990983362.unknown

_990983360.unknown

_990983357.unknown

_990983358.unknown

_990983356.unknown

_990983350.unknown

_990983352.unknown

_990983353.unknown

_990983351.unknown

_990983348.unknown

_990983349.unknown

_990983347.unknown

_990983329.unknown

_990983337.unknown

_990983342.unknown

_990983344.unknown

_990983345.unknown

_990983343.unknown

_990983339.unknown

_990983341.unknown

_990983338.unknown

_990983333.unknown

_990983335.unknown

_990983336.unknown

_990983334.unknown

_990983331.unknown

_990983332.unknown

_990983330.unknown

_990983320.unknown

_990983324.unknown

_990983327.unknown

_990983328.unknown

_990983326.unknown

_990983322.unknown

_990983323.unknown

_990983321.unknown

_990983316.unknown

_990983318.unknown

_990983319.unknown

_990983317.unknown

_990983314.unknown

_990983315.unknown

_990983313.unknown

_990983269.unknown

_990983294.unknown

_990983303.unknown

_990983307.unknown

_990983309.unknown

_990983310.unknown

_990983308.unknown

_990983305.unknown

_990983306.unknown

_990983304.unknown

_990983299.unknown

_990983301.unknown

_990983302.unknown

_990983300.unknown

_990983296.unknown

_990983298.unknown

_990983295.unknown

_990983286.unknown

_990983290.unknown

_990983292.unknown

_990983293.unknown

_990983291.unknown

_990983288.unknown

_990983289.unknown

_990983287.unknown

_990983273.unknown

_990983275.unknown

_990983285.unknown

_990983274.unknown

_990983271.unknown

_990983272.unknown

_990983270.unknown

_990983251.unknown

_990983260.unknown

_990983264.unknown

_990983266.unknown

_990983267.unknown

_990983265.unknown

_990983262.unknown

_990983263.unknown

_990983261.unknown

_990983256.unknown

_990983258.unknown

_990983259.unknown

_990983257.unknown

_990983254.unknown

_990983255.unknown

_990983253.unknown

_990983239.unknown

_990983243.unknown

_990983249.unknown

_990983250.unknown

_990983244.unknown

_990983241.unknown

_990983242.unknown

_990983240.unknown

_990983234.unknown

_990983237.unknown

_990983238.unknown

_990983235.unknown

_990983232.unknown

_990983233.unknown

_990983231.unknown

_990983187.unknown

_990983213.unknown

_990983222.unknown

_990983226.unknown

_990983228.unknown

_990983229.unknown

_990983227.unknown

_990983224.unknown

_990983225.unknown

_990983223.unknown

_990983217.unknown

_990983219.unknown

_990983221.unknown

_990983218.unknown

_990983215.unknown

_990983216.unknown

_990983214.unknown

_990983205.unknown

_990983209.unknown

_990983211.unknown

_990983212.unknown

_990983210.unknown

_990983207.unknown

_990983208.unknown

_990983206.unknown

_990983200.unknown

_990983202.unknown

_990983204.unknown

_990983201.unknown

_990983189.unknown

_990983199.unknown

_990983188.unknown

_990983170.unknown

_990983179.unknown

_990983183.unknown

_990983185.unknown

_990983186.unknown

_990983184.unknown

_990983181.unknown

_990983182.unknown

_990983180.unknown

_990983175.unknown

_990983177.unknown

_990983178.unknown

_990983176.unknown

_990983172.unknown

_990983173.unknown

_990983171.unknown

_990983162.unknown

_990983166.unknown

_990983168.unknown

_990983169.unknown

_990983167.unknown

_990983164.unknown

_990983165.unknown

_990983163.unknown

_990983157.unknown

_990983160.unknown

_990983161.unknown

_990983158.unknown

_990983155.unknown

_990983156.unknown

_990983154.unknown

_990983118.unknown

_990983135.unknown

_990983144.unknown

_990983148.unknown

_990983150.unknown

_990983152.unknown

_990983149.unknown

_990983146.unknown

_990983147.unknown

_990983145.unknown

_990983139.unknown

_990983142.unknown

_990983143.unknown

_990983141.unknown

_990983137.unknown

_990983138.unknown

_990983136.unknown

_990983127.unknown

_990983131.unknown

_990983133.unknown

_990983134.unknown

_990983132.unknown

_990983129.unknown

_990983130.unknown

_990983128.unknown

_990983122.unknown

_990983125.unknown

_990983126.unknown

_990983123.unknown

_990983120.unknown

_990983121.unknown

_990983119.unknown

_990983091.unknown

_990983110.unknown

_990983114.unknown

_990983116.unknown

_990983117.unknown

_990983115.unknown

_990983112.unknown

_990983113.unknown

_990983111.unknown

_990983105.unknown

_990983108.unknown

_990983109.unknown

_990983106.unknown

_990983103.unknown

_990983104.unknown

_990983092.unknown

_990983082.unknown

_990983087.unknown

_990983089.unknown

_990983090.unknown

_990983088.unknown

_990983085.unknown

_990983086.unknown

_990983084.unknown

_990983078.unknown

_990983080.unknown

_990983081.unknown

_990983079.unknown

_990983076.unknown

_990983077.unknown

_990983075.unknown

_990982995.unknown

_990983033.unknown

_990983057.unknown

_990983065.unknown

_990983069.unknown

_990983072.unknown

_990983073.unknown

_990983071.unknown

_990983067.unknown

_990983068.unknown

_990983066.unknown

_990983061.unknown

_990983063.unknown

_990983064.unknown

_990983062.unknown

_990983059.unknown

_990983060.unknown

_990983058.unknown

_990983042.unknown

_990983052.unknown

_990983054.unknown

_990983055.unknown

_990983053.unknown

_990983050.unknown

_990983051.unknown

_990983049.unknown

_990983038.unknown

_990983040.unknown

_990983041.unknown

_990983039.unknown

_990983035.unknown

_990983036.unknown

_990983034.unknown

_990983013.unknown

_990983024.unknown

_990983029.unknown

_990983031.unknown

_990983032.unknown

_990983030.unknown

_990983027.unknown

_990983028.unknown

_990983026.unknown

_990983020.unknown

_990983022.unknown

_990983023.unknown

_990983021.unknown

_990983015.unknown

_990983016.unknown

_990983014.unknown

_990983004.unknown

_990983009.unknown

_990983011.unknown

_990983012.unknown

_990983010.unknown

_990983006.unknown

_990983007.unknown

_990983005.unknown

_990983000.unknown

_990983002.unknown

_990983003.unknown

_990983001.unknown

_990982998.unknown

_990982999.unknown

_990982997.unknown

_990982953.unknown

_990982978.unknown

_990982987.unknown

_990982991.unknown

_990982993.unknown

_990982994.unknown

_990982992.unknown

_990982989.unknown

_990982990.unknown

_990982988.unknown

_990982982.unknown

_990982985.unknown

_990982986.unknown

_990982984.unknown

_990982980.unknown

_990982981.unknown

_990982979.unknown

_990982969.unknown

_990982974.unknown

_990982976.unknown

_990982977.unknown

_990982975.unknown

_990982971.unknown

_990982973.unknown

_990982970.unknown

_990982965.unknown

_990982967.unknown

_990982968.unknown

_990982966.unknown

_990982963.unknown

_990982964.unknown

_990982954.unknown

_990982936.unknown

_990982944.unknown

_990982949.unknown

_990982951.unknown

_990982952.unknown

_990982950.unknown

_990982947.unknown

_990982948.unknown

_990982945.unknown

_990982940.unknown

_990982942.unknown

_990982943.unknown

_990982941.unknown

_990982938.unknown

_990982939.unknown

_990982937.unknown

_990982927.unknown

_990982932.unknown

_990982934.unknown

_990982935.unknown

_990982933.unknown

_990982929.unknown

_990982930.unknown

_990982928.unknown

_990982923.unknown

_990982925.unknown

_990982926.unknown

_990982924.unknown

_990982921.unknown

_990982922.unknown

_990982920.unknown

_990982841.unknown

_990982876.unknown

_990982902.unknown

_990982910.unknown

_990982914.unknown

_990982917.unknown

_990982918.unknown

_990982916.unknown

_990982912.unknown

_990982913.unknown

_990982911.unknown

_990982906.unknown

_990982908.unknown

_990982909.unknown

_990982907.unknown

_990982904.unknown

_990982905.unknown

_990982903.unknown

_990982893.unknown

_990982897.unknown

_990982900.unknown

_990982901.unknown

_990982899.unknown

_990982895.unknown

_990982896.unknown

_990982894.unknown

_990982880.unknown

_990982891.unknown

_990982892.unknown

_990982890.unknown

_990982878.unknown

_990982879.unknown

_990982877.unknown

_990982858.unknown

_990982867.unknown

_990982871.unknown

_990982873.unknown

_990982874.unknown

_990982872.unknown

_990982869.unknown

_990982870.unknown

_990982868.unknown

_990982862.unknown

_990982864.unknown

_990982865.unknown

_990982863.unknown

_990982860.unknown

_990982861.unknown

_990982859.unknown

_990982849.unknown

_990982854.unknown

_990982856.unknown

_990982857.unknown

_990982855.unknown

_990982851.unknown

_990982852.unknown

_990982850.unknown

_990982845.unknown

_990982847.unknown

_990982848.unknown

_990982846.unknown

_990982843.unknown

_990982844.unknown

_990982842.unknown

_990982807.unknown

_990982824.unknown

_990982832.unknown

_990982837.unknown

_990982839.unknown

_990982840.unknown

_990982838.unknown

_990982834.unknown

_990982835.unknown

_990982833.unknown

_990982828.unknown

_990982830.unknown

_990982831.unknown

_990982829.unknown

_990982826.unknown

_990982827.unknown

_990982825.unknown

_990982815.unknown

_990982819

_990982822.unknown

_990982823.unknown

_990982820.unknown

_990982817.unknown

_990982818

_990982816.unknown

_990982811.unknown

_990982813.unknown

_990982814.unknown

_990982812.unknown

_990982809.unknown

_990982810.unknown

_990982808.unknown

_990982789.unknown

_990982798.unknown

_990982802.unknown

_990982805.unknown

_990982806

_990982803.unknown

_990982800.unknown

_990982801.unknown

_990982799.unknown

_990982794.unknown

_990982796.unknown

_990982797.unknown

_990982795.unknown

_990982792.unknown

_990982793

_990982791.unknown

_990982781.unknown

_990982785

_990982787.unknown

_990982788.unknown

_990982786.unknown

_990982783.unknown

_990982784.unknown

_990982782

_990982777

_990982779

_990982780.unknown

_990982778.unknown

_990982775.unknown

_990982776.unknown

_990982774.unknown

_990982610.unknown

_990982682.unknown

_990982721.unknown

_990982738.unknown

_990982764.unknown

_990982768.unknown

_990982770

_990982772

_990982769.unknown

_990982766.unknown

_990982767

_990982765.unknown

_990982760.unknown

_990982762.unknown

_990982763.unknown

_990982761.unknown

_990982741.unknown

_990982759.unknown

_990982740.unknown

_990982730.unknown

_990982734.unknown

_990982736

_990982737.unknown

_990982735

_990982732

_990982733.unknown

_990982731.unknown

_990982726

_990982728.unknown

_990982729.unknown

_990982727

_990982723

_990982724.unknown

_990982722

_990982699.unknown

_990982712.unknown

_990982717

_990982719.unknown

_990982720.unknown

_990982718.doc
�������������

w

(

n

)

I

I

w

(

n

)

I

f

r

a

m

e

n

-

1

f

r

a

m

e

n

t

5

m

s

f

r

a

m

e

(

1

6

0

s

a

m

p

l

e

s

)

s

u

b

f

r

a

m

e

(

4

0

s

a

m

p

l

e

s

)

2

0

m

s

_990982714.unknown

_990982715

_990982713.unknown

_990982703.unknown

_990982710.unknown

_990982711.unknown

_990982709

_990982701.unknown

_990982702.unknown

_990982700.unknown

_990982691.unknown

_990982695

_990982697.unknown

_990982698.unknown

_990982696

_990982693

_990982694

_990982692.unknown

_990982686

_990982689

_990982690

_990982687.unknown

_990982684.unknown

_990982685

_990982683.unknown

_990982644.unknown

_990982661.unknown

_990982670.unknown

_990982678.unknown

_990982680.unknown

_990982681.unknown

_990982679.unknown

_990982672.unknown

_990982673.unknown

_990982671.unknown

_990982665.unknown

_990982668.unknown

_990982669.unknown

_990982666.unknown

_990982663.unknown

_990982664.unknown

_990982662.unknown

_990982653.unknown

_990982657.unknown

_990982659.unknown

_990982660.unknown

_990982658.unknown

_990982655.unknown

_990982656.unknown

_990982654.unknown

_990982649.unknown

_990982651.unknown

_990982652

_990982650

_990982646.unknown

_990982648.unknown

_990982645.unknown

_990982627.unknown

_990982636.unknown

_990982640.unknown

_990982642.unknown

_990982643.unknown

_990982641.unknown

_990982638.unknown

_990982639.unknown

_990982637.unknown

_990982631.unknown

_990982633

_990982634

_990982632.unknown

_990982629.unknown

_990982630.unknown

_990982628.unknown

_990982618.unknown

_990982623.unknown

_990982625.unknown

_990982626.unknown

_990982624.unknown

_990982621.unknown

_990982622.unknown

_990982619.unknown

_990982614.unknown

_990982616.unknown

_990982617.unknown

_990982615.unknown

_990982612.unknown

_990982613.unknown

_990982611.unknown

_990982543

_990982576.unknown

_990982593.unknown

_990982602

_990982606.unknown

_990982608.unknown

_990982609.unknown

_990982607.unknown

_990982604

_990982605.unknown

_990982603

_990982597.unknown

_990982599.unknown

_990982601.unknown

_990982598.unknown

_990982595.unknown

_990982596

_990982594.unknown

_990982585

_990982589.unknown

_990982591.unknown

_990982592.unknown

_990982590.unknown

_990982587.unknown

_990982588.unknown

_990982586.unknown

_990982580.unknown

_990982583.unknown

_990982584.unknown

_990982582.unknown

_990982578.unknown

_990982579.unknown

_990982577.unknown

_990982559.unknown

_990982568.unknown

_990982572.unknown

_990982574.unknown

_990982575.unknown

_990982573.unknown

_990982570.unknown

_990982571.unknown

_990982569

_990982564.unknown

_990982566.unknown

_990982567.unknown

_990982565.unknown

_990982562.unknown

_990982563.unknown

_990982560.unknown

_990982551

_990982555.unknown

_990982557.unknown

_990982558.unknown

_990982556.unknown

_990982553.unknown

_990982554.unknown

_990982552.unknown

_990982547

_990982549.unknown

_990982550.unknown

_990982548

_990982545

_990982546

_990982544

_990982486.unknown

_990982503.unknown

_990982534.unknown

_990982538

_990982541.unknown

_990982542

_990982539.unknown

_990982536.unknown

_990982537.unknown

_990982535.unknown

_990982530.unknown

_990982532.unknown

_990982533.unknown

_990982531.unknown

_990982528.unknown

_990982529.unknown

_990982527.unknown

_990982495.unknown

_990982499

_990982501

_990982502.unknown

_990982500.unknown

_990982497.unknown

_990982498.unknown

_990982496

_990982490.unknown

_990982492.unknown

_990982493

_990982491.unknown

_990982488.unknown

_990982489.unknown

_990982487.unknown

_990982469.unknown

_990982478.unknown

_990982482.unknown

_990982484.unknown

_990982485.unknown

_990982483.unknown

_990982480.unknown

_990982481.unknown

_990982479.unknown

_990982474.unknown

_990982476.unknown

_990982477.unknown

_990982475.unknown

_990982471.unknown

_990982472.unknown

_990982470.unknown

_990982461.unknown

_990982465.unknown

_990982467.unknown

_990982468.unknown

_990982466.unknown

_990982463.unknown

_990982464.unknown

_990982462

_990982457.unknown

_990982459.unknown

_990982460.unknown

_990982458.unknown

_990982455.unknown

_990982456.unknown

_990982453.unknown

