3GPP TR 24.880 V0.2.0 (2006-09)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals
Media Server Control using the IP Multimedia (IM) Core Network (CN) subsystem;

Stage 3
(Release 7)

[image: image1.jpg]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

IMS, SIP, network, IP, multimedia
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

6Foreword

1
Scope
7
2
References
7
3
Definitions and abbreviations
8
3.1
Definitions
8
3.2
Abbreviations
8
4
Media server control protocol study items
8
4.1
Introduction
8
4.2
Controlling of Media Server vs controlling of Media Resource Function
8
4.3
Choice of the transport channel for media server control
8
4.3.1
Delegation model
9
4.3.1.1
New Interface: Sr
10
4.3.1.2 Mid-call XML support
10
4.3.1.3 Example
11
4.3.1.4
 Properties
13
4.3.2
Protocol model with dedicated control channel
13
4.3.2.1
New Interface: Cr
16
4.3.2.2 Example
16
4.3.2.3
 Properties
18
4.3.3
Alternative #3: RFC 4240 (Netann) Support
18
4.3.4
Alternative #4: Mid-Call XML Support
18
4.4
AS and MRFC functional split for conferencing
19
4.5
AS programming and service implementation impacts on media server control
19
4.6
Packages, registration and extensibility
19
4.7
Recommendations
19
5
MRFC deployment scenarios
19
5.1
Introduction
19
5.2
AS directing the SIP session to the MRFC different from the AS controlling the MRFC
19
5.3
AS in a home network controlling an MRFC in a visited network
19
5.4
Several AS controlling one MRFC, one AS controlling several MRFC’s
19
5.5
Core Network elements other than the AS invoking MRFC media processing capabilities
19
5.6
Intermediary broker function between AS and MRFC
19
5.7
Recommendations
20
6
Relevant Specifications
20
6.1
Introduction
20
6.2
Standards and draft standards
20
6.2.1
VoiceXML
20
6.2.2
CCXML
20
6.3
RFC’s
22
6.4
Informational RFC’s
22
6.4.1
RFC 4240 (‘netann’)
22
6.5
Internet-drafts
23
6.5.1 SIP Interface to VoiceXML Media Services (‘draft-burke’)
23
6.6
Others
24
7
Requirements for a media server control protocol
24
7.1
Introduction
24
7.2
Multimedia services’ media control requirements
25
7.3
Response time requirements
25
7.4
Packaging, registration and extensibility requirements
25
7.5
Charging requirements
25
7.6
Resource Management requirements
25
7.7
High Availability requirements
25
7.8
QoS control requirements
25
7.9
Security requirements
25
7.10
Lawful intercept requirements
25
7.11
Other requirements
25
8
SIP call flows and SDP capabilities required for the media server control protocol
25
Annex A: Change history
26

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document describes the implementation options and requirements for a media server control protocol to be used with the Mr and ISC interfaces.
This Technical Report includes the study of the following items:
-
Define the requirements for a media server control protocol.
-
Consider existing standards work that should be studied for the definition of a media server control protocol.
-
Study and determine whether the media server control protocol should be carried in SIP or whether SIP should be used to setup a dedicated control interface.
-
Study whether the AS directing the SIP session to the MRFC is always the same SIP-AS that should control the MRFC.
-
Determine whether the media server control protocol should have a package naming and extension capability (similar to H.248 packages) to allow the support and registration of different media processing capabilities.
-
Determine the SIP call flows and SDP capabilities associated with the media server control protocol and whether these SIP messages need to be passed through a S-CSCF proxy function or whether it is more efficient to have a direct AS-MRFC interface.
This Technical Report will be used to move into the specification phase for a media server control protocol.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
RFC 3261 (June 2002): "SIP: Session Initiation Protocol".

[3]
RFC 4240 (December 2005): “Basic Network Media Services with SIP”

[4]
draft-burke-vxml: “SIP Interface to VoiceXML Media Services”.

[5]
W3C Recommendation (March 2004): "Voice Extensible Markup Language (VoiceXML) Version 2.0".

[6]
W3C Candidate Recommendation (June 2005): “Voice Extensible Markup Language (VoiceXML) Version 2.1”.

[7]
W3C Working Draft (June 2005): “Voice Browser Call Control: CCXML Version 1.0”.

[8]
RFC 2616 (June 1999): “Hypertext Transfer Protocol -- HTTP/1.1”.
[9]
draft-boulton-sip-control-framework: “A Control Framework for the Session Initiation Protocol (SIP)”.

[10]
draft-mcglashan-mscp: “Media Server Control Protocol (MSCP)”.

[11]
RFC 4140 (September 2005): “TCP-Based Media Transport in the Session Description Protocol (SDP)”.

[12]
draft-ietf-simple-message-sessions: "The Message Session Relay Protocol".

[13]
draft-ietf-speechsc-mrcpv2: “Media Resource Control Protocol Version 2 (MRCPv2)”.

[14]
draft-saleem-msml: “Media Server Markup Language (MSML)”.

[15]
draft-vandyke-mscml: “Media Server Control Markup Language (MSCML) and Protocol”.

[16]
draft-boulton-ivr-control-package: “A Basic Interactive Voice Response (IVR) Control Package for the Session Initiation Protocol (SIP)”.

[17]
draft-boulton-ivr-vxml-control-package: “A VoiceXML Interactive Voice Response (IVR) Control Package for the Session Initiation Protocol (SIP)”.

[18]
draft-boulton-conference-control-package: “A Conference Control Package for the Session Initiation Protocol (SIP)”.
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
AS
Application Server

MRFC
Multimedia Resource Function Controller

S-CSCF
Serving CSCF

4
Media server control protocol study items
4.1
Introduction
The present section lists open topics that require study and decisions before the requirements for a media server control protocol can be finalized.
4.2

Controlling of Media Server vs controlling of Media Resource Function

Editor’s note: Study as to whether the protocol focuses on controlling of media resource or also have some aditional requirements for control of such entities as MRFC.
4.3
Choice of the transport channel for media server control
4.3.1
Delegation model

The delegation model is motivated by the notion that that the interface between the MRFC and an AS is a high level interface where the MRFC is a network entity to which an AS delegates execution of media behavior.

The interface is high level since the AS sends a script describing what media behavior should be performed, not how it should be performed in terms of low-level media operations. The script describes the media behavior in terms of a flow of functions (play prompt, collect DTMF, add participant to conference, etc) and control logic for managing and adjusting the flow (e.g. adjusting for behavior in case of media operation failures), fetching additional scripts and resources, and reporting intermediate data.

The MRFC contains script engines which executes these scripts. The engine maintains the state of script execution and therefore the state of the media behavior execution. The engine’s execution environment contains components to manage relationships with other components, including the low-level media processors. Consequently, when an AS ‘delegates’ execution of media behavior to a MRFC, it means the MRFC has an execution state which is independent of the AS’s state – the MRFC not the AS manages the execution state of the media behavior. The controller instructs the MRFC which script to run, but the MRFC manages execution of the script itself.
In terms of architecture, this model uses the existing MRFC interfaces, together with one additional interface – the Sr interface. Figure 4.3.1.1 shows an MRFC with this interface.

[image: image2.emf]MRFC

AS

S-CSCF

SrHTTP

Mp

Mr

SIP

ISC

SIP

H.248

Figure 4.3.1.1 MRFC interfaces: Sr, Mr and Mp
Using the ISC interface, an AS establishes a SIP [2] dialog to an MRFC (via a S-CSCF and Mr interface). The SIP INVITE request URI shall contain sufficient information to allow the MRFC to identify the script to execute; it may also provide additional parameters for the script. For example, using the user part to indicate a script pre-defined on the MRFC:

INVITE sip:myservice@mrf.example.com SIP/2.0
where ‘myservice’ is predefined with a script on the MRFC, or specifying a script URI as a parameter:

INVITE sip:dialog@mrf.example.com;voicexml=http://server.example.com/script.vxml SIP/2.0
where a VoiceXML script is specified as the value of the parameter “voicexml”. IETF Informational RFC 4240 [3] and Working Drafts draft-burke-vxml-01 [4] provide details on this mechanism.

The Sr interface is used by the MRFC to fetch the script and related resources. Once these have been fetched, the script is executed by the MRFC. Depending on the contents of the script, its execution may involve sending data and fetching additional scripts and resources over the Sr interface. The interaction is terminated when a SIP BYE is sent; the AS can send a BYE to terminate script execution at any time, and the MRFC sends a BYE when execution of the script terminates.

The content of the scripts is dependent on the media behavior which the MRFC needs to execute. W3C has already done extensive work on defining scripting for use in the delegation model. VoiceXML [5] provides a scripting language for interactive media functions; VoiceXML [5] is motivated in Section 6.2.1. CCXML [7] provides a scripting language for conferencing, dialog invocation and outbound dialing; CCXML [7] is motivated in Section 6.2.2.

In several scenarios, scripts executed by the MRFC may request to perform actions which may not be allowed on MRFC. Such actions may include, but are not limited to, outgoing call establishment and call transfer (since the MRFC description is not clear whether these are permitted MRFC functons). For such scenarios a mechanism should be defined to deliver the action information from MRFC to AS and then performing the action by AS. Such mechanism may utilize existing interfaces between MRFC and AS (i.e. ISC and Mr) or new ones (Sr or Cr – see below).

RFC 4240 [3] provides fundamental technique for the delegation model, but it alone is insufficient for the range IVR and conferencing functions of the MRFC. RFC4240 is necessary since the delegation model uses the content of the Request-URI in an INVITE to identify and invoke media services. Each of these services imposes different requirements in terms of MRFC script engine complexity. The announcement service requires a simple engine which uses the Sr interface to fetch media resources. Likewise, the conference service requires a simple engine for simple conferencing. The VoiceXML dialog service requires a more complex script engine, but VoiceXML is well understood. Moreover, the description of the VoiceXML service in RFC4240 is incomplete and raises a number of issues. The description of this service in draft-burke [4] (which builds on RFC4240) addresses most of these issues (whether an MRFC can initiate outbound calls is still outstanding). If the deficiencies in RFC420 can be addressed in conjunction with other specifications, RFC4240 can provide a straightforward approach for identifying and invoking simple announcement and conferencing services as well as complex IVR services.

4.3.1.1
New Interface: Sr
The delegation model requires a new MRFC interface, “Sr”.
The 3GPP SA2 group would have to be consulted for the creation of this new interface.
The Sr interface enables the MRFC to fetch documents (scripts and other resources) from an entity on the application plane.

The entity can provide these documents either from local storage or generated at runtime. The entity may be an AS if the AS supports the protocol requirements below.

The Sr interface is asymmetrical: fetch requests are only initiated by the MRFC – the application plane entity can only respond to requests.

HTTP [8] is an asymmetrical protocol which is extensively deployed for document fetching. HTTP also provides a caching model which permits fetches optimization and can thereby reduce traffic on the network. For example, documents may be fetched only when they have expired in the local cache; and fetching can be configured so that documents are not fetched at all if there is an unexpired version in the local cache.

The Sr interface shall support the HTTP [8] protocol (including full caching capabilities). Specifically, the MRFC shall support the HTTP client role and the application plane entity shall support the HTTP server role. The Sr interface should support HTTPS (where IMS network topology requires a secure connection is required). The Sr interface may support other protocols with an asymmetrical request-response model.
4.3.1.2 Mid-call XML support

The delegation model could provide mid-call XML support by extending the Sr interface so that it symmetrical.

Mid-call XML is a technique to allow the intelligence of the service to reside on an AS which asynchronously sends commands as XML fragments to the MRFC thereby driving the behavior of IVR and conferencing services.

In the delegation model, these XML fragments could be delivered to MRFC script engines over the Mr interface using SIP INFO. However, an approach using SIP INFO to pass control data would need to address the problems raised in Section 4.3.2.

An alternative approach for the delegation model is that the XML fragments are delivered to MRFC script engines over the Sr interface. This would require that the Sr interface becomes symmetrical: just as the MRFC can initiate HTTP requests to the AS, so the AS would also be able to initiate HTTP requests towards the MRFC.

Script engine would then need to support receiving XML fragments in an HTTP request. In VoiceXML 2.0/2.1, there is no support: while a VoiceXML MRFC can initiate HTTP requests to the AS and receive XML in return, it cannot accept HTTP requests itself. VoiceXML 3.0 is expected to support asynchronous events, potentially with XML payloads. With CCXML, however, there is support for receiving HTTP requests (its BasicHTTP input-output processor is bi-directional), and these requests could contain XML fragments which provide instructions for advanced conference control.

4.3.1.3 Example
The diagram in Figure 4.3.1.3.1 shows a simple delegation case where the MRFC uses a VoiceXML script to prompt the user for digits and return them to the AS.

Note that the SIP signaling between the CSCF and the AS, and between the CSCF and the UE, has been omitted for the sake of clarity.

[image: image3.emf]MRFC

Terminating

UE

AS

13. SIP 200 (OK)

1. SIP INVITE

RTP

2. SIP INVITE

3. SIP 100 (Trying)

4. SIP 100 (Trying)

5. Sr: HTTP

Request

6. Sr: HTTP

Response

MRFC extracts

service

information from

Request-URI

7. SIP 200 (OK)

8. SIP 200 (OK)

9. SIP ACK

10. SIP ACK

MRFC plays

prompts and

collects digits

11. SIP BYE

BYE payload

include collected

digits

12. SIP BYE

14. SIP 200 (OK)

MRFC fetches

VoiceXML script

Figure 4.3.1.3.1: Delegation Model with simple prompt and collect call flow

In step 2, the MRFC extracts the VoiceXML script URI from the SIP INVITE Request-URI. See Section 4.3.1 for examples of Request-URI’s.
In steps 5 and 6, the MRFC fetches the VoiceXML document from the AS using HTTP over the Sr interface. These steps would be repeated if additional resources were required; for example, prompt files. Note that these steps could be eliminated if the VoiceXML document and resources were already cached on the MRFC.

Once the RTP channel is established, the MRFC executes the VoiceXML script playing any prompts and waiting for digits from the user. Once the digits are collected, the MRFC terminates the SIP dialog in step 11 and return the collected digits in the SIP BYE body. Alternatively, the MRFC could have sent the result to the AS using HTTP over the Sr interface.

4.3.1.4
 Properties

As a high-level interface, the delegation model is clearly distinguished from, and complements, the low-level H.248 model on the Mp interface. Application developers can use a high-level model – familiar to web application developers – where they script their media interaction and delegate it to the MRFC, or they can develop using a low-level model – familiar to the API developers - where they use a TCP connection to send detailed instructions to the MRFP and then manage its state themselves. In the delegation model, the media behavior is defined in a script at the application service layer, the control layer (MRFC) which executes the script and manages media flow, and the media layer (MRFP) which actually carries out the media functions specified in the script. In a low-level model, the service and control layers are combined in a hybrid AS/MRFC.

With the delegation model, the AS can choose how much control to delegate to the MRFC. This depends on the content of the script and the behavior the script can execute before it needs to fetch a new script through the Sr interface. The AS can then exercise fine-grained (tight, low-level) or coarse-grained (loose, high-level) control and can modulate this within a session. Approaches which use a dedicated control channel typically require the AS to retain fine-grained control for the whole session.

The delegation model has been extensively tested and deployed as part the web infra-structure model where it has been demonstrated as highly suitable for distributed service architectures. By reusing a well-tried model, 3GPP can focus on definition of MRFC profiles.

The delegation model fits with existing MRF architecture with only the addition of one new interface (which would be required by most alternative approaches if they explicitly recognized the need for an HTTP [8] fetching interface).

The Sr interface uses a well-known HTTP [8] protocol to fetch resources and provide responses/notifications.

The delegation model reduces the burden on the AS/CSCF to track the status, and interact with the MRFC, for the media part of interactive media, call and conferencing applications. This results in reduced network traffic with the MRFC since decisions about media flow are taken within the MRFC itself rather than passed up to the AS/CSCF for decision. For example, a single CCXML [7] script can be used to play announcement dialogs and to manage participants attending a conference, where a protocol approach will require multiple documents for creating the conference, playing dialogs, and adding/removing conference participants. Furthermore, this can reduce the response time for media control management: i.e. since the MRFC manages the flow locally, there is no need to request the AS/CSCF (e.g. via SIP INFO on ISC/Mr or a dedicated control TCP channel) to make a decision and await a response.

Use of VoiceXML [5] and CCXML [7] support the core functions of the MRF and allows simple as well as complex interactive behavior defined in scripts. Existing VoiceXML and CCXML applications (e.g. voice mail, prepaid, portals, self-service applications) can be easily and rapidly adopted within a 3GPP IMS context without the need for application recoding.

As W3C languages, VoiceXML and CCXML are developed and supported by an official W3C working group. There is minimum dependency on IETF working drafts submitted by individuals.

The Mr and ISC interface are only used for call-related functions (call establishment, management and tear-down): it is not used to transmit detailed media control messages to the MRFC or to establish dedicated control channels with the AS.

The delegation model facilitates different entities on the application layer to play different roles with respect to the MRFC. For example, a ‘gateway’ AS may initiate the sessions via the Mr interface, while others can receive HTTP requests and notifications via the Sr interface. Protocol-based approaches typically assume that the same AS which initiates the media session also interacts with the MRFC during the session.
4.3.2
Protocol model with dedicated control channel

The protocol model is motivated by the notion that the interface between the MRFC and AS is a high level interface where the AS uses a transport channel to send media control messages to the MRFC. The MRFC executes the messages and sends responses and notifications back through the transport channel.

The protocol model could use either the ISC and Mr interfaces (e.g. messages in SIP INFO) or a new interface (Cr – see below) with a dedicated transport channel to transmit media control messages. The majority of deployed approaches which follow the protocol model use mechanisms that include carrying commands in a SIP INFO method. This has been an appropriate short term solution during the evolution of SIP [2] and has facilitated early deployments but does not provide a roadmap for future success in the standards arenas. The following outlines some of the reasons that using techniques such as SIP INFO are not considered appropriate:

· SIP INFO was created ‘to carry session control information along the SIP signaling path. It merely sends optional application information, generally related to the session’. Examples of SIP INFO method-use included in the draft are carrying mid-call PSTN signaling messages between PSTN gateways and DTMF digits. This mechanism in not suited or ideally appropriate for carrying information such as media control messages. For this reason alone any mechanism that uses SIP INFO will never be accepted as an industry standard within the IETF.

· The default protocol for SIP is the Unicast Datagram Protocol (UDP). Using SIP and UDP for transfer of media server commands is unreliable and also inherits problems with large packet size. Media server control messages should always be sent over reliable, congestion safe protocols.

· When using a mechanism like SIP INFO, it is possible that any number of intermediaries can insert themselves into the signaling path, either as a record routing proxy or ‘Back-to-Back User Agent (B2BUA), This would result in media server control messages being carried in SIP INFO across any number of SIP intermediaries, which is not ideal or efficient in large networks. There is also the overhead of using a full SIP message with all its mandatory headers and transaction timers which can impact performance dramatically.

· The core SIP specification, RFC3261 [2], contains rules when un-reliable transport protocols such as UDP are used. If a packet reaches the Maximum Transmission Unit (MTU), the transport protocol is upgraded to a reliable form such as TCP. This type of operation is not ideal when constantly dealing with large payloads which are present in a media server control messages.

Identifying such problems – many arising from practical deployment experience - indicates that an alternative mechanism is required for MRFC control that not only leverages the benefits of SIP but also dispels the previously identified problem areas.

The alternative, as described in the SIP Control Framework [9] - under discussion within the IETF informal media control group - is to carry media control messages over a dedicated control channel (SIP Control Framework [9], MSCP [10] - note that while MSCP version 1 defined its own control channel, MSCP version 2 uses the Control Framework).

In the Control Framework SIP is used for its intended purpose – as a rendezvous protocol for negotiating a media session using the Session Description Protocol (SDP). Unlike SIP dialogs with UEs where the SDP are used to establish RTP media streams between the MRF and UE, the approach leverages COMEDIA (RFC4145) [11] so that the SDPs described the establishment of a TCP (or SCTP) channel. The COMEDIA [11] approach is well established and used in the Message Session Relay Protocol (MSRP) [12] which initiates IM media sessions (MSN, Yahoo style chat interactions as apposed to ‘one-hit’ SMS style messages), as well as in Media Resource Control Protocol (MRCP) [13] which establishes a TCP channel to transport control messages to/from speech recognition and speech synthesis media processors. Thus, MRFC messages are exchanged over a direct (peer-to-peer) connection, using a reliable protocol, where the protocol has been initiated using SIP. This addresses the previously identified problems that arose when using SIP INFO:

· SIP INFO method is not used as the approach defines its own message primitives that are passed across the dedicated control channel. This eradicates the inappropriate use of the SIP INFO message.

· The approach only uses reliable connection orientated protocols such as TCP (or SCTP) so messages passing across the control channel are sent reliably.

· As the control channel connection is peer-to-peer it doesn’t matter how many intermediaries the SIP signaling traverses. The media control messages will always pass directly. These messages are also extremely light-weight and do not suffer from complicated transaction models.

· As the dedicated control channel is created using a reliable protocol such as TCP, and SIP is not used to pass interactions, this mechanism does not suffer from the MTU upgrading define in RFC 3261 [2].
The Control Framework approach itself does not define the content of messages transported by the dedicated control channel: its development was motivated by the media control scenario, but it is expected that the Control Framework could be used in a wide variety of application scenarios in the future. Instead the framework defines a mechanism that provides strict requirements on how the Control Framework can be used. Techniques similar to the SIP Event Framework (RFC 3265) are used when creating extensions to the Control Framework. The Control Framework introduces the concept of ‘Control Packages’. For example, the client (e.g. AS) specifies through the SIP header ‘Require: escs’ that it requires the server (e.g. MRFC) to support the control framework, and the server then indicates which control packages it supports through the header “Control-Packages: <package1>, <package2>”. Control Package authors are provided a strict set of rules that shall be followed to use the Control Framework.

The use of packages in the control framework is motivated by the fact that media server control is a complex topic area with a wide range of potential functionality encompassing many varying technologies. Within IMS, the functionality of the MRF is a moving target; while interactive media (play prompt, prompt and collect, etc) as well as conferencing are core functionalities, the ever expanding IMS world also makes it highly likely that technologies will advance in the coming years; MRFs with new functionalities as well as MRFs which combine interactive media and/or conferencing with new ones. It is for this reason that any solution for MRFC needs to be modular in nature and highly extensible. This then allows infra-structure providers and application developers to select only the relevant subset of technology required instead of dealing with enormous, monolithic command sets that are quite often redundant. For this reason, the media control functionality shall be organized into packages.

Various IETF working drafts proposals on media server protocol have started to move from the monolithic commands sets towards functionality organized into packages; for example, MSML [14] and MSCP [10]. MSCP [10] (version 2) uses the same packages as those being defined for the Control Framework:

· Basic Interactive Voice Response (IVR) Control Package [16]: This provides lightweight messages for simple IVR interactions. This control package uses parameterized dialog templates for playing announcement, prompt and collects and prompt and record IVR functions without the need to implement a full VoiceXML solution.

· VoiceXML Interactive Voice Response (IVR) Control Package [17]: This package extends the basic IVR control package with support for VoiceXML. Note that this package does not support VoiceXML’s optional call transfer functionality.

· Conference Control Package [18]: This package allows for the creation, manipulation and termination of a conference mix. Users, explicitly represented by SIP dialog parameters, can be introduced, moved and removed from an existing conference mix.

Although still in early stages, these packages are starting to mature and provide a wide range of MRF functionality. It is expected over the coming period that both the Control framework and packages will mature. One of the next steps is a complimentary extension that provides video support to the appropriate control package and to enhance the Conference Package with support for conferencing. It is expected this document will be available in the very near future.

The use of VoiceXML [5][6] for IVR functionality, especially complex IVR functionality, is a shared feature in IETF informational RFCs and working drafts; for example, RFC4240 [3], MSCML [15], MSML [14], MSCP [10] and the VoiceXML control package [17] above.
VoiceXML scripts can be referenced (or included inline) as part of media control messages; for example, the message

<dialogstart src=” http://server.example.com/script.vxml” type=”application/voicexml+xml”/>
could be sent from the AS to the MRFC in order to initiate a VoiceXML dialog. Response and notifications about the dialog (dialogstarted, dialogexit, dialogerror, etc) are sent back over the control channel.

One consequent of using VoiceXML is that the VoiceXML scripts and its related resources need to be fetched from an entity on the application plane. The requirement still holds even if the initial VoiceXML script is specified inline in the media control message (as MSCP and the VoiceXML Control Package allow) since subsequent VoiceXML scripts as well as resources (such as grammars) may still need to be fetched. Furthermore, if any control package references resource using HTTP [8]URIs, then the MRFC shall support an interface which allows these resources to be fetched.

In terms of architecture, this model uses the existing MRFC interfaces together with one additional interface: a Cr interface to directly transport media control messages between the AS and MRFC and to allow the MRFC to fetch resources. Figure 4.3.2.1 shows an MRFC with this interface.

[image: image4.emf]MRFC

AS

S-CSCF

HTTP

Mp

Mr

SIP

Cr

TCP/SCTP

H.248

ISC

SIP

Figure 4.3.2.1: MRFC interfaces: Cr,, Mr and Mp
Note that the framework allows the AS to establish multiple dedicated control channels towards the MRFC; it could for example use one channel per MRFC, one channel per session, or other configurations suitable for High Availability deployments.

4.3.2.1
New Interface: Cr

The protocol model with dedicated control channel requires a new MRFC interface, “Cr”.The 3GPP SA2 group would have to be consulted for the creation of this new interface.
Dedicated TCP/SCTP channels between the AS and MRFC flow over the Cr interface.

Media control packages are transmitted bi-directionality over the channels: either endpoint can send requests, responses and notifications depending on the package definitions.

The establishment and management of these channels shall follow the SIP Control Framework: i.e. using SIP over the Mr interface to establish the channel, and to negotiate control package support.
The Cr interface enables the MRFC to fetch documents (scripts and other resources) from an entity on the application plane.

The entity can provide these documents either from local storage or generated at runtime. The entity may be an AS if the AS supports the protocol requirements below.

The Cr interface’s use for fetching documents is asymmetrical: fetch requests are only initiated by the MRFC – the application plane entity can only respond to requests.

HTTP [8] is an asymmetrical protocol which is extensively deployed for document fetching. HTTP also provides a caching model which permits fetches optimization and can thereby reduce traffic on the network. For example, documents may be fetched only when they have expired in the local cache; and fetching can be configured so that documents are not fetched at all if there is an unexpired version in the local cache.

The Cr interface shall support the HTTP [8] protocol (including full caching capabilities). Specifically, the MRFC shall support the HTTP client role and the application plane entity shall support the HTTP server role. The Cr interface should support HTTPS (where IMS network topology requires a secure connection is required). The Cr interface may support other protocols with an asymmetrical request-response model.
4.3.2.2 Example

The diagram in Figure 4.3.2.2.1 shows a simple TCP control channel case where the MRFC uses a VoiceXML script to prompt the user for digits and return them to the AS.

Note that the SIP signaling between the CSCF and the AS, and between the CSCF and the UE, has been omitted for the sake of clarity.

[image: image5.emf]MRFC

Terminating

UE

AS

MRFC fetches

VoiceXML

Script

20. SIP 200 (OK)

4. SIP INVITE

RTP

5. SIP INVITE

6. SIP 100 (Trying)

7. SIP 100 (Trying)

17. Cr/TCP started

Response

12. SIP 200 (OK)

13. SIP 200 (OK)

15. SIP ACK

14. SIP ACK

MRFC plays

prompts and

collects digits.

Digit result

returned in TCP

exit event

19. SIP BYE

22. SIP 200 (OK)

21. SIP BYE

1. SIP INVITE

2. SIP 200 (OK)

3. SIP ACK

Cr/TCP control

channel

establishment

Cr/TCP

18. Cr/TCP exit

Event

8. Cr/TCP prepare

Request

10. Cr/HTTP

Response

9. Cr/HTTP

Request

11. Cr/TCP prepared

Response

16. Cr/TCP start

Request

Figure 4.3.2.2.1: TCP Control Channel Model with simple prompt and collect call flow

In steps 1-3, the AS and MRFC establish a TCP control channel over the Cr interface. The same control channel can be used to control multiple calls.

During the UE call setup, the AS instructs the MRFC to prepare a VoiceXML dialog at step 8. In steps 9 and 10, the MRFC fetches the VoiceXML document from the AS using HTTP over the Cr interface. These steps would be repeated if additional resources were required; for example, prompt files. Note that these steps could be eliminated if the VoiceXML document and resources were already cached on the MRFC. Once the script and resources are prepared, the MRFC sends a prepared response to the AS over the Cr control channel in step 11.

Once the RTP channel is established, the AS instructs the MRFC in step 16 to start executing the VoiceXML script: the MRFC plays any prompts and waits for digits from the user. Once the digits are collected, the MRFC returns the result to the AS in an exit event at step 18. The AS then terminates the SIP dialogs with the MRFC and UE in steps 19-22. Note that instead of terminating the call, the AS could have instructed the MRFC over the Cr/TCP channel to start another dialog, add the user to a conference, etc.
4.3.2.3
 Properties

The protocol model uses a dedicated transport channel to transmit media control messages between the MRFC and AS. This avoids the problems described above with transmitting these messages over SIP INFO. The dedicated control channel in Control Framework has growing support within IETF.

The protocol model organizes media control messages into packages. This allows different MRFs to support different functionality package and, as described in the Control Framework [9], for an AS to determine which packages are supported by which ASs. Packages also facilitate future extensions to MRF functionality.

The protocol model’s Cr interface shares many similarities with the Mp interface including use of TCP connections over which messages organized by functionality are transmitted. Unlike H.248, the protocol model also provides an explicit mechanism (SIP) for discovery and establishment of the control channel. Moreover, the granularity of media control message is a fundamental difference: the protocol model provides relatively high-level messages whereas H.248 is significantly more low-level.
AS developers can use the protocol model within familiar API development environment which allows TCP connections to be created and XML messages transmitted over them. The state of media interaction is managed centrally within their application and they have full control over the MRFC since responses and notifications are returned over the control channel. At the same time, they can choose to delegate part of an IVR interaction to the MRFC by using the VoiceXML control package [17]: the MRFC would then locally manage the VoiceXML interaction while the AS retains global management (it receives notifications on key changes of dialog state – started, exited, etc – through the control channel).

The protocol model fits with the existing MRFC architecture with the addition of one new interface, Cr. The Cr interface uses a well-known HTTP [8] protocol to fetch resources andis based on an emerging protocol with growing IETF support, and its setup is based on COMEDIA [11] which is well-established.

Use of VoiceXML [5][6] in control messages covers the IVR functions of the MRF and allows simple as well as complex interactive behavior to be defined in scripts. Existing VoiceXML applications (e.g. voice mail, prepaid, portals, self-service applications) can be easily and rapidly adopted within a 3GPP IMS context with minimal application recoding.

4.3.3
Alternative #3: RFC 4240 (Netann) Support

Some types of media processing can be driven entirely by the Request-URI in a SIP INVITE. These types of media processing support:

· playing an announcement and then disconnecting the bearer

· connecting the bearer to a simple conference

· invoking a VoiceXML interpreter on the bearer for IVR (with a side HTTP connection to an HTTP server with server-side scripting)

Mr needs to support RFC 4240 (Netann) in order to provide support for this type of media processing. RFC 4240 is well accepted in the industry.

4.3.4
Alternative #4: Mid-Call XML Support

Some types of media processing require mid-call control between the AS and MRFC. These types of media processing support functions such as:

· advanced conferencing where the intelligence is in the AS and the AS passes commands asynchronously to the MRFC during the session

· IVR where the intelligence is in the AS and the AS passes commands asynchronously to the MRFC during the session

Mr needs to support an XML-based mid-call control scheme in order to provide support for this type of media processing. The XML can be carried in SIP INFO and/or in a long-lived, SIP-negotiated TCP/IP control channel. This type of SIP AS-MRFC interaction is well accepted in the industry.
4.4
AS and MRFC functional split for conferencing

4.5
AS programming and service implementation impacts on media server control
Editor’s note: Study as to how AS programming models or efficient service implementations may impact a media server control protocol (for example the use of fine grained or coarse grained commands).
4.6
Packages, registration and extensibility
4.7
Recommendations
5
MRFC deployment scenarios
5.1
Introduction
The present section lists different MRFC deployment scenarios which, if required, may bring requirements for a media server control protocol.
5.2
AS directing the SIP session to the MRFC different from the AS controlling the MRFC
5.3
AS in a home network controlling an MRFC in a visited network
5.4
Several AS controlling one MRFC, one AS controlling several MRFC’s
5.5
Core Network elements other than the AS invoking MRFC media processing capabilities
5.6
Intermediary broker function between AS and MRFC

Editor’s note: Study as to whether some kind of intermediary broker function between AS and MRFC is needed. Comparison should be given here.
5.7
Recommendations
6
Relevant Specifications

6.1
Introduction

The present section lists existing standards, RFC’s or published specifications relevant to the study of media server control protocols together with a brief description of the work and its relevance.
6.2
Standards and draft standards
6.2.1
VoiceXML
VoiceXML [5][6] is an XML scripting language for interactive media functionality.

The language defines an extensive set of tags which cover output functionality (media files and speech synthesis), input (DTMF, speech recognition and recording), logic (if-then-else), data model (scoped variables), events (noinput, nomatch) as well as a well-defined dialog algorithm (FIA) which manages a flow of input-output transactions. The language allows external resources – for example, DTMF or speech recognition grammars – to be specified in the VoiceXML document and fetched using the Sr interface. Depending on the flow of the interaction, further VoiceXML documents can be fetched and control transferred to the fetched document. VoiceXML also allows data to be passed to the application plane entity when a VoiceXML document or resource is fetched. VoiceXML supports both simple and complex interactive media behavior.

The current version, VoiceXML 2.0 [5], is W3C Recommendation (standard) which has extensive industry support and existing commercial deployments in the telecom sector. It is also supported by most IETF informational and working draft proposals (RFC420, draft-burke-vxml-01, MSML, MSCP, SIP Control Framework) for media interaction. W3C is also actively developing this standard with VoiceXML 2.1 [6] due out soon and VoiceXML 3.0 on the horizon.

VoiceXML does have some issues which may need to be addressed in the MRFC context. Firstly, if interactive video capability is an MRF requirement, then VoiceXML 2.0 has no explicit support. However, as described in http://www.voicexmlreview.org/Mar2006/features/video_interactive_services.html, this can be largely addressed in the current version without compromising interoperability and VoiceXML 3.0 is expected to explicitly addressing it. Secondly, VoiceXML has tags which allow the caller to be transferred (blind or bridged) to another telephone destination. This may be problematic if an MRF is not permitted to generate outbound calls. However, this feature of VoiceXML is optional and could be addressed by a VoiceXML profile for the MRFC use case. To overcome this limitation the MRFC may request the AS to initiate outbound calls or call transfers on its behalf. Finally, there may be cases where 3GPP wishes to extend VoiceXML with additional or different functionality. W3C have recognized this type of VoiceXML usage and VoiceXML 3.0 is expected to have a modularization framework which allows profiles, including a media server profile, and new languages to be defined.

In summary, the key benefits of VoiceXML is that it is an existing, well-supported, international standard and provides the interactive media functionality required in an MRFC context.
6.2.2
CCXML

CCXML [7] is a W3C XML scripting language for conferencing and call control functionality which was designed to complement VoiceXML’s interactive media functionality. The language uses an event-driven algorithm where user-defined actions are triggered when events are fired.

The CCXML language provides tags for 4 areas of functionalities, Firstly, it can receive inbound calls and create outbound calls using a model which supports telephony definitions, such as JAIN Call Control, and which supports various telephony protocols including SIP. When an incoming call is received, an alerting event is generated and the script can specify actions to perform, including extracting information from the call signaling, accepting or rejecting the call. CCXML also has a tag to generate an outbound call where the script can specify the telephony protocol, destination URI, a-number, etc. The second area of functionality is dialog management: CCXML has tags to prepare, start and stop dialogs. For example, when the incoming call is in an alerting state, the script could specify that an ‘early media’ VoiceXML dialog is to be started. The various states of the dialog are indicated by events. Thirdly, CCXML supports conferencing functionality: there are tags for creation and destruction of conferences, as well as tags for adding and removing participant SIP connections to/from the conference. Finally, CCXML has Input Output functionality which allows it to send and receive events to/from internal sources (connections, dialog and conferences) and external sources (this is in additional to functionality which allows fetch and transition to CCXML documents just like VoiceXML). One such functionality allows CCXML scripts to send data to and receive data from HTTP servers.

CCXML fits well with the delegation model. The CCXML script to execute is specified in the SIP INVITE received on the Mr interface; for example,

INVITE sip:control@mrf.example.com;ccxml=http://server.example.com/conference.ccxml SIP/2.0
The CCXML script would then be fetched with HTTP using the Sr interface. Upon execution of the script, the CCXML fires an event indicating that an incoming call (the SIP connection) is an alerting state and the script can then specify that a multi-party conference is to be created, an announcement played to the UE (using VoiceXML), then the UE is joined to the conference; for example,

<ccxml version="1.0" xmlns="http://www.w3.org/2002/09/ccxml">

<var name=“connection” expr=“’’”/>

<eventprocessor>

 <transition event=“connection.alerting“ name=”evt”>

 <assign name=“connection” expr=“evt.connectionid”/>

 <createconference id=“conf1" />

 </transition>

 <transition event="conference.created">

 <accept/>

 </transition>

 <transition event="connection.connected">

 <dialogstart src=”’http://vxmlserver.example.net/welcome.vxml’"/>

 </transition>

 <transition event=“dialog.exit“ name=“evt”>

 <join id1="connection“ id2=“conf1"/>

 </transition>

</eventprocessor>

</ccxml>
For each UE to be added to the conference, the AS/CSCF would reference the same CCXML script in the SIP INVITE sent to the MRFC. In that way, each participant would hear the same announcement – specified in the welcome.vxml script - and then joined to the same conference – conf1. The script can be easily extended so that script interacts with a conference focus over the Sr interface (e.g. to obtain conference policy information, indicate active talkers, etc).

The current version, CCXML 1.0, is W3C Last Call Working Draft (i.e. it is on W3C Standards track but not yet attained Recommendation (standard) status). It is expected that CCXML will become a W3C Recommendation by 2007. As an emerging W3C specified, CCXML has limited but growing industry support; support is strongest with companies which also use VoiceXML.

CCXML does raise a number of issues which need to be addressed for its use as a MRFC script language. Firstly, if video conference is an MRF requirement, then CCXML 1.0 has no explicit support. However, this can be largely addressed in the current version without compromising interoperability; for example, defining a 3GPP profile where conference policy information is retrieved using HTTP from a conference focus, and the information is used to create the conference and its video layout. More explicit control over media streams, including where to place the UE’s video in the layout, can be addressed by the addition of stream control tags (analogous to the <stream> element in MSML and MSCP). Secondly, CCXML has a tag which allows outbound calls to be created and then joined to the conference. This may be problematic if an MRF is not permitted to generate outbound calls. If this feature is not allowed in an MRF, then the 3GPP profile could explicit disallow it. To overcome this limitation the MRFC may request the AS to initiate outbound calls on its behalf. Thirdly, there is currently no specification which describes how CCXML scripts are specified in SIP INVITEs and managed over the Mr interface. This could be remedied with a simple specification which provides for CCXML what draft-burke-vxml-01 provided for VoiceXML.
Finally, CCXML permits telephony protocols other than SIP. Inbound and outbound ISUP calls could be received by CCXML, depending on the implementation. CCXML is relatively agnostic on this issue: it doesn’t specify which protocols are essential for its implementation. Consequently, a 3GPP profile for CCXML could specify that only the SIP protocol is to be supported.

In summary, the key benefits of CCXML is it is an emerging script standard which fits the delegation model and provides the call and conferencing functionality required in an MRFC context.
6.3
RFC’s

6.4
Informational RFC’s
6.4.1 RFC 4240 (‘netann’)

RFC 4240 [3] (also known as ‘netann’) provides a mechanism for invocation of basic media services on the MRFC using SIP. RFC 4240 defines three services:

1. Announcement: play a media resource to the SIP connection

2. Dialog: invoke a VoiceXML dialog to the SIP connection

3. Conferencing: join the SIP connection to a simple conference

A service is invoked by means of the SIP INVITE Request-URI: the user part indicates the service, and additional URI parameters can be specified to configure the service. If the MRFC supports the service, and the service parameters are acceptable, the service is initiated when the ACK message is received and continues until a BYE message is sent or received. If the MRFC does not support the service, or there is a problem with the parameters or resource, the MRFC returns the appropriate SIP error status codes.

The announcement service is invoked by a Request-URI with user portion “annc” and URI parameters controlling the content and delivery of the announcement, including the mandatory parameter “play” indicating the resource to play. For example,

sip: annc@mrfc.example.com;play=http://asexample.com/welcome.wav

If the resource “http://as.example.com/welcome.wav” cannot be found or retrieved, error codes are returned. Otherwise, the resource is played to completion and then a BYE is returned.

The dialog service is invoked with a Request-URI with user portion “dialog” and URI parameters controlling the content and delivery of the dialog, including the mandatory parameter “voicexml” indicating the VoiceXML script to execute.

For example,sip: dialog@mrfc.example.com;play=http://vxml.example.com/promptandcollect.vxml

Again, error codes are returned if the script cannot be found. Otherwise, the VoiceXML script at http://vxml.example.com/promptandcollect.vxml is executed.

The conference service is invoked with a Request-URI with the user part “conf-<uniqueid>” where ‘uniqueid” identifies a unique conference mixing session. For example,

sip: conf-id100@mrfc.example.com

If the conference session identified by the URI “conf-id100@mrfc.example.com” does not exist on the media server but conferencing resources are available, then the MRFC creates a new mixing session and the SIP UE is joined to the conference. If a conference already exists, then the UE is joined to the conference mix. A UE leaves the conference by issuing a BYE on its SIP dialog. A conference session exists as long as there is at least one SIP dialog joined to the conference.

RFC4240 is well accepted in the industry due to the simplicity of how these media services are identified and invoked.

This simplicity, however, requires RFC4020 to be augmented with other specifications to attain desired MRFC functionality, especially for conferencing and IVR. Media languages like MSCML, MSML and MSCP go beyond RFC420 in order to provide advanced conferencing services which support explicit conference setup, etc. Moreover, its description of the VoiceXML dialog service is incomplete: the current description is insufficient for interoperable implementations. In particular, the VoiceXML dialog service needs to address issues such as how Request-URI parameter data is mapped into VoiceXML, how data can be sent to the AS mid-call, how media support is achieved and how VoiceXML’s (optional) outbound calling functionality is addressed. The draft-burke specification [4] builds on RFC420 to address these issues (see Section 6.5.1)
6.5
Internet-drafts

6.5.1 SIP Interface to VoiceXML Media Services (‘draft-burke’)

The Internet Draft entitled “SIP Interface to VoiceXML Media Services” [4] (also known as ‘draft-burke’) provides a detailed specification of how VoiceXML 2.0/2.1 media services are invoked using SIP. The specification is currently in the IETF RFC Editors’ queue and is expected to become an Informational RFC shortly.
The specification leverages the Request-URI mechanism in RFC4240 [3] for identifying dialog media services: the user part is fixed as ‘dialog’ and a ‘voicexml’ parameter identifies the URI of the initial document to fetch. Other parameters include HTTP control parameters (e.g. document caching and method) and user-defined data parameters (see below). The Request-URI can be used in SIP INVITE and REFER messages to initiate a VoiceXML session; for example,

sip: dialog@ms.example.com; voicexml=http://as.example.com/promptandcollect.vxml; maxage=3600; maxstale=0;

The specification details the relationship between SIP signaling and VoiceXML session invocation and termination, error behavior and handling special character in parameters. Detailed signaling and media information about the connection are made available to invoked VoiceXML session through its ‘session.connection’ object. The VoiceXML script can then access basic to/from/redirect and request-uri information as well as SIP INVITE/REFER headers and SDP information (including type, direction and format of each negotiated media stream).

Draft-burke pays special attention to many area of the relationship between SIP and VoiceXML including passing data to/from the AS, media support and outbound calling.

Firstly, data interaction between the AS and VoiceXML session can occur at invocation, mid-call and at termination. The AS specifies data to be injected into the VoiceXML session using user-defined parameters on the initial Request-URI. This data is then exposed in the VoiceXML script allowing the AS to configure specific VoiceXML behavior. For example, if the AS sends an INVITE with the Request-URI

sip: dialog@ms.example.com; voicexml=http://as.example.com/promptandcollect.vxml; prompt=http://as.example.com/prompt1.wav; iterations=10; max-digits=5

then this information can be accessed in the VoiceXML script so the audio prompt can be specified as

<audio expr=”session.connection.protocol.sip.requesturi[‘prompt’]”/>

where the expression evaluates to http://as.example.com/prompt1.wav. Similarly, information about the number of attempts to collect input, and the size of the input, can also be set dynamically in the script.

Data collected by the VoiceXML script can be returned to the AS mid-call using HTTP methods. In VoiceXML 2.0, this can be achieved using the <submit> or <subdialog> elements. In VoiceXML 2.1, data can be efficiently sent to the AS using the <script> or <data> elements; in return, the AS can pass new data back to the VoiceXML application. For example, to return the digits collected in a prompt and collect script,

<field name=”digits”>

 <filled>

 <data name=”newdata” src=”http://as.example.com” namelist=”digits”/>

 </filled>

</field>

Where the digits collected from user are send to the AS at “http://as.example.com” and in return the AS sends an XML document identified as “newdata”. The VoiceXML script could then access this new data and its behavior affected; for example, the data could instruct the VoiceXML script to terminate or continue collecting digits.

Data can also be returned to the AS at the end of the session using SIP or HTTP methods. When data is specified in the namelist of VoiceXML <exit> or <disconnect> elements, the session is terminated and namelist data is returned to the AS in the body of a SIP BYE (or 200 response). Alternatively, data can be returned using the mid-call methods above before it terminates the call or, when the call is terminated by an incoming BYE, during ‘post-disconnect’ final processing described in VoiceXML.

Secondly, draft-burke address media support including dialog preparation, early media and codec support. When the initial INVITE establishes a media-less SIP dialog, the VoiceXML session is prepared (initial document fetched, etc) but not executed until a re-INVITE establishes a media session. The VoiceXML MRFC may also support early media by sending a 183 Session Progress provisional response to the initial INVITE. On media codecs, a VoiceXML MRFC must support codecs and RTP formats which correspond to those mandated in the VoiceXML 2.0/2.1 (G.711 alaw/mulaw); other codecs may be supported. If video is supported by the VoiceXML MFRC, then it must support H.263 baseline and should support AMR.

Finally, outbound calling is an optional feature of VoiceXML 2.0/2.1 which draft-burke addresses by specifying how the various types of call transfer must be addressed. For ‘blind’ transfer (caller is transfer away from the MRFC to a new destination), a REFER message is sent on the original SIP dialog. For ‘bridge’ transfer (caller is connected to a new callee but the MRFC still receives the caller’s media streams), the VoiceXML MRFC establishes a new outbound SIP dialog with a callee and then connects its media streams with the original caller’s. Consultation transfer – conceptually similar to blind transfer but the caller isn’t dropped if the transfer attempt is unsuccessful – is implemented similar to ‘bridge’ transfer except that the INVITE contains a Replaces header so as to replace the connection between the caller and MRFC with a connection between the caller and the callee. Note that the specification states the AS should insert its own URI into Record-Route header of the initial INVITE so that it remains in the signaling path when outbound calls are initiated by the MRFC.

The clear benefit of draft-burke is that it addresses limitations in RFC4240 with respect to the functionality and interoperability of the VoiceXML dialog service. It does so by explicitly specifying how VoiceXML and SIP interact, including many error cases. It also clearly specifies various methods for the AS to send data to the VoiceXML session and for the VoiceXML session to return data to the AS. This enables the AS and MRFC to exchange data not just at service invocation, but throughout the lifecycle of the media session. Finally, it also details how VoiceXML’s optional transfer capability can be treated, assuming an MRFC is able to initiate outbound calls. If an MRFC is not able to initiate outbound calls, then its approach on this topic is not viable. Instead, either the VoiceXML MRFC requests the AS (or CSCF) to generate outbound calls; or VoiceXML transfer capability is not supported in its 3GPP profile.
6.6
Others
7
Requirements for a media server control protocol

7.1
Introduction

The present section lists the requirements identified by the conclusion of the studies in the previous sections along with other identified requirements for a media server control protocol.
7.2
Multimedia services’ media control requirements
7.3
Response time requirements
7.4
Packaging, registration and extensibility requirements
7.5
Charging requirements
7.6
Resource Management requirements
7.7
High Availability requirements
7.8
QoS control requirements
7.9
Security requirements
7.10
Lawful intercept requirements
7.11
Other requirements
8
SIP call flows and SDP capabilities required for the media server control protocol

Editor’s note: Depending on the recommendations and results of the studies in the present document SIP and SDP capabalities required may differ.
Annex A:
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2006-05
	CT1#42
	C1-060790
	
	
	Creation
	
	0.0.0

	2006-05
	CT1#42bis
	
	
	
	C1-061323, C1-061324, C1-061325, C1-061326, C1-0613247.
	0.0.0
	0.1.0

	2006-09
	CT1#43
	C1-061505
	
	
	C1-061483, C1-061841, C1-061507, C1-061508, C1-061509, C1-061510
	0.1.0
	0.2.0

_1213705630.vsd
MRFC

AS

S-CSCF

H.248

HTTP

ISC

Mp

Mr

SIP

Cr

TCP/SCTP

SIP

_1217414299.vsd
MRFC

Terminating
UE

AS

MRFC fetches VoiceXML script

8. SIP 200 (OK)

MRFC plays prompts and collects digits

11. SIP BYE

13. SIP 200 (OK)

7. SIP 200 (OK)

1. SIP INVITE

3. SIP 100 (Trying)

BYE payload include collected digits

RTP

2. SIP INVITE

4. SIP 100 (Trying)

12. SIP BYE

14. SIP 200 (OK)

9. SIP ACK

5. Sr: HTTP
Request

10. SIP ACK

6. Sr: HTTP
Response

MRFC extracts service information from Request-URI

_1217415556.vsd
MRFC

Terminating
UE

AS

MRFC fetches VoiceXML
Script

13. SIP 200 (OK)

MRFC plays prompts and collects digits. Digit result returned in TCP exit event

19. SIP BYE

20. SIP 200 (OK)

12. SIP 200 (OK)

4. SIP INVITE

6. SIP 100 (Trying)

8. Cr/TCP prepare
Request

RTP

5. SIP INVITE

7. SIP 100 (Trying)

22. SIP 200 (OK)

21. SIP BYE

10. Cr/HTTP
Response

9. Cr/HTTP
Request

15. SIP ACK

17. Cr/TCP started
Response

14. SIP ACK

11. Cr/TCP prepared
Response

16. Cr/TCP start
Request

1. SIP INVITE

3. SIP ACK

2. SIP 200 (OK)

Cr/TCP control channel establishment

Cr/TCP

18. Cr/TCP exit
Event

_1213702955.vsd
MRFC

AS

S-CSCF

Sr

HTTP

Mp

Mr

SIP

ISC

SIP

H.248

