13	Mapping on to TC services
13.1	Dialogue control
Dialogue control services are mapped to TC dialogue handling services. The TC-UNI service is not used by the MAP PM.
13.1.1	Directly mapped parameters
The following parameters of the MAP-OPEN request and indication primitives are directly mapped on to the corresponding parameters of the TC-BEGIN primitives:
 -	destination address;

 -	originating address.

13.1.2	Use of other parameters of dialogue handling primitives
13.1.2.1	Dialogue Id
The value of this parameter is associated with the MAP PM invocation in an implementation dependent manner.
13.1.2.2	Application-context-name
If it does not belong to the MAP V1 context set. The application-context-name parameter of a MAP primitive is mapped to the application-context-name parameter of TC dialogue handling primitives according to the rules described in subclause 12.1. Otherwise the application-context-name parameter of TC dialogue handling primitives is never included.
13.1.2.3	User information
The user information parameter of TC dialogue primitives is used to carry the MAP dialogue APDUs.
13.1.2.4	Component present
This parameter is used by the MAP PM as described in CCITT Recommendation Q.771. It is not visible to the MAP user.
13.1.2.5	Termination
The value of this parameter of the TC-END request primitive is set by the MAP PM on the basis of the release method parameter of the MAP-CLOSE request primitive, except when the dialogue state machine is in the state DIALOGUE INITIATED, in which case the Termination parameter shall always indicate "pre-arranged end".
13.1.2.6	P-Abort-Cause
Values of the P-abort-cause parameter are mapped to the values of the provider-reason parameter of the MAP-P-ABORT indication primitive according to table 13.1/1, except in the dialogue initiated phase for the "incorrectTransactionPortion" and "noCommonDialoguePortion" values which are mapped to the "potential incompatibility problem" value of the refuse-reason parameter of the MAP-OPEN cnf primitive. The source parameter in the MAP-P-ABORT ind takes the value "TC problem".
�13.1.2.7	Quality of service
The quality of service of TC request primitives is set by the MAP as shown below.
 -	Return option: "Return message on error" or "Discard message on error" as required by the network operator;

 -	Sequence control: "Sequence guaranteed" or "Sequence result not guaranteed" as required by the network operator;

	"Sequence guaranteed" shall be used when a segmented result is to be transferred (e.g. subscriber data in response to SendParameters). It may also be appropriate to use Sequence guaranteed when a series of InsertSubscriberData, ProcessAccessSignalling or ForwardAccessSignalling operations is used.

TC P-Abort cause�MAP provider-reason��unrecognized message type�provider malfunction��unrecognized transaction Id�supporting dialogue released��badlyFormattedTransactionPortion�provider malfunction��incorrectTransactionPortion�provider malfunction (note)��resourceLimitation�resource limitation��abnormalDialogue�provider malfunction��noCommonDialoguePortion�version incompatibility��
NOTE:	Or version incompatibility in the dialogue initiated phase.
Table 13.1/1: Mapping of P-Abort cause in TC-P-ABORT indication on to provider-reason in MAP-P-ABORT indication
13.2	Service specific procedures
Specific services are mapped to TC component handling services.
13.2.1	Directly mapped parameters
The Invoke Id parameter of the MAP request and indication primitive is directly mapped on to the Invoke Id parameter of the component handling primitives.
13.2.2	Use of other parameters of component handling primitives
13.2.2.1	Dialogue Id
The value of this parameter is associated with the MAP PM invocation in an implementation dependent manner.
13.2.2.2	Class
The value of this parameter is set by the MAP PM according to the type of the operation to be invoked.
�13.2.2.3	Linked Id
When a service response is mapped to a class 4 operation, the value of this parameter is set by the MAP PM and corresponds to the value assigned by the user to the initial service request (i.e. the value of the invoke ID parameter of the request primitive). Otherwise if such a parameter is included in MAP request/indication primitives it is directly mapped to the linked ID parameter of the associated TC�INVOKE request/indication primitives.
13.2.2.4	Operation
When mapping a request primitive on to a Remote Operations PDU (invoke), the MAP PM shall set the operation code according to the mapping described in table 13.2/1.
When mapping a response primitive on to a Remote Operations service, the MAP PM shall set the operation code of the TC-RESULT-L/NL primitive (if required) to the same value as the one received at invocation time.
�
MAP-SERVICE�operation��MAP-ACTIVATE-SS�activateSS��MAP-ACTIVATE-TRACE-MODE�activateTraceMode��MAP-ALERT-SERVICE-CENTRE�alertServiceCentre��MAP-CANCEL-LOCATION�cancelLocation��MAP-CHECK-IMEI�checkIMEI��MAP-DEACTIVATE-SS�deactivateSS��MAP-DEACTIVATE-TRACE-MODE �deactivateTraceMode��MAP-DELETE-SUBSCRIBER-DATA�deleteSubscriberData��MAP-ERASE-SS�eraseSS��MAP-FORWARD-ACCESS-SIGNALLING�forwardAccessSignalling��MAP-FORWARD-CHECK-SS-INDICATION�forwardCheckSsIndication��MAP-FORWARD-SHORT-MESSAGE�forwardSM��MAP-GET-PASSWORD�getPassword��MAP-INFORM-SERVICE-CENTRE�informServiceCentre��MAP-INSERT-SUBSCRIBER-DATA�insertSubscriberData��MAP-INTERROGATE-SS�interrogateSs��MAP-PREPARE-HANDOVER�prepareHandover��MAP-PREPARE-SUBSEQUENT-HANDOVER�prepareSubsequentHandover��MAP-PROCESS-ACCESS-SIGNALLING�processAccessSignalling��MAP-PROCESS-UNSTRUCTURED-SS-REQUEST�processUnstructuredSS-Request��MAP-PROVIDE-ROAMING-NUMBER�provideRoamingNumber��MAP-PURGE-MS�purgeMS��MAP-READY-FOR-SM�readyForSM��MAP-REGISTER-PASSWORD�registerPassword��MAP-REGISTER-SS�registerSS��MAP-REPORT-SM-DELIVERY-STATUS�reportSmDeliveryStatus��MAP-RESET�reset��MAP-RESTORE-DATA�restoreData��MAP-SEND-END-SIGNAL �sendEndSignal��MAP-SEND-AUTHENTICATION-INFO�sendAuthenticationInfo��MAP-SEND-IMSI�sendIMSI��MAP-SEND-IDENTIFICATION�sendIdentification��MAP-SEND-ROUTING-INFO-FOR-SM�sendRoutingInfoForSM��MAP-SEND-ROUTING-INFORMATION�sendRoutingInfo��MAP-UNSTRUCTURED-SS-NOTIFY�unstructuredSS-Notify��MAP-UNSTRUCTURED-SS-REQUEST�unstructuredSS-Request��MAP-UPDATE-LOCATION�updateLocation��
Table 13.2/1: Mapping of MAP specific services on to MAP operations v2
�13.2.2.5	Error
The error parameter in a TC-U-ERROR indication primitive is mapped to the user error parameter in the MAP confirm primitive of the service associated with the operation to which the error is attached.
The user error parameter in MAP response primitives is mapped to the error parameter of the TC�U�ERROR request primitive, except for "initiating-release" and "resource-limitation" which are mapped to the problem code parameter of the TC-U-REJECT request primitive.
13.2.2.6	Parameters
The parameters of MAP specific request and indication primitives are mapped to the argument parameter of TC-INVOKE primitives.
The parameters of MAP specific response and confirm primitives are mapped to the result parameter of TC-RESULT-L primitives, the parameter of TC-U-ERROR primitives or the argument of TC-INVOKE primitives when mapping on linked class 4 operations is used.
13.2.2.7	Time out
The value of this parameter is set by the MAP PM according to the type of operation invoked.
13.2.2.8	Last component
This parameter is used by the MAP PM as described in CCITT Recommendation Q.711. It is not visible from the MAP user.
�13.2.2.9	Problem code
13.2.2.9.1	Mapping to MAP User Error
The following values of the user error parameter are mapped as follows to values of the TC problem code parameter. These values are generated by the MAP user. This mapping is valid from the TC-U-REJECT indication primitive to the MAP confirm service primitive and from the MAP response service primitive to the TC-U-REJECT request primitive.
MAP User Error�TC problem code��resource limitation�resource limitation��initiating release�initiating release��
Table 13.2/2: Mapping of MAP User Error parameter on to TC problem code in TC-U-REJECT primitives
13.2.2.9.2	Mapping to MAP Provider Error parameter
The following values of the TC problem code parameter of the TC-U-REJECT indication primitive are mapped as follows to values of the MAP Provider Error parameter of the MAP confirm primitive.
TC problem code�MAP Provider Error��duplicated invoke Id�duplicated invoke id��unrecognized operation�service not supported��mistyped parameter�mistyped parameter��
Table 13.2/3: Mapping of TC problem code in TC-U-REJECT on to MAP Provider Error parameter
The following values of the problem code parameters of the TC-L-REJECT primitive are mapped to values of the provider error parameter of the MAP confirm primitive as follows:
TC problem code�MAP Provider Error��return result unexpected�unexpected response from the peer��return error unexpected�unexpected response from the peer��
Table 13.2/4: Mapping of TC problem code in TC-L-REJECT on to MAP Provider Error parameter
�13.2.2.9.3	Mapping to diagnostic parameter
The following values of the problem code parameter of the TC-R-REJECT and TC-U-REJECT primitive are mapped to values of the diagnostic parameter of the MAP-NOTICE indication primitive as follows:
TC problem code�MAP diagnostic��General problem���abnormal event detected by the peer���Invoke problem���- unrecognized linked ID�- abnormal event detected by the peer��- linked response unexpected�- response rejected by the peer��- unexpected linked operation�- response rejected by the peer��Return result problem���- unrecognized invoke ID�- response rejected by the peer��- return result unexpected�- response rejected by the peer��- mistyped parameter�- response rejected by the peer��Return error problem���- unrecognized invoke ID�- response rejected by the peer��- return error unexpected�- response rejected by the peer��- unrecognized error�- response rejected by the peer��- unexpected error�- response rejected by the peer��- mistyped parameter�- response rejected by the peer��
Table 13.2/5: Mapping of TC problem code of TC-R-REJECT and TC-U-REJECT on to diagnostic parameter
The following values of the problem code parameter of the TC-L-REJECT primitive are mapped to values of the diagnostic parameter of the MAP-NOTICE indication primitive as follows:
TC problem code�MAP diagnostic��General problems:�- abnormal event received from the peer��Invoke problem:���- unrecognized linked ID�- abnormal event received from the peer��Return result problem:���- unrecognized invoke ID�- abnormal event received from the peer��Return error problem:���- unrecognized invoke ID�- abnormal event received from the peer��
Table 13.2/6: Mapping of TC problem code of TC-L-REJECT on to diagnostic parameter
�13.3	SDL descriptions
The following SDL specification describes a system which includes three blocks: MAP-user, MAP�provider and TC.
Such a system resides in each network component supporting MAP and communicates with its peers via the lower layers of the signalling network which are part of the environment.
Only the MAP-provider is fully described in this subclause. The various type of processes which form the MAP-User block and the TC block are described respectively in clauses 15 to 21 of this ETS and in CCITT Recommendation Q.774.
The MAP-Provider block communicates with the MAP_USER via two channels U1 and U2. Via U1 the MAP-provider receives the MAP request and response primitives. Via U2 it sends the MAP indication and confirm primitives.
The MAP-Provider block communicates with TC via two channels P1 and P2. Via P1 the MAP-Provider sends all the TC request primitives. Via P2 it receives all the TC indication primitives.
The MAP-Provider block is composed of the four following types of processes:
a)	MAP_DSM: This type of process handles a dialogue. There exists one process instance per MAP dialogue.

b)	LOAD_CTRL: This type of process is in charge of load control. There is only one instance of this process in each system.

c)	PERFORMING_MAP_SSM: This type of process handle a MAP service performed during a dialogue. An instance of this process is created by the instance of the MAP_DSM process for each MAP-service to be performed.

d)	REQUESTING_MAP_SSM: This type of process handle a MAP service requested during a dialogue. An instance of this process is created by the instance of the MAP_DSM process for each requested MAP-service.

A process MAP_DSM exchanges external signals with other blocks as well as internal signals with the other processes of the MAP-Provider block. The external signals are either MAP service primitives or TC service primitives.
The signal routes used by the various processes are organized as follows:
a)	A process MAP_DSM receives and sends events from/to the MAP_user via signal route User1/User2. These routes uses respectively channel U1 and U2.

b)	A process MAP_DSM receives and sends events from/to the TC via signal route Tc1/Tc2. These routes uses respectively channel P1 and P2.

c)	A process MAP_DSM receives and sends events from/to the LOAD_CTRL process via signal route Load1/Load2. These routes are internal.

d)	A process MAP_DSM sends events to the PERFORMING_MAP_SSM processes via signal route Intern1. This route is internal.

e)	A process MAP_DSM sends events to the REQUESTING_MAP_SSM processes via signal route Intern2. This route is internal.

�f)	A process MAP_PERFORMING_SSM sends events to the MAP_USER via signal route User4. This route uses channel U2.

g)	A process MAP_PERFORMING_SSM sends events to TC via signal route Tc3. This route uses channel P1.

h)	A process MAP_REQUESTING_SSM sends events to the MAP_USER via signal route User5. This route uses channel U2.

j)	A process MAP_REQUESTING_SSM sends events to TC via signal route Tc4. This route uses channel P1.
�Figure 13.2/1: System MAP_STACK
�
�Figure 13.2/2: Block MAPPROVIDER
�
�Figure 13.2/3 (sheet 1 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 2 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 3 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 4 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 5 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 6 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 7 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 8 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 9 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 10 of 11): Process MAP_DSM
�
�Figure 13.2/3 (sheet 11 of 11): Process MAP_DSM
�
�Figure 13.2/4 (sheet 1 of 4): Procedure PROCESS_COMPONENTS
�
�Figure 13.2/4 (sheet 2 of 4): Procedure PROCESS_COMPONENTS
�
�Figure 13.2/4 (sheet 3 of 4): Procedure PROCESS_COMPONENTS
�
�Figure 13.2/4 (sheet 4 of 4): Procedure PROCESS_COMPONENTS
�
�Figure 13.2/5: Process LOAD_CTRL
�
�Figure 13.2/6 (sheet 1 of 3): Process PERFORMING_MAP_SSM
�
�Figure 13.2/6 (sheet 2 of 3): Process PERFORMING_MAP_SSM
�
�Figure 13.2/6 (sheet 3 of 3): Process PERFORMING_MAP_SSM
�
�Figure 13.2/7 (sheet 1 of 4): Process REQUESTING_MAP_SSM
�
�Figure 13.2/7 (sheet 2 of 4): Process REQUESTING_MAP_SSM
�
�Figure 13.2/7 (sheet 3 of 4): Process REQUESTING_MAP_SSM
�
�Figure 13.2/7 (sheet 4 of 4): Process REQUESTING_MAP_SSM
�
�14	Abstract syntax of the MAP protocol
14.1	General
This subclause specifies the Abstract Syntaxes for the Mobile Application Part as well as the associated set of Operations and Errors, using the Abstract Syntax Notation One (ASN.1), defined in CCITT Recommendation X.208 (1988) with additions as defined in subclause 14.1.4 on Compatibility Considerations and the OPERATION and ERROR external MACROs, defined in CCITT Recommendation Q.773.
The Abstract Syntax is defined for all interfaces specified in subclause 2.4 except for the A- and B-interfaces.
The Mobile Application Part protocol is defined by two Abstract Syntaxes:
 -	one Abstract Syntax which encompass all Operations; and

 -	Errors identified by the various MAP subsystem numbers.

This Abstract Syntax represents the set of values each of which is a value of the ASN.1 type TCAPMessages. MessageType as defined in CCITT Recommendation Q.773 with the ANY DEFINED BY sections resolved by the operation and error codes included in the ASN.1 module MAP-Protocol. However, only the subset of this abstract syntax which is required by the procedures defined for an entity needs to be supported:
 -	one Abstract Syntax identified by the OBJECT IDENTIFIER value MAP-DialogueInformation.map-DialogueAS.

This Abstract Syntax represents the set of values each of which is a value of the ASN.1 type MAP-DialogueInformation.MAP-DialoguePDU. Such a value of the ASN.1 single-ASN.1-type element is contained within the user-information element of the TCAPMessages.DialoguePortion ASN.1 type. This Abstract Syntax name is to be used as a direct reference.
14.1.1	Encoding rules
The encoding rules which are applicable to the defined Abstract Syntaxes are the Basic Encoding Rules for Abstract Syntax Notation One, defined in CCITT Recommendation X.209 with the same exceptions as in CCITT Recommendation Q.773 section 4 Message Representation.
When the definite form is used for length encoding, a data value of length less than 128 octets must have the length encoded in the short form.
When the long form is employed to code a length, the minimum number of octets shall be used to code the length field.
OCTET STRING values and BIT STRING values must be encoded in a primitive form.
�14.1.2	Use of TC
The mapping of OPERATION and ERROR to TC components is defined in ETS 300 287 (version 2) which is based on CCITT Recommendation Q.773 (1992).
NOTE 1:	The class of an operation is not stated explicitly but is specified as well in the ASN.1 operation type definition.
	Class 1: RESULT and ERROR appear in ASN.1 operation type definition.
	Class 2: only ERROR appears in ASN.1 operation type definition.
	Class 3: only RESULT appears in ASN.1 operation type definition.
	Class 4: both RESULT and ERROR do not appear in ASN.1 operation type definition.
The ASN.1 data type which follows the keywords "ARGUMENT", "PARAMETER" or "RESULT" (for OPERATION and ERROR) is always optional from a syntactic point of view. However, except when specifically mentioned, it has to be considered as mandatory from a semantic point of view.
When an optional element is missing in an invoke component or in an inner data structure while it is required by the context, an error component is returned if specified in the operation type; the associated type of error is DataMissing. This holds also when the entire parameter of an invoke component is missing while it is required by the context.
NOTE 2:	When a mandatory element is missing in the parameter or inner data structure of any component, a reject component is returned (if the dialogue still exists). The problem code to be used is "Mistyped parameter".
The Timer Values used in the operation type definitions are indicated as ASN.1 comment. The Timer Value Ranges are:
s	= from 3 seconds to 10 seconds;
m	= from 15 seconds to 30 seconds;
ml	= from 1 minute to 10 minutes;
l	= from 28 hours to 38 hours.

14.1.3	Use of information elements defined outside MAP
An information element or a set of information elements (messages) transparently carried in the Mobile Application Part but defined in other recommendation/technical specifications are handled in one of the following ways:
i)	The contents of each information element (without the octets encoding the identifier and the length in the recommendation/technical specification where it is defined) is carried as the value of an ASN.1 NamedType derived from the OCTET STRING data type. Additionally, the internal structure may be explained by means of comments. In case of misalignment the referred to recommendation/technical specification takes precedence.

ii)	The complete information element (including the octets encoding the identifier and the length in the recommendation/technical specification where it is defined) or set of information elements and the identity of the associated protocol are carried as the value of the ExternalSignalInfo data type defined in this ETS. Where more than one information element is carried, the information elements are sent contiguously with no filler octets between them.

�14.1.4	Compatibility considerations
The following ASN.1 modules are conforming with CCITT Recommendation X.208 (1988), but in addition Ellipsis Notation ("..." - notation) is used as described in ISO 8824-1/PDAM 3.2 wherever future protocol extensions are foreseen.
The "..." construct only applies to a SEQUENCE. An entity supporting a version greater 1 shall not reject unsupported extension following "..." of that SEQUENCE. The Encoding Rules from subclause 14.1.1 apply to every element of the whole Transfer Syntax especially to the ASN.1 type EXTERNAL.
Note that the Ellipses Notation is not supported in a version 1 context. Therefore a SEQUENCE sent in a version 1 context shall not include any element following "...".
NOTE:	Every extension has to follow the superset mechanism defined in ETR 060.
	Any change other than in the extension area leads to a new Application Context version.
PLMN specific extensions shall follow the extension marker and shall be tagged using PRIVATE tags up to and including 29.
The Abstract Syntaxes of MAP version 2 are in general an extension of the Abstract Syntaxes of MAP version 1. They are therefore (in general) backward compatible with MAP v1 from the Abstract Syntax point of View. Exceptions from this backward compatible changes of the Abstract Syntax were made only for the following reasons:
i)	information element was not used by a GSM phase 1 service due to missing or unstable phase 1 service description (e.g. Closed User Group);

ii)	information element used only on the MSC-VLR Interface (e.g. SendInformationForIncomingCallSetUp);

iii)	changes with impact only in the error situation (e.g. different Cause Values);

iv)	changes on the MAP-AbortInfo.

Changes without impact on the Transfer Syntax are not indicated (e.g. name changes, introduction of extension marker).
Information Elements added in existing Constructs for version 2 or information elements kept only for compatibility with version 1 are indicated by ASN.1 comments These comments state which subset of the abstract syntax must be used in the negotiated application context.
�14.1.5	Structure of the Abstract Syntax of MAP
For each MAP parameter which has to be transferred by a MAP Protocol Data Unit (MAP message), there is a PDU field (an ASN.1 NamedType) whose ASN.1 identifier has the same name as the corresponding parameter, except for the differences required by the ASN.1 notation (blanks between words are removed or replaced by hyphen, the first letter of the first word is lower-case and the first letter of the following words are capitalized, e.g. "no reply condition time" is mapped to "noReplyConditionTime"). Additionally some words may be abbreviated as follows:
bs	basic service
ch	call handling
cug	closed user group
ho	handover
ic	incoming call
id	identity
info	information
ms	mobile service
oc	outgoing call
om	operation & maintenance
pw	Password
sm	short message service
ss	supplementary service

The MAP protocol is composed of several ASN.1 modules dealing with either operations, errors, data types, and, if applicable, split into those dealing with mobile services, call handling services, supplementary services and short message services. For operations and errors no values are assigned, but only the operation and error types in order to allow use of the defined types also by other protocols (e.g. TS GSM 04.80). The values (operation codes and error codes) are defined in a separate module. The ASN.1 source lines are preceded by line-numbers at the left margin in order to enable the usage of the cross-reference in appendix A.
The module containing the definition of the operation packages for MAP is:
1.	MAP-OperationPackages.

The module containing the definition of the application contexts for MAP is:
2.	MAP-ApplicationContexts.

The module containing the data types for the Abstract Syntax to be used for TCAPMessages.DialoguePortion for MAP is:
3.	MAP-DialogueInformation.

The module containing the operation codes and error codes for MAP is:
4.	MAP-Protocol.

The modules containing all operation type definitions for MAP are:
5.	MAP-MobileServiceOperations;
6.	MAP-OperationAndMaintenanceOperations;
7.	MAP-CallHandlingOperations;
8.	MAP-SupplementaryServiceOperations;
9.	MAP-ShortMessageServiceOperations.

�The module containing all error type definitions for MAP is:
10.	MAP-Errors.

Modules containing all data type definitions for MAP are:
11.	MAP-MS-DataTypes;
12.	MAP-OM-DataTypes;
13.	MAP-CH-DataTypes;
14.	MAP-SS-DataTypes;
15.	MAP-SS-Code;
16.	MAP-SM-DataTypes;
17.	MAP-ER-DataTypes;
18.	MAP-CommonDataTypes;
19.	MAP-TS-Code;
20.	MAP-BS-Code.

References are made also to modules defined outside of this ETS. They are defined in the technical specification Mobile Services Domain and technical specification Transaction Capability respectively:
MobileDomainDefinitions;
TCAPMessages;
DialoguePDUs.

In the word-text of ASN.1 Modules hidden text is used for marking the begin (.$modulename), interrupt (.#), continuation (.$) and end (.#END) of ASN.1 Source. This allows to automatically extract the ASN.1 Sources. These markers should not be deleted! In addition, hidden text is also used to overcome some compiler restrictions (e�tc " Empty Result not supported due to LL1-Problem)." \f g�
In addition no linebreak should occur when printing a paragraph in ASN.1 source, otherwise the line-numbering of word is inconsistent with the line-numbering in Appendix A.
For Completeness the module MAP-Frame is included as hidden text.
.$MAP-Frame

DEFINITIONS ::=

BEGIN

IMPORTS
	Component,
	MessageType
FROM TCAPMessages

	dialogue-as-id,
	DialoguePDU
FROM DialoguePDUs

	updateLocation
FROM MAP-Protocol

	map-DialogueAS,
	MAP-DialoguePDU
FROM MAP-DialogueInformation

	map-ac
FROM MAP-ApplicationContexts
;

ZZZZ-Dummy ::= NULL

.#END
�14.2	Operation packages
14.2.1	General aspects
This subclause describes the operation-packages which are used to build the application-contexts defined in subclause 14.3.
Each operation-package is a specification of the roles of a pair of communicating objects (i.e. a pair of MAP-Providers), in term of operations which they can invoke of each other.
The grouping of operations into one or several packages does not necessarily imply any grouping in term of Application Service Elements.
The following ASN.1 MACRO is used to describe operation-packages in this subclause:
OPERATION-PACKAGE MACRO ::=

BEGIN

TYPE NOTATION ::= Symmetric | ConsumerInvokes SupplierInvokes |
empty

VALUE NOTATION ::= value(VALUE OBJECT IDENTIFIER)

Symmetric ::= "OPERATIONS" "{" OperationList "}"

ConsumerInvokes ::= "CONSUMER INVOKES" "{" OperationList "}"

SupplierInvokes ::= "SUPPLIER INVOKES" "{" OperationList "}" | empty

OperationList ::= Operation | OperationList "," Operation

Operation ::= value(OPERATION)

END

Since the application-context definitions provided in subclause 14.3 uses only an informal description technique, only the type notation is used in the following subclauses to define operation-packages.
The following definitions are used throughout this subclause:
 -	v1-only operation: An operation which shall only be used in v1 application-contexts;

 -	v2-only operation: An operation which shall only be used in v2 application-contexts;

 -	v2-only package: An operation package which contains solely v2-only operations;

 -	v1-operation: An operation whose specification has not been modified since the MAP v1 specifications or if the modifications are not considered as affecting V1 implementations;

 -	v1-equivalent operation: The version of an operation which excludes all the information elements and errors which has been added since MAP v1 specifications;

 -	v1-package: An operation package which contains only v1- operations.

The names of v1-packages are suffixed by "-v1" while other names are suffixed by "-v2".
�For each operation package which is not v2-only and which does not include only v1-operations, there is a v1-equivalent package. Except when a definition is explicitly provided in the following subclauses, the v1-equivalent package includes the v1-equivalent operations of the operations which are belong to this package.
14.2.2	Packages specifications
14.2.2.1	Location updating
This operation package includes the operations required for location management procedures between HLR and VLR.
LocationUpdatingPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		updateLocation}
	SUPPLIER INVOKES {
		forwardCheckSs-Indication}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.2	Location cancellation
This operation package includes the operations required for location cancellation and MS purging procedures between HLR and VLR.
LocationCancellationPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is HLR
	CONSUMER INVOKES {
		cancelLocation}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.3	Roaming number enquiry
This operation package includes the operations required for roaming number enquiry procedures between HLR and VLR.
RoamingNumberEnquiryPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is HLR
	CONSUMER INVOKES {
		provideRoamingNumber}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
�14.2.2.4	Information retrieval
This operation package includes the operation required for the authentication information retrieval procedure between HLR and VLR.
InfoRetrievalPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		sendAuthenticationInfo}

The v1-equivalent package is defined as follows:
InfoRetrievalPackage-v1 ::= OPERATION-PACKAGE
	-- Supplier is HLR or VLR if Consumer is VLR
	CONSUMER INVOKES {
		sendParameters}

14.2.2.5	Inter-VLR information retrieval
This operation package includes the operations required for inter VLR information retrieval procedures.
InterVlrInfoRetrievalPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is VLR
	CONSUMER INVOKES {
		sendIdentification}

The v1-equivalent package is : InfoRetrievalPackage-v1
14.2.2.6	IMSI retrieval
This operation package includes the operation required for the IMSI retrieval procedure between HLR and VLR.
IMSIRetrievalPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		sendIMSI}

This package is v2 only.
14.2.2.7 - 14.2.2.9 [spare]
14.2.2.10	Interrogation
This operation package includes the operations required for interrogation procedures between MSC and HLR.
InterrogationPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is MSC
	CONSUMER INVOKES {
		sendRoutingInfo}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.11	[spare]
�14.2.2.12	Handover Control
This operation package includes the operations required for handover procedures between MSCs.
HandoverControlPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is MSCB if Consumer is MSCA
	CONSUMER INVOKES {
		prepareHandover,
		forwardAccessSignalling}
	SUPPLIER INVOKES {
		sendEndSignal,
		processAccessSignalling,
		prepareSubsequentHandover}

The v1-equivalent package is defined as follows.
HandoverControlPackage-v1 ::= OPERATION-PACKAGE
	-- Supplier is MSCB if Consumer is MSCA
	CONSUMER INVOKES {
		performHandover,
		forwardAccessSignalling,
		traceSubscriberActivity}
	SUPPLIER INVOKES {
		sendEndSignal,
		noteInternalHandover,
		processAccessSignalling,
		performSubsequentHandover}

14.2.2.13	Subscriber Data management stand alone
This operation package includes the operations required for stand alone subscriber data management procedures between HLR and VLR.
SubscriberDataMngtStandAlonePackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is HLR
	CONSUMER INVOKES {
		insertSubscriberData,
		deleteSubscriberData}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.14	Equipment management
This operation package includes the operations required for equipment management procedures between EIR and MSC.
EquipmentMngtPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is EIR if Consumer is MSC
	CONSUMER INVOKES {
		checkIMEI}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
�14.2.2.15	Subscriber data management
This operation package includes the operations required for subscriber data management procedures between HLR and VLR.
SubscriberDataMngtPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is HLR
	CONSUMER INVOKES {
		insertSubscriberData}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.16	Location register restart
This operation package includes the operations required for location register restart procedures between HLR and VLR.
ResetPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is HLR
	CONSUMER INVOKES {
		reset}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.17	Tracing stand-alone
This operation package includes the operations required for stand alone tracing procedures between HLR and VLR.
TracingStandAlonePackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is HLR
	CONSUMER INVOKES {
		activateTraceMode,
		deactivateTraceMode}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.18	Functional SS handling
This operation package includes the operations required for functional supplementary services procedures between VLR and HLR.
FunctionalSsPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		registerSS,
		eraseSS,
		activateSS,
		deactivateSS,
		registerPassword,
		interrogateSS}
	SUPPLIER INVOKES {
		getPassword}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
�14.2.2.19	Tracing
This operation package includes the operations required for tracing procedures between HLR and VLR.
TracingPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is VLR if Consumer is HLR
	CONSUMER INVOKES {
		activateTraceMode}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.20	Binding
This operation package includes the operation required to initialize a supplementary service procedure between VLR and HLR.
BindingPackage-v1 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		beginSubscriberActivity}

This package is v1 only.
14.2.2.21	Unstructured SS handling
This operation package includes the operations required for unstructured supplementary services procedures between VLR and HLR.
UnstructuredSsPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		processUnstructuredSS-Request}
	SUPPLIER INVOKES {
		unstructuredSS-Request,
		unstructuredSS-Notify}

The v1-equivalent package is defined as follows:
UnstructuredSsPackage-v1 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		processUnstructuredSS-Data}

�14.2.2.22	Short message relay services
This operation package includes the operations required for short message relay service procedures between IWMSC and VMSC or between GMSC and MSC.
ShortMsgRelayPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is IWMSC if Consumer is MSC
	-- Supplier is MSC if Consumer is GMSC
	CONSUMER INVOKES {
		forwardSM}

The v1-equivalent package can be determined according to the rules described in subclause 14.2.1.
14.2.2.23	Short message gateway services
This operation package includes the operations required for short message service gateway procedures between MSC and HLR.
ShortMsgGatewayPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is GMSC
	CONSUMER INVOKES {
		sendRoutingInfoForSM,
		reportSM-DeliveryStatus}
	SUPPLIER INVOKES {
		informServiceCentre}

The v1-equivalent package is defined as follows:
ShortMsgGatewayPackage-v1 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is GMSC
	CONSUMER INVOKES {
		sendRoutingInfoForSM
		reportSMDeliveryStatus}

14.2.2.24 - 14.2.2.25 [spare]
14.2.2.26	Message waiting data management
This operation package includes the operations required for short message waiting data procedures between HLR and VLR.
MwdMngtPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		readyForSM}

The v1-equivalent package is defined as follows:
MwdMngtPackage-v1 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		noteSubscriberPresent}

�14.2.2.27	Alerting
This operation package includes the operations required for alerting between HLR and IWMSC.
AlertingPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is IWMSC if Consumer is HLR
	CONSUMER INVOKES {
		alertServiceCentre}

The v1-equivalent package is defined as follows.
AlertingPackage-v1 ::= OPERATION-PACKAGE
	-- Supplier is IWMSC if Consumer is HLR
	CONSUMER INVOKES {
		alertServiceCentreWithoutResult}

14.2.2.28	Data restoration
This operation package includes the operations required for VLR data restoration between HLR and VLR.
DataRestorationPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		restoreData}

The v1-equivalent package is: InfoRetrievalPackage-v1
14.2.2.29	Purging
This operation package includes the operations required for purging between HLR and VLR.
PurgingPackage-v2 ::= OPERATION-PACKAGE
	-- Supplier is HLR if Consumer is VLR
	CONSUMER INVOKES {
		purgeMS}

This Package is v2 only.
�14.3	Application contexts
14.3.1	General aspects
To each dialogue established by a MAP-user is associated an application-context. In this ETS each application-context is assigned a name which is supplied in the MAP-OPEN Req primitive by the MAP-User and transmitted to the peer under certain circumstances.
The following ASN.1 MACRO is used to describe the main aspects of application-contexts in the following subclauses:
APPLICATION-CONTEXT MACRO ::=

BEGIN

TYPE NOTATION ::= Symmetric | InitiatorConsumerOf
ResponderConsumerOf | empty

VALUE NOTATION ::= value(VALUE OBJECT IDENTIFIER)

Symmetric ::= "OPERATIONS OF" "{" PackageList "}"

InitiatorConsumerOf ::= "INITIATOR CONSUMER OF" "{" PackageList "}"

ResponderConsumerOf ::= "RESPONDER CONSUMER OF" "{" PackageList "}"
		| empty

PackageList ::= Package | PackageList "," Package

Package ::= value(OPERATION-PACKAGE)
		| type -- shall reference a package type

END

The following definitions are used throughout this subclause:
 -	v1-application-context: An application-context which contains only v1-packages and uses only TC v1 facilities;

 -	v1-compatible application-context: An application-context which is a v1-application-context or which uses TC V2 facilities with only v1-packages;

 -	v1 context set: the set of v1-application-contexts defined in this ETS.

The name of v1-application-contexts are suffixed by "-v1" while other names are suffixed by "-v2".
Application-contexts which do not belong to the v1 context set uses v2 TC facilities.
The last component of the application-context-name (i.e. the last component of the object identifier value) assigned to application-context which belong to the v1 context set indicates explicitly "version1".
For each application-context which does not belong to the "v1 context set" there is v1-equivalent application context. This is a v1-application-context which includes the v1-equivalents of the packages included in the original context.
�Each application-context uses the abstract-syntax associated with the operation-packages it includes and uses the transfer-syntax derived from it by applying the encoding rules defined in subclause 14.1.1.
Ac which do not belong to the v1 context set require the support of the abstract-syntax identified by the following object identifier value: MAP-DialogueInformation.map-Dialogue-AS defined in subclause 14.4.
14.3.2	Access-context definitions
14.3.2.1	[spare]
14.3.2.2	Location Updating
This application context is used between HLR and VLR for location updating procedures.
networkLocUpContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR if Initiator is VLR
	INITIATOR CONSUMER OF {
		LocationUpdatingPackage-v2,
		DataRestorationPackage-v2}
	RESPONDER CONSUMER OF {
		SubscriberDataMngtPackage-v2
		TracingPackage-v2}
::= {map-ac networkLocUp(1) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac networkLocUp(1) version1(1)}

14.3.2.3	Location Cancellation
This application context is used between HLR and VLR for location cancellation procedures.
locationCancellation-v2 APPLICATION-CONTEXT
	-- Responder is VLR if Initiator is HLR
	INITIATOR CONSUMER OF {
		LocationCancellationPackage-v2}
::= {map-ac locationCancel(2) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
map-ac locationCancel(2) version1(1)

�14.3.2.4	Roaming number enquiry
This application context is used between HLR and VLR for roaming number enquiry procedures.
roamingNumberEnquiryContext-v2 APPLICATION-CONTEXT
	-- Responder is VLR if Initiator is HLR
	INITIATOR CONSUMER OF {
		RoamingNumberEnquiryPackage-v2}
::= {map-ac roamingNbEnquiry(3) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac roamingNbEnquiry(3) version1(1)}

14.3.2.5	[spare]
14.3.2.6	Location Information Retrieval
This application-context is used between GMSC and HLR when retrieving location information.
locationInfoRetrievalContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR if Initiator is GMSC
	INITIATOR CONSUMER OF {
		InterrogationPackage-v2}
::= {map-ac locInfoRetrieval(5) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac locInfoRetrieval(5) version1(1)}

14.3.2.7 - 14.3.2.10 [spare]
14.3.2.11	Location registers restart
This application context is used for location register restart procedures.
resetContext-v2 APPLICATION-CONTEXT
	-- Responder is VLR if Initiator is HLR
	INITIATOR CONSUMER OF {
		ResetPackage-v2}
::= {map-ac reset(10) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac reset(10) version1(1)}

�14.3.2.12	Handover control
This application context is used for handover procedures between MSCs.
handoverControlContext-v2 APPLICATION-CONTEXT
	-- Responder is MSCB if Initiator is MSCA
	INITIATOR CONSUMER OF {
		HandoverControlPackage-v2}
::= {map-ac handoverControl(11) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac handoverControl(11) version1(1)}

14.3.2.13	IMSI Retrieval
This application context is used for IMSI retrieval between HLR and VLR.
imsiRetrievalContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR if Initiator is VLR
	INITIATOR CONSUMER OF {
		IMSIRetrievalPackage-v2}
::= {map-ac imsiRetrieval(26) version2(2)}

This application-context is v2 only.
14.3.2.14	Equipment Management
This application context is used for equipment checking between MSC and EIR:
equipmentMngtContext-v2 APPLICATION-CONTEXT
	-- Responder is EIR if Initiator is MSC
	INITIATOR CONSUMER OF {
		EquipmentMngtPackage-v2}
::= {map-ac equipmentMngt(13) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac equipmentMngt(13) version1(1)}

14.3.2.15	Information retrieval
This application context is used for authentication information retrieval between HLR and VLR.
infoRetrievalContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR if Initiator is VLR
	INITIATOR CONSUMER OF {
		InfoRetrievalPackage-v2}
::= {map-ac infoRetrieval(14) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
	-- Responder is HLR if Initiator is VLR
{map-ac infoRetrieval(14) version1(1)}

�14.3.2.16	Inter-VLR information retrieval
This application context is used for information retrieval between VLRs.
interVlrInfoRetrievalContext-v2 APPLICATION-CONTEXT
	-- Responder is VLR if Initiator is VLR
	INITIATOR CONSUMER OF {
		InterVlrInfoRetrievalPackage-v2}
::= {map-ac interVlrInfoRetrieval(15) version2(2)}

The v1-equivalent application-context is:
	-- Responder is VLR if Initiator is VLR
{map-ac infoRetrieval(14) version1(1)}

14.3.2.17	Stand Alone Subscriber Data Management
This application context is used for stand alone subscriber data management between HLR and VLR:
subscriberDataMngtContext-v2 APPLICATION-CONTEXT
	-- Responder is VLR if Initiator is HLR
	INITIATOR CONSUMER OF {
		SubscriberDataMngtStandAlonePackage-v2}
::= {map-ac subscriberDataMngt(16) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac subscriberDataMngt(16) version1(1)}

14.3.2.18	Tracing
This application context is used for stand alone tracing control procedures:
tracingContext-v2 APPLICATION-CONTEXT
	-- Responder is VLR if Initiator is HLR
	INITIATOR CONSUMER OF {
		TracingStandAlonePackage-v2}
::= {map-ac tracing(17) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac tracing(17) version1(1)}

�14.3.2.19	Network functional SS handling
This application context is used for functional-like SS handling procedures between VLR and HLR.
networkFunctionalSsContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR, Initiator is VLR
	INITIATOR CONSUMER OF {
		FunctionalSsPackage-v2}
::= {map-ac networkFunctionalSs(18) version2(2)}

The v1-equivalent application-context is defined as follows:
networkFunctionalSsContext-v1 APPLICATION-CONTEXT
	-- Responder is HLR, Initiator is VLR
	INITIATOR CONSUMER OF {
		FunctionalSsPackage-v1,
		UnstructuredSsPackage-v1,
		BindingPackage-v1}
::= {map-ac networkFunctionalSs(18) version1(1)}

14.3.2.20	Network unstructured SS handling
This application context is used for handling stimuli-like procedures between HLR and VLR.
networkUnstructuredSsContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR, Initiator is VLR
	-- Responder is VLR, Initiator is HLR
	OPERATIONS OF {
		UnstructuredSsPackage-v2}
::= {map-ac networkUnstructuredSs(19) version2(2)}

The v1-equivalent application-context is: networkFunctionalSsContext-v1.
14.3.2.21	Short Message Gateway
This application context is used for short message gateway procedures.
shortMsgGatewayContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR if Initiator is GMSC
	INITIATOR CONSUMER OF {
		ShortMsgGatewayPackage-v2}
::= {map-ac shortMsgGateway(20) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac shortMsgGateway(20) version1(1)}

�14.3.2.22	Mobile originating Short Message Relay
This application context is used for mobile originating short message relay procedures.
shortMsgMO-RelayContext-v2 APPLICATION-CONTEXT
	-- Responder is IWMSC if Initiator is MSC
	INITIATOR CONSUMER OF {
		ShortMsgRelayPackage-v2}
::= {map-ac shortMsgMO-Relay(21) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac --shortMsgRelay--21 version1(1)}

14.3.2.23	[spare]
14.3.2.24	Short message alert
This application context is used for short message alerting procedures.
shortMsgAlertContext-v2 APPLICATION-CONTEXT
	-- Responder is IWMSC if Initiator is HLR
	INITIATOR CONSUMER OF {
		AlertingPackage-v2}
::= {map-ac shortMsgAlert(23) version2(2)}

The following application-context-name is symbolically assigned to the v1-equivalent application-context:
{map-ac shortMsgAlert(23) version1(1)}

14.3.2.25	Short message waiting data management
This application context is used for short message waiting data management procedures.
mwdMngtContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR if Initiator is VLR
	INITIATOR CONSUMER OF {
		MwdMngtPackage-v2}
::= {map-ac mwdMngt(24) version2(2)}

The following application-context-name is assigned to the v1-equivalent application-context:
{map-ac mwdMngt(24) version1(1)}

�14.3.2.26	Mobile terminating Short Message Relay
This application context is used for mobile terminating short message relay procedures.
shortMsgMT-RelayContext-v2 APPLICATION-CONTEXT
	-- Responder is MSC if Initiator is GMSC
	INITIATOR CONSUMER OF {
		ShortMsgRelayPackage-v2}
::= {map-ac shortMsgMT-Relay(25) version2(2)}

The v1-equivalent application-context is: shortMsgRelayContext_v1.
14.3.2.27	MS purging
This application context is used between HLR and VLR for MS purging procedures.
msPurgingContext-v2 APPLICATION-CONTEXT
	-- Responder is HLR if Initiator is VLR
	INITIATOR CONSUMER OF {
		purgingPackage-v2}
::= {map-ac msPurging(27) version2(2)}

This application-context is v2 only.
14.3.3	ASN.1 Module for application-context-names
The following ASN.1 module summarizes the application-context-name assigned to MAP application-contexts.
�.$MAP-ApplicationContexts {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-ApplicationContexts (2) version2 (2)}

DEFINITIONS

::=

BEGIN

-- EXPORTS everything

IMPORTS
	gsm-NetworkId,
	ac-Id
FROM MobileDomainDefinitions {
 ccitt (0) identified-organization (4) etsi (0) mobileDomain (0)
 mobileDomainDefinitions (0) version1 (1)}
;

-- application-context-names

map-ac OBJECT IDENTIFIER ::= {gsm-NetworkId ac-Id}

networkLocUpContext-v2 OBJECT IDENTIFIER ::=
	{map-ac networkLocUp(1) version2(2)}
networkLocUpContext-v1 OBJECT IDENTIFIER ::=
	{map-ac networkLocUp(1) version1(1)}

�locationCancellation-v2 OBJECT IDENTIFIER ::=
	{map-ac locationCancel(2) version2(2)}
locationCancellation-v1 OBJECT IDENTIFIER ::=
	{map-ac locationCancel(2) version1(1)}

roamingNumberEnquiryContext-v2 OBJECT IDENTIFIER ::=
	{map-ac roamingNbEnquiry(3) version2(2)}
roamingNumberEnquiryContext-v1 OBJECT IDENTIFIER ::=
	{map-ac roamingNbEnquiry(3) version1(1)}

locationInfoRetrievalContext-v2 OBJECT IDENTIFIER ::=
	{map-ac locInfoRetrieval(5) version2(2)}
locationInfoRetrievalContext-v1 OBJECT IDENTIFIER ::=
	{map-ac locInfoRetrieval(5) version1(1)}

resetContext-v2 OBJECT IDENTIFIER ::=
	{map-ac reset(10) version2(2)}
resetContext-v1 OBJECT IDENTIFIER ::=
	{map-ac reset(10) version1(1)}

handoverControlContext-v2 OBJECT IDENTIFIER ::=
	{map-ac handoverControl(11) version2(2)}
handoverControlContext-v1 OBJECT IDENTIFIER ::=
	{map-ac handoverControl(11) version1(1)}

equipmentMngtContext-v2 OBJECT IDENTIFIER ::=
	{map-ac equipmentMngt(13) version2(2)}
equipmentMngtContext-v1 OBJECT IDENTIFIER ::=
	{map-ac equipmentMngt(13) version1(1)}

infoRetrievalContext-v2 OBJECT IDENTIFIER ::=
	{map-ac infoRetrieval(14) version2(2)}
infoRetrievalContext-v1 OBJECT IDENTIFIER ::=
	{map-ac infoRetrieval(14) version1(1)}

interVlrInfoRetrievalContext-v2 OBJECT IDENTIFIER ::=
	{map-ac interVlrInfoRetrieval(15) version2(2)}

subscriberDataMngtContext-v2 OBJECT IDENTIFIER ::=
	{map-ac subscriberDataMngt(16) version2(2)}
subscriberDataMngtContext-v1 OBJECT IDENTIFIER ::=
	{map-ac subscriberDataMngt(16) version1(1)}

tracingContext-v2 OBJECT IDENTIFIER ::=
	{map-ac tracing(17) version2(2)}
tracingContext-v1 OBJECT IDENTIFIER ::=
	{map-ac tracing(17) version1(1)}

networkFunctionalSsContext-v2 OBJECT IDENTIFIER ::=
	{map-ac networkFunctionalSs(18) version2(2)}
networkFunctionalSsContext-v1 OBJECT IDENTIFIER ::=
	{map-ac networkFunctionalSs(18) version1(1)}
�
networkUnstructuredSsContext-v2 OBJECT IDENTIFIER ::=
	{map-ac networkUnstructuredSs(19) version2(2)}

shortMsgGatewayContext-v2 OBJECT IDENTIFIER ::=
	{map-ac shortMsgGateway(20) version2(2)}
shortMsgGatewayContext-v1 OBJECT IDENTIFIER ::=
	{map-ac shortMsgGateway(20) version1(1)}

shortMsgMO-RelayContext-v2 OBJECT IDENTIFIER ::=
	{map-ac shortMsgMO-Relay(21) version2(2)}
shortMsgRelayContext-v1 OBJECT IDENTIFIER ::=
	{map-ac --shortMsgRelay--21 version1(1)}

shortMsgAlertContext-v2 OBJECT IDENTIFIER ::=
	{map-ac shortMsgAlert(23) version2(2)}
shortMsgAlertContext-v1 OBJECT IDENTIFIER ::=
	{map-ac shortMsgAlert(23) version1(1)}

mwdMngtContext-v2 OBJECT IDENTIFIER ::=
	{map-ac mwdMngt(24) version2(2)}
mwdMngtContext-v1 OBJECT IDENTIFIER ::=
	{map-ac mwdMngt(24) version1(1)}

shortMsgMT-RelayContext-v2 OBJECT IDENTIFIER ::=
	{map-ac shortMsgMT-Relay(25) version2(2)}

imsiRetrievalContext-v2 OBJECT IDENTIFIER ::=
	{map-ac imsiRetrieval(26) version2(2)}

msPurgingContext-v2 OBJECT IDENTIFIER ::=
	{map-ac msPurging(27) version2(2)}

.#END
��14.4	MAP Dialogue Information
�.$MAP-DialogueInformation {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-DialogueInformation (3) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS
	map-DialogueAS,
	MAP-DialoguePDU
;

IMPORTS
	gsm-NetworkId,
	as-Id
FROM MobileDomainDefinitions {
 ccitt (0) identified-organization (4) etsi (0) mobileDomain (0)
 mobileDomainDefinitions (0) version1 (1)}

	AddressString
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network(1) modules (3) map-CommonDataTypes (18) version2 (2)}
;

-- abstract syntax name for MAP-DialoguePDU

map-DialogueAS OBJECT IDENTIFIER ::=
	{gsm-NetworkId as-Id map-DialoguePDU (1) version1 (1)}

MAP-DialoguePDU ::= CHOICE {
	map-open		[0] MAP-OpenInfo,
	map-accept	[1] MAP-AcceptInfo,
	map-close	[2] MAP-CloseInfo,
	map-refuse	[3] MAP-RefuseInfo,
	map-userAbort	[4] MAP-UserAbortInfo,
	map-providerAbort	[5] MAP-ProviderAbortInfo}

MAP-OpenInfo ::= SEQUENCE {
	destinationReference	[0] AddressString	OPTIONAL,
	originationReference	[1] AddressString	OPTIONAL,
	...}

MAP-AcceptInfo ::= SEQUENCE {
	...}

MAP-CloseInfo ::= SEQUENCE {
	...}

�MAP-RefuseInfo ::= SEQUENCE {
	reason	Reason,
	...}

Reason ::= ENUMERATED {
	noReasonGiven (0),
	invalidDestinationReference (1),
	invalidOriginatingReference (2)}

MAP-UserAbortInfo ::= SEQUENCE {
	map-UserAbortChoice	MAP-UserAbortChoice,
	...}

MAP-UserAbortChoice ::= CHOICE {
	userSpecificReason	[0] NULL,
	userResourceLimitation	[1] NULL,
	resourceUnavailable	[2] ResourceUnavailableReason,
	applicationProcedureCancellation	[3] ProcedureCancellationReason}

ResourceUnavailableReason ::= ENUMERATED {
	shortTermResourceLimitation (0),
	longTermResourceLimitation (1)}

ProcedureCancellationReason ::= ENUMERATED {
	handoverCancellation (0),
	radioChannelRelease (1),
	networkPathRelease (2),
	callRelease (3),
	associatedProcedureFailure (4),
	tandemDialogueRelease (5),
	remoteOperationsFailure (6)}

MAP-ProviderAbortInfo ::= SEQUENCE {
	map-ProviderAbortReason	MAP-ProviderAbortReason,
	...}

MAP-ProviderAbortReason ::= ENUMERATED {
	abnormalDialogue (0),
	invalidPDU (1)}

.#END
��14.5	MAP operation and error codes
�.$MAP-Protocol {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Protocol (4) version2 (2)}

DEFINITIONS

::=

BEGIN

IMPORTS
	UpdateLocation,
	CancelLocation,
	PurgeMS,
	SendIdentification,
	PerformHandover,
	PrepareHandover,
	SendEndSignal,
	ProcessAccessSignalling,
	ForwardAccessSignalling,
	PerformSubsequentHandover,
	PrepareSubsequentHandover,
	SendAuthenticationInfo,
	CheckIMEI,
	SendParameters,
	InsertSubscriberData,
	DeleteSubscriberData,
	Reset,
	ForwardCheckSS-Indication,
	RestoreData
FROM MAP-MobileServiceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-MobileServiceOperations (5)
 version2 (2)}

	ActivateTraceMode,
	DeactivateTraceMode,
	TraceSubscriberActivity,
	NoteInternalHandover,
	SendIMSI
FROM MAP-OperationAndMaintenanceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-OperationAndMaintenanceOperations (6)
 version2 (2)}

	SendRoutingInfo,
	ProvideRoamingNumber
FROM MAP-CallHandlingOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CallHandlingOperations (7)
 version2 (2)}

	RegisterSS,
	EraseSS,
	ActivateSS,
	DeactivateSS,
	InterrogateSS,
	ProcessUnstructuredSS-Data,
	ProcessUnstructuredSS-Request,
	UnstructuredSS-Request,
	UnstructuredSS-Notify,
	RegisterPassword,
	GetPassword,
�	BeginSubscriberActivity
FROM MAP-SupplementaryServiceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SupplementaryServiceOperations (8)
 version2 (2)}

	SendRoutingInfoForSM,
	ForwardSM,
	ReportSM-DeliveryStatus,
	NoteSubscriberPresent,
	AlertServiceCentreWithoutResult,
	AlertServiceCentre,
	InformServiceCentre,
	ReadyForSM
FROM MAP-ShortMessageServiceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-ShortMessageServiceOperations (9)
 version2 (2)}

	SystemFailure,
	DataMissing,
	UnexpectedDataValue,
	FacilityNotSupported,
	UnknownSubscriber,
	NumberChanged,
	UnknownBaseStation,
	UnknownMSC,
	UnidentifiedSubscriber,
	UnknownEquipment,
	RoamingNotAllowed,
	IllegalSubscriber,
	IllegalEquipment,
	BearerServiceNotProvisioned,
	TeleserviceNotProvisioned,
	InvalidTargetBaseStation,
	NoRadioResourceAvailable,
	NoHandoverNumberAvailable,
	SubsequentHandoverFailure,
	TracingBufferFull,
	NoRoamingNumberAvailable,
	AbsentSubscriber,
	CallBarred,
	ForwardingViolation,
	CUG-Reject,
	IllegalSS-Operation,
	SS-ErrorStatus,
	SS-NotAvailable,
	SS-SubscriptionViolation,
	SS-Incompatibility,
	UnknownAlphabet,
	USSD-Busy,
	PW-RegistrationFailure,
	NegativePW-Check,
	NumberOfPW-AttemptsViolation,
	SubscriberBusyForMT-SMS,
	SM-DeliveryFailure,
	MessageWaitingListFull
FROM MAP-Errors {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Errors (10) version2 (2)}
;

-- location registration operation codes

�updateLocation UpdateLocation ::= localValue 2
cancelLocation CancelLocation ::= localValue 3
purgeMS PurgeMS ::= localValue 67
-- NU1 purgeMS must not be used in version 1
sendIdentification SendIdentification ::= localValue 55
-- NU1 sendIdentification must not be used in version 1

-- handover operation codes

performHandover PerformHandover ::= localValue 28
-- NU>1 performHandover must not be used in version greater 1
prepareHandover PrepareHandover ::= localValue 68
-- NU1 prepareHandover must not be used in version 1
sendEndSignal SendEndSignal ::= localValue 29
processAccessSignalling ProcessAccessSignalling ::= localValue 33
forwardAccessSignalling ForwardAccessSignalling ::= localValue 34
performSubsequentHandover PerformSubsequentHandover ::=
	localValue 30
-- NU>1 performSubsequentHandover must not be used in version greater 1
prepareSubsequentHandover PrepareSubsequentHandover ::=
	localValue 69
-- NU1 prepareSubsequentHandover must not be used in version 1

-- authentication operation codes

sendAuthenticationInfo SendAuthenticationInfo ::= localValue 56
-- NU1 sendAuthenticationInfo must not be used in version 1

-- IMEI MANAGEMENT operation codes

checkIMEI CheckIMEI ::= localValue 43

-- subscriber management operation codes

sendParameters SendParameters ::= localValue 9
-- NU>1 sendParameters must not be used in version greater 1
insertSubscriberData InsertSubscriberData ::= localValue 7
deleteSubscriberData DeleteSubscriberData ::= localValue 8

-- fault recovery operation codes

reset Reset ::= localValue 37
forwardCheckSS-Indication ForwardCheckSS-Indication ::=
	localValue 38
restoreData RestoreData ::= localValue 57
-- NU1 restoreData must not be used in version 1

�-- operation and maintenance operation codes

activateTraceMode ActivateTraceMode ::= localValue 50
deactivateTraceMode DeactivateTraceMode ::= localValue 51
traceSubscriberActivity TraceSubscriberActivity ::= localValue 52
-- NU>1 traceSubscriberActivity must not be used in version greater 1
noteInternalHandover NoteInternalHandover ::= localValue 35
-- NU>1 noteInternalHandover must not be used in version greater 1
sendIMSI SendIMSI ::= localValue 58
-- NU1 sendIMSI must not be used in version 1

-- call handling operation codes

sendRoutingInfo SendRoutingInfo ::= localValue 22
provideRoamingNumber ProvideRoamingNumber ::= localValue 4

-- supplementary service handling operation codes

registerSS RegisterSS ::= localValue 10
eraseSS EraseSS ::= localValue 11
activateSS ActivateSS ::= localValue 12
deactivateSS DeactivateSS ::= localValue 13
interrogateSS InterrogateSS ::= localValue 14
processUnstructuredSS-Data ProcessUnstructuredSS-Data ::=
	localValue 19
-- NU>1 processUnstructuredSS-Data must not be used in version greater 1
processUnstructuredSS-Request ProcessUnstructuredSS-Request ::=
	localValue 59
-- NU1 processUnstructuredSS-Request must not be used in version 1
unstructuredSS-Request UnstructuredSS-Request ::= localValue 60
-- NU1 unstructuredSS-Request must not be used in version 1
unstructuredSS-Notify UnstructuredSS-Notify ::= localValue 61
-- NU1 unstructuredSS-Notify must not be used in version 1
registerPassword RegisterPassword ::= localValue 17
getPassword GetPassword ::= localValue 18
beginSubscriberActivity BeginSubscriberActivity ::= localValue 54
-- NU>1 beginSubscriberActivity must not be used in version greater 1

-- short message service operation codes

sendRoutingInfoForSM SendRoutingInfoForSM ::= localValue 45
forwardSM ForwardSM ::= localValue 46
reportSM-DeliveryStatus ReportSM-DeliveryStatus ::= localValue 47
noteSubscriberPresent NoteSubscriberPresent ::= localValue 48
-- NU>1 noteSubscriberPresent must not be used in version greater 1
alertServiceCentreWithoutResult AlertServiceCentreWithoutResult ::=
	localValue 49
-- NU>1 alertServiceCentreWithoutResult must not be used in
-- version greater 1
informServiceCentre InformServiceCentre ::= localValue 63
-- NU1 informServiceCentre must not be used in version 1
alertServiceCentre AlertServiceCentre ::= localValue 64
-- NU1 alertServiceCentre must not be used in version 1
readyForSM ReadyForSM ::= localValue 66
-- NU1 readyForSM must not be used in version 1

�-- generic error codes

systemFailure SystemFailure ::= localValue 34
dataMissing DataMissing ::= localValue 35
unexpectedDataValue UnexpectedDataValue ::= localValue 36
facilityNotSupported FacilityNotSupported ::= localValue 21

-- identification and numbering error codes

unknownSubscriber UnknownSubscriber ::= localValue 1
numberChanged NumberChanged ::= localValue 44
unknownBaseStation UnknownBaseStation ::= localValue 2
unknownMSC UnknownMSC ::= localValue 3
unidentifiedSubscriber UnidentifiedSubscriber ::= localValue 5
unknownEquipment UnknownEquipment ::= localValue 7

-- subscription error codes

roamingNotAllowed RoamingNotAllowed ::= localValue 8
illegalSubscriber IllegalSubscriber ::= localValue 9
illegalEquipment IllegalEquipment ::= localValue 12
bearerServiceNotProvisioned BearerServiceNotProvisioned ::=
	localValue 10
teleserviceNotProvisioned TeleserviceNotProvisioned ::=
	localValue 11

-- handover error codes

invalidTargetBaseStation InvalidTargetBaseStation ::= localValue 23
noRadioResourceAvailable NoRadioResourceAvailable ::= localValue 24
noHandoverNumberAvailable NoHandoverNumberAvailable ::=
	localValue 25
subsequentHandoverFailure SubsequentHandoverFailure ::=
	localValue 26

-- operation and maintenance error codes

tracingBufferFull TracingBufferFull ::= localValue 40

-- call handling error codes

noRoamingNumberAvailable NoRoamingNumberAvailable ::= localValue 39
absentSubscriber AbsentSubscriber ::= localValue 27
callBarred CallBarred ::= localValue 13
forwardingViolation ForwardingViolation ::= localValue 14
cug-Reject CUG-Reject ::= localValue 15

�-- supplementary service error codes

illegalSS-Operation IllegalSS-Operation ::= localValue 16
ss-ErrorStatus SS-ErrorStatus ::= localValue 17
ss-NotAvailable SS-NotAvailable ::= localValue 18
ss-SubscriptionViolation SS-SubscriptionViolation ::= localValue 19
ss-Incompatibility SS-Incompatibility ::= localValue 20
unknownAlphabet UnknownAlphabet ::= localValue 71
-- NU1 unknownAlphabet must not be used in version 1
ussd-Busy USSD-Busy ::= localValue 72
-- NU1 ussd-Busy must not be used in version 1
pw-RegistrationFailure PW-RegistrationFailure ::= localValue 37
negativePW-Check NegativePW-Check ::= localValue 38
numberOfPW-AttemptsViolation NumberOfPW-AttemptsViolation ::=
	localValue 43
-- NU1 numberOfPW-AttemptsViolation must not be used in version 1

-- short message service error codes

subscriberBusyForMT-SMS SubscriberBusyForMT-SMS ::= localValue 31
-- NU1 subscriberBusyForMT-SMS must not be used in version 1
sm-DeliveryFailure SM-DeliveryFailure ::= localValue 32
messageWaitingListFull MessageWaitingListFull ::= localValue 33

.#END
��14.6	MAP operation and error types
14.6.1	Mobile Service Operations
�.$MAP-MobileServiceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-MobileServiceOperations (5)
 version2 (2)}

DEFINITIONS

::=

BEGIN

EXPORTS

	-- location registration operations
	UpdateLocation,
	CancelLocation,
	PurgeMS,
	SendIdentification,

	-- handover operations
	PerformHandover,
	PrepareHandover,
	SendEndSignal,
	ProcessAccessSignalling,
	ForwardAccessSignalling,
	PerformSubsequentHandover,
	PrepareSubsequentHandover,

	-- authentication management operations
	SendAuthenticationInfo,

	-- IMEI management operations
	CheckIMEI,

	-- subscriber management operations
	SendParameters,
	InsertSubscriberData,
	DeleteSubscriberData,

	-- fault recovery operations
	Reset,
	ForwardCheckSS-Indication,
	RestoreData
;

IMPORTS
	OPERATION
FROM TCAPMessages {
 ccitt recommendation q 773 modules (2) messages (1) version2 (2)}

	SystemFailure,
	DataMissing,
	UnexpectedDataValue,
	UnknownSubscriber,
	UnknownBaseStation,
	UnknownMSC,
	UnidentifiedSubscriber,
	UnknownEquipment,
	RoamingNotAllowed,
	InvalidTargetBaseStation,
	NoRadioResourceAvailable,
�	NoHandoverNumberAvailable,
	SubsequentHandoverFailure
FROM MAP-Errors {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Errors (10) version2 (2)}

	UpdateLocationArg,
	UpdateLocationRes,
	CancelLocationArg,
	PurgeMS-Arg,
	SendIdentificationRes,
	PerformHO-Arg,
	PrepareHO-Arg,
	PerformHO-Res,
	PrepareHO-Res,
	PerformSubsequentHO-Arg,
	PrepareSubsequentHO-Arg,
	SendAuthenticationInfoArg,
	SendAuthenticationInfoRes,
	EquipmentStatus,
	SendParametersArg,
	SentParameterList,
	InsertSubscriberDataArg,
	InsertSubscriberDataRes,
	DeleteSubscriberDataArg,
	DeleteSubscriberDataRes,
	ResetArg,
	RestoreDataArg,
	RestoreDataRes
FROM MAP-MS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-MS-DataTypes (11) version2 (2)}

	ExternalSignalInfo,
	TMSI,
	IMEI
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}
;

-- location registration operations

UpdateLocation ::= OPERATION				--Timer m--
	ARGUMENT
		updateLocationArg	UpdateLocationArg
	RESULT
		updateLocationRes	UpdateLocationRes
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		UnknownSubscriber,
		RoamingNotAllowed}

�CancelLocation ::= OPERATION				--Timer m--
	ARGUMENT
		cancelLocationArg	CancelLocationArg
	RESULT
	ERRORS {
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		UnidentifiedSubscriber}
		-- NU>1 UnidentifiedSubscriber must not be used in version
		-- greater 1

PurgeMS ::= OPERATION				--Timer m--
	ARGUMENT
		purgeMS-Arg	PurgeMS-Arg
	RESULT ERRORS {}

SendIdentification::= OPERATION				--Timer s--
	ARGUMENT
		tmsi	TMSI
	RESULT
		sendIdentificationRes	SendIdentificationRes
	ERRORS {
		DataMissing,
		UnidentifiedSubscriber}

-- handover operations

PrepareHandover ::= OPERATION				--Timer m--
	ARGUMENT
		prepareHO-Arg	PrepareHO-Arg
	RESULT
		prepareHO-Res	PrepareHO-Res
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		NoHandoverNumberAvailable}

PerformHandover ::= OPERATION				--Timer s--
	ARGUMENT
		performHO-Arg	PerformHO-Arg
	RESULT
		performHO-Res	PerformHO-Res
	ERRORS {
		SystemFailure,
		UnexpectedDataValue,
		UnknownBaseStation,
		InvalidTargetBaseStation,
		NoRadioResourceAvailable,
		NoHandoverNumberAvailable}

SendEndSignal ::= OPERATION				--Timer l--
	ARGUMENT
		bss-APDU	ExternalSignalInfo
		-- optional
		-- OA1 bss-APDU must be absent in version 1
		-- OP>1 bss-APDU must be present in version greater 1
	RESULT ERRORS {}
�
ProcessAccessSignalling ::= OPERATION			--Timer s--
	ARGUMENT
		bss-APDU	ExternalSignalInfo

ForwardAccessSignalling ::= OPERATION			--Timer s--
	ARGUMENT
		bss-APDU	ExternalSignalInfo

PrepareSubsequentHandover ::= OPERATION			--Timer m--
	ARGUMENT
		prepareSubsequentHO-Arg	PrepareSubsequentHO-Arg
	RESULT
		bss-APDU	ExternalSignalInfo
	ERRORS {
		UnexpectedDataValue,
		DataMissing,
		UnknownMSC,
		SubsequentHandoverFailure}

PerformSubsequentHandover ::= OPERATION			--Timer m--
	ARGUMENT
		performSubsequentHO-Arg	PerformSubsequentHO-Arg
	RESULT
		accessSignalInfo	ExternalSignalInfo
	ERRORS {
		UnexpectedDataValue,
		UnknownBaseStation,
		UnknownMSC,
		InvalidTargetBaseStation,
		SubsequentHandoverFailure}

-- authentication management operations

SendAuthenticationInfo ::= OPERATION			--Timer m--
	ARGUMENT
		sendAuthenticationInfoArg	SendAuthenticationInfoArg
	RESULT
		sendAuthenticationInfoRes	SendAuthenticationInfoRes
		-- optional
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		UnknownSubscriber}

�-- IMEI management operations

CheckIMEI ::= OPERATION				--Timer m--
	ARGUMENT
		imei	IMEI
	RESULT
		equipmentStatus	EquipmentStatus
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		-- NU>1 UnexpectedDataValue must not be used in version greater 1
		UnknownEquipment}

-- subscriber management operations

SendParameters ::= OPERATION				--Timer m--
	ARGUMENT
		sendParametersArg	SendParametersArg
	RESULT
		sentParameterList	SentParameterList
		-- optional
		-- nothing is returned, if no requested parameter is
		-- available or exists
	ERRORS {
		UnexpectedDataValue,
		UnknownSubscriber,
		UnidentifiedSubscriber}

InsertSubscriberData ::= OPERATION				--Timer m--
	ARGUMENT
		insertSubscriberDataArg	InsertSubscriberDataArg
	RESULT
		insertSubscriberDataRes	InsertSubscriberDataRes
		-- optional
		-- OA1 insertSubscriberDataRes must be absent in version 1
	ERRORS {
		DataMissing,
		UnexpectedDataValue,
		UnidentifiedSubscriber}

DeleteSubscriberData ::= OPERATION				--Timer m--
	ARGUMENT
		deleteSubscriberDataArg	DeleteSubscriberDataArg
	RESULT
		deleteSubscriberDataRes	DeleteSubscriberDataRes
		-- optional
		-- OA1 deleteSubscriberDataRes must be absent in version 1
	ERRORS {
		DataMissing,
		UnexpectedDataValue,
		UnidentifiedSubscriber}

�-- fault recovery operations

Reset ::= OPERATION				--Timer m--
	ARGUMENT
		resetArg	ResetArg

ForwardCheckSS-Indication ::= OPERATION		--Timer s--

RestoreData ::= OPERATION				--Timer m--
	ARGUMENT
		restoreDataArg	RestoreDataArg
	RESULT
		restoreDataRes	RestoreDataRes
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		UnknownSubscriber}

.#END
��14.6.2	Operation and Maintenance Operations
�.$MAP-OperationAndMaintenanceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-OperationAndMaintenanceOperations (6)
 version2 (2)}

DEFINITIONS

::=

BEGIN

EXPORTS
	ActivateTraceMode,
	DeactivateTraceMode,
	TraceSubscriberActivity,
	NoteInternalHandover,
	SendIMSI
;

IMPORTS
	OPERATION
FROM TCAPMessages {
 ccitt recommendation q 773 modules (2) messages (1) version2 (2)}

	SystemFailure,
	DataMissing,
	UnexpectedDataValue,
	FacilityNotSupported,
	UnknownSubscriber,
	UnidentifiedSubscriber,
	TracingBufferFull
FROM MAP-Errors {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Errors (10) version2 (2)}

	ActivateTraceModeArg,
	DeactivateTraceModeArg,
	TraceSubscriberActivityArg,
	NoteInternalHO-Arg
FROM MAP-OM-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-OM-DataTypes (12) version2 (2)}

	ISDN-AddressString,
	IMSI
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-ComonDataTypes (18) version2 (2)}
;

ActivateTraceMode ::= OPERATION				--Timer m--
	ARGUMENT
		activateTraceModeArg	ActivateTraceModeArg
	RESULT
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		FacilityNotSupported,
		UnidentifiedSubscriber,
		TracingBufferFull}
�
DeactivateTraceMode ::= OPERATION				--Timer m--
	ARGUMENT
		deactivateTraceModeArg	DeactivateTraceModeArg
	RESULT
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		FacilityNotSupported,
		UnidentifiedSubscriber}

TraceSubscriberActivity ::= OPERATION			--Timer s--
	ARGUMENT
		traceSubscriberActivityArg	TraceSubscriberActivityArg

NoteInternalHandover ::= OPERATION				--Timer s--
	ARGUMENT
		noteInternalHO-Arg	NoteInternalHO-Arg

SendIMSI ::= OPERATION				--Timer m--
	ARGUMENT
		msisdn	ISDN-AddressString
	RESULT
		imsi		IMSI
	ERRORS {
		DataMissing,
		UnexpectedDataValue,
		UnknownSubscriber}

.#END
��14.6.3	Call Handling Operations
�.$MAP-CallHandlingOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CallHandlingOperations (7)
 version2 (2)}

DEFINITIONS

::=

BEGIN

EXPORTS
	SendRoutingInfo,
	ProvideRoamingNumber
;

IMPORTS
	OPERATION
FROM TCAPMessages {
 ccitt recommendation q 773 modules (2) messages (1) version2 (2)}

	SystemFailure,
	DataMissing,
	UnexpectedDataValue,
	FacilityNotSupported,
	UnknownSubscriber,
	NumberChanged,
	BearerServiceNotProvisioned,
	TeleserviceNotProvisioned,
	NoRoamingNumberAvailable,
	AbsentSubscriber,
	CallBarred,
	ForwardingViolation,
	CUG-Reject
FROM MAP-Errors {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Errors (10) version2 (2)}
	SendRoutingInfoArg,
	SendRoutingInfoRes,
	ProvideRoamingNumberArg
FROM MAP-CH-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CH-DataTypes (13) version2 (2)}

	ISDN-AddressString
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}
;

�SendRoutingInfo ::= OPERATION				--Timer m--
	ARGUMENT
		sendRoutingInfoArg	SendRoutingInfoArg
	RESULT
		sendRoutingInfoRes	SendRoutingInfoRes
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		FacilityNotSupported,
		UnknownSubscriber,
		NumberChanged,
		-- NU1 NumberChanged must not be used in version 1
	BearerServiceNotProvisioned,
		TeleserviceNotProvisioned,
		AbsentSubscriber,
		CallBarred,
		CUG-Reject,
		-- NU1 CUG-Reject must not be used in version 1
		ForwardingViolation}

ProvideRoamingNumber ::= OPERATION				--Timer m--
	ARGUMENT
		provideRoamingNumberArg	ProvideRoamingNumberArg
	RESULT
		roamingNumber	ISDN-AddressString
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		FacilityNotSupported,
		AbsentSubscriber,
		NoRoamingNumberAvailable}

.#END
��14.6.4	Supplementary service operations
�.$MAP-SupplementaryServiceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SupplementaryServiceOperations (8)
 version2 (2)}

DEFINITIONS

::=

BEGIN

EXPORTS
	RegisterSS,
	EraseSS,
	ActivateSS,
	DeactivateSS,
	InterrogateSS,
	ProcessUnstructuredSS-Data,
	ProcessUnstructuredSS-Request,
	UnstructuredSS-Request,
	UnstructuredSS-Notify,
	RegisterPassword,
	GetPassword,
	BeginSubscriberActivity
;

IMPORTS
	OPERATION
FROM TCAPMessages {
 ccitt recommendation q 773 modules (2) messages (1) version2 (2)}

	SystemFailure,
	DataMissing,
	UnexpectedDataValue,
	UnknownSubscriber,
	BearerServiceNotProvisioned,
	TeleserviceNotProvisioned,
	CallBarred,
	IllegalSS-Operation,
	SS-ErrorStatus,
	SS-NotAvailable,
	SS-SubscriptionViolation,
	SS-Incompatibility,
	PW-RegistrationFailure,
	NegativePW-Check,
	NumberOfPW-AttemptsViolation,
	UnknownAlphabet,
	USSD-Busy,
	AbsentSubscriber,
	IllegalSubscriber,
	IllegalEquipment
FROM MAP-Errors {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Errors (10) version2 (2)}

	RegisterSS-Arg,
	SS-Info,
	SS-ForBS-Code,
	InterrogateSS-Res,
	SS-UserData,
	USSD-Arg,
	USSD-Res,
	Password,
�	GuidanceInfo,
	BeginSubscriberActivityArg
FROM MAP-SS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-DataTypes (14) version2 (2)}

	SS-Code
FROM MAP-SS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-Code (15) version2 (2)}
;

-- supplementary service handling operations

RegisterSS ::= OPERATION				--Timer m--
	ARGUMENT
		registerSS-Arg	RegisterSS-Arg
	RESULT
		ss-Info	SS-Info
		-- optional
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		UnknownSubscriber,
		-- NU>1 UnknownSubscriber must not be used in version greater 1
		BearerServiceNotProvisioned,
		TeleserviceNotProvisioned,
		CallBarred,
		-- NU1 CallBarred must not be used in version 1
		IllegalSS-Operation,
		SS-ErrorStatus,
		SS-SubscriptionViolation,
		-- NU>1 SS-SubscriptionViolation must not be used in version
		-- greater 1
		SS-Incompatibility}

EraseSS ::= OPERATION				--Timer m--
	ARGUMENT
		ss-ForBS	SS-ForBS-Code
	RESULT
		ss-Info	SS-Info
		-- optional
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		UnknownSubscriber,
		-- NU>1 UnknownSubscriber must not be used in version greater 1
		BearerServiceNotProvisioned,
		-- NU1 BearerServiceNotProvisioned must not be used in version 1
		TeleserviceNotProvisioned,
		-- NU1 TeleserviceNotProvisioned must not be used in version 1
		CallBarred,
		-- NU1 CallBarred must not be used in version 1
		IllegalSS-Operation,
		SS-ErrorStatus,
		SS-SubscriptionViolation
		-- NU>1 SS-SubscriptionViolation must not be used in version
		-- greater 1
		}

�ActivateSS ::= OPERATION				--Timer m--
	ARGUMENT
		ss-ForBS	SS-ForBS-Code
	RESULT
		ss-Info	SS-Info
		-- optional
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		UnknownSubscriber,
		-- NU>1 UnknownSubscriber must not be used in version greater 1
		BearerServiceNotProvisioned,
		-- NU1 BearerServiceNotProvisioned must not be used in version 1
		TeleserviceNotProvisioned,
		-- NU1 TeleserviceNotProvisioned must not be used in version 1
		CallBarred,
		-- NU1 CallBarred must not be used in version 1
		IllegalSS-Operation,
		SS-ErrorStatus,
		SS-SubscriptionViolation,
		SS-Incompatibility,
		NegativePW-Check,
		NumberOfPW-AttemptsViolation}
		-- NU1 NumberOfPW-AttemptsViolation must not be used in version 1

DeactivateSS ::= OPERATION				--Timer m--
	ARGUMENT
		ss-ForBS	SS-ForBS-Code
	RESULT
		ss-Info	SS-Info
		-- optional
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		UnknownSubscriber,
		-- NU>1 UnknownSubscriber must not be used in version greater 1
		BearerServiceNotProvisioned,
		-- NU1 BearerServiceNotProvisioned must not be used in version 1
		TeleserviceNotProvisioned,
		-- NU1 TeleserviceNotProvisioned must not be used in version 1
		CallBarred,
		-- NU1 CallBarred must not be used in version 1
		IllegalSS-Operation,
		SS-ErrorStatus,
		SS-SubscriptionViolation,
		NegativePW-Check,
		NumberOfPW-AttemptsViolation}
		-- NU1 NumberOfPW-AttemptsViolation must not be used in version 1

�InterrogateSS ::= OPERATION				--Timer m--
	ARGUMENT
		ss-ForBS	SS-ForBS-Code
	RESULT
		interrogateSS-Res	InterrogateSS-Res
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		UnknownSubscriber,
		-- NU>1 UnknownSubscriber must not be used in version greater 1
		BearerServiceNotProvisioned,
		-- NU1 BearerServiceNotProvisioned must not be used in version 1
		TeleserviceNotProvisioned,
		-- NU1 TeleserviceNotProvisioned must not be used in version 1
		CallBarred,
		-- NU1 CallBarred must not be used in version 1
		IllegalSS-Operation,
		SS-NotAvailable}

ProcessUnstructuredSS-Data ::= OPERATION		--Timer m--
	ARGUMENT
		ss-UserData	SS-UserData
	RESULT
		ss-UserData	SS-UserData
		-- optional
	ERRORS {
		SystemFailure,
		UnexpectedDataValue}

ProcessUnstructuredSS-Request ::= OPERATION	--Timer ml--
	ARGUMENT
		ussd-Arg	USSD-Arg
	RESULT
		ussd-Res	USSD-Res
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		UnknownAlphabet,
		CallBarred}

UnstructuredSS-Request ::= OPERATION	--Timer ml--
	ARGUMENT
		ussd-Arg	USSD-Arg
	RESULT
		ussd-Res	USSD-Res
		-- optional
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		AbsentSubscriber,
		IllegalSubscriber,
		IllegalEquipment,
		UnknownAlphabet,
		USSD-Busy}

�UnstructuredSS-Notify ::= OPERATION		--Timer ml--
	ARGUMENT
		ussd-Arg	USSD-Arg
	RESULT
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		AbsentSubscriber,
		IllegalSubscriber,
		IllegalEquipment,
		UnknownAlphabet,
		USSD-Busy}

RegisterPassword ::= OPERATION			--Timer ml--
	ARGUMENT
		ss-Code	SS-Code
	RESULT
		newPassword	Password
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		CallBarred,
		-- NU1 CallBarred must not be used in version 1
		SS-SubscriptionViolation,
		PW-RegistrationFailure,
		NegativePW-Check,
		NumberOfPW-AttemptsViolation}
		-- NU1 NumberOfPW-AttemptsViolation must not be used in version 1
	LINKED {
		GetPassword}

GetPassword ::= OPERATION				--Timer m--
	ARGUMENT
		guidanceInfo	GuidanceInfo
	RESULT
		currentPassword	Password

BeginSubscriberActivity ::= OPERATION			--Timer m--
	ARGUMENT
		beginSubscriberActivityArg	BeginSubscriberActivityArg

.#END
��14.6.5	Short message service operations
�.$MAP-ShortMessageServiceOperations {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-ShortMessageServiceOperations (9)
 version2 (2)}

DEFINITIONS

::=

BEGIN

EXPORTS
	SendRoutingInfoForSM,
	ForwardSM,
	ReportSM-DeliveryStatus,
	NoteSubscriberPresent,
	AlertServiceCentreWithoutResult,
	AlertServiceCentre,
	InformServiceCentre,
	ReadyForSM
;

IMPORTS
	OPERATION
FROM TCAPMessages {
 ccitt recommendation q 773 modules (2) messages (1) version2 (2)}

	SystemFailure,
	DataMissing,
	UnexpectedDataValue,
	FacilityNotSupported,
	UnknownSubscriber,
	UnidentifiedSubscriber,
	IllegalSubscriber,
	IllegalEquipment,
	TeleserviceNotProvisioned,
	AbsentSubscriber,
	CallBarred,
	SubscriberBusyForMT-SMS,
	SM-DeliveryFailure,
	MessageWaitingListFull
FROM MAP-Errors {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Errors (10) version2 (2)}

	RoutingInfoForSM-Arg,
	RoutingInfoForSM-Res,
	ForwardSM-Arg,
	ReportSM-DeliveryStatusArg,
	AlertServiceCentreArg,
	InformServiceCentreArg,
	ReadyForSM-Arg
FROM MAP-SM-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SM-DataTypes (16) version2 (2)}

	ISDN-AddressString,
	IMSI
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}
;

�SendRoutingInfoForSM ::= OPERATION				--Timer m--
	ARGUMENT
		routingInfoForSM-Arg	RoutingInfoForSM-Arg
	RESULT
		routingInfoForSM-Res	RoutingInfoForSM-Res
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue,
		FacilityNotSupported,
		UnknownSubscriber,
		TeleserviceNotProvisioned,
		AbsentSubscriber,
		CallBarred}

ForwardSM ::= OPERATION			--Timer ml--
	ARGUMENT
		forwardSM-Arg	ForwardSM-Arg
	RESULT
	ERRORS {
		SystemFailure,
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		FacilityNotSupported,
		UnidentifiedSubscriber,
		IllegalSubscriber,
		IllegalEquipment,
		-- NU1 IllegalEquipment must not be used in version 1
		AbsentSubscriber,
		SubscriberBusyForMT-SMS,
		-- NU1 SubscriberBusyForMT-SMS must not be used in version 1
		SM-DeliveryFailure}

ReportSM-DeliveryStatus ::= OPERATION			--Timer s--
	ARGUMENT
		reportSM-DeliveryStatusArg	ReportSM-DeliveryStatusArg
	RESULT
		storedMSISDN	ISDN-AddressString
		-- optional
		-- OA1 storedMSISDN must be absent in version 1
		-- OP>1 storedMSISDN must be present in version greater 1
	ERRORS {
		DataMissing,
		-- NU1 DataMissing must not be used in version 1
		UnexpectedDataValue,
		UnknownSubscriber,
		MessageWaitingListFull}

NoteSubscriberPresent ::= OPERATION				--Timer s--
	ARGUMENT
		imsi		IMSI

AlertServiceCentreWithoutResult ::= OPERATION	--Timer s--
	ARGUMENT
		alertServiceCentreArg	AlertServiceCentreArg

�AlertServiceCentre ::= OPERATION				--Timer s--
	ARGUMENT
		alertServiceCentreArg	AlertServiceCentreArg
	RESULT
	ERRORS {
		SystemFailure,
		DataMissing,
		UnexpectedDataValue}

InformServiceCentre ::= OPERATION				--Timer s--
	ARGUMENT
		informServiceCentreArg	InformServiceCentreArg

ReadyForSM ::= OPERATION				--Timer m--
	ARGUMENT
		readyForSM-Arg	ReadyForSM-Arg
	RESULT
	ERRORS {
		DataMissing,
		UnexpectedDataValue,
		FacilityNotSupported,
		UnknownSubscriber}

.#END
��14.6.6	Errors
�.$MAP-Errors {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-Errors (10) version2 (2)}

DEFINITIONS

::=

BEGIN

EXPORTS

	-- generic errors
	SystemFailure,
	DataMissing,
	UnexpectedDataValue,
	FacilityNotSupported,

	-- identification and numbering errors
	UnknownSubscriber,
	NumberChanged,
	UnknownBaseStation,
	UnknownMSC,
	UnidentifiedSubscriber,
	UnknownEquipment,

	-- subscription errors
	RoamingNotAllowed,
	IllegalSubscriber,
	IllegalEquipment,
	BearerServiceNotProvisioned,
	TeleserviceNotProvisioned,

	-- handover errors
	InvalidTargetBaseStation,
	NoRadioResourceAvailable,
	NoHandoverNumberAvailable,
	SubsequentHandoverFailure,

	-- operation and maintenance errors
	TracingBufferFull,

	-- call handling errors
	NoRoamingNumberAvailable,
	AbsentSubscriber,
	CallBarred,
	ForwardingViolation,
	CUG-Reject,

	-- supplementary service errors
	IllegalSS-Operation,
	SS-ErrorStatus,
	SS-NotAvailable,
	SS-SubscriptionViolation,
	SS-Incompatibility,
	UnknownAlphabet,
	USSD-Busy,
	PW-RegistrationFailure,
	NegativePW-Check,
	NumberOfPW-AttemptsViolation,

	-- short message service errors
	SubscriberBusyForMT-SMS,
	SM-DeliveryFailure,
	MessageWaitingListFull
;
�
IMPORTS
	ERROR
FROM TCAPMessages {
 ccitt recommendation q 773 modules (2) messages (1) version2 (2)}

	SS-Status,
	SS-SubscriptionOption
FROM MAP-SS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-DataTypes (14) version2 (2)}

	RoamingNotAllowedCause,
	CallBarringCause,
	CUG-RejectCause,
	SS-IncompatibilityCause,
	PW-RegistrationFailureCause,
	SM-DeliveryFailureCause
FROM MAP-ER-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-ER-DataTypes (17) version2 (2)}

	NetworkResource
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}
;

-- generic errors

SystemFailure ::= ERROR
	PARAMETER
		networkResource	NetworkResource
		-- optional

DataMissing ::= ERROR

UnexpectedDataValue ::= ERROR

FacilityNotSupported ::= ERROR

-- identification and numbering errors

UnknownSubscriber ::= ERROR

NumberChanged ::= ERROR

UnknownBaseStation ::= ERROR

UnknownMSC ::= ERROR

UnidentifiedSubscriber ::= ERROR

UnknownEquipment ::= ERROR

�
-- subscription errors

RoamingNotAllowed ::= ERROR
	PARAMETER
		roamingNotAllowedCause	RoamingNotAllowedCause
		-- optional
		-- OA1 roamingNotAllowedCause must be absent in version 1
		-- OP>1 roamingNotAllowedCause must be present in version greater 1

IllegalSubscriber ::= ERROR

IllegalEquipment ::= ERROR

BearerServiceNotProvisioned ::= ERROR

TeleserviceNotProvisioned ::= ERROR

-- handover errors

InvalidTargetBaseStation ::= ERROR

NoRadioResourceAvailable ::= ERROR

NoHandoverNumberAvailable ::= ERROR

SubsequentHandoverFailure ::= ERROR

-- operation and maintenance errors

TracingBufferFull ::= ERROR

-- call handling errors

NoRoamingNumberAvailable ::= ERROR

AbsentSubscriber ::= ERROR
	PARAMETER
		mwd-Set	BOOLEAN
		-- optional
		-- OA>1 mwd-Set must be absent in version greater 1

CallBarred ::= ERROR
	PARAMETER
		callBarringCause	CallBarringCause
		-- optional

ForwardingViolation ::= ERROR

CUG-Reject ::= ERROR
	PARAMETER
		cug-RejectCause	CUG-RejectCause
		-- optional

�
-- supplementary service errors

IllegalSS-Operation ::= ERROR

SS-ErrorStatus ::= ERROR
	PARAMETER
		ss-Status	SS-Status
		-- optional

SS-NotAvailable ::= ERROR

SS-SubscriptionViolation ::= ERROR
	PARAMETER
		ss-SubscriptionOption	SS-SubscriptionOption
		-- optional
		-- NU>1 ss-SubscriptionOption must not be used in version greater 1

SS-Incompatibility ::= ERROR
	PARAMETER
		ss-IncompatibilityCause	SS-IncompatibilityCause
		-- optional

UnknownAlphabet ::= ERROR

USSD-Busy ::= ERROR

PW-RegistrationFailure ::= ERROR
	PARAMETER
		pw-RegistrationFailureCause	PW-RegistrationFailureCause

NegativePW-Check ::= ERROR

NumberOfPW-AttemptsViolation ::= ERROR

-- short message service errors

SubscriberBusyForMT-SMS ::= ERROR

SM-DeliveryFailure ::= ERROR
	PARAMETER
		sm-DeliveryFailureCause	SM-DeliveryFailureCause

MessageWaitingListFull ::= ERROR

.#END
��14.7	MAP constants and data types
14.7.1	Mobile Service data types
�.$MAP-MS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-MS-DataTypes (11) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS

	-- location registration types
	UpdateLocationArg,
	UpdateLocationRes,
	CancelLocationArg,
	PurgeMS-Arg,
	SendIdentificationRes,

	-- handover types
	PrepareHO-Arg,
	PrepareHO-Res,
	PrepareSubsequentHO-Arg,
	PerformHO-Arg,
	PerformHO-Res,
	PerformSubsequentHO-Arg,

	-- authentication management types
	SendAuthenticationInfoArg,
	SendAuthenticationInfoRes,
	Ki,

	-- security management types
	EquipmentStatus,

	-- subscriber management types
	SendParametersArg,
	SentParameterList,
	InsertSubscriberDataArg,
	InsertSubscriberDataRes,
	DeleteSubscriberDataArg,
	DeleteSubscriberDataRes,
	SubscriberData,
	ODB-Data,
	SubscriberStatus,
	ZoneCodeList,
	maxNumOfZoneCodes,

	-- fault recovery types
	ResetArg,
	RestoreDataArg,
	RestoreDataRes
;

�IMPORTS
	SS-List,
	SS-InfoList
FROM MAP-SS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-DataTypes (14) version2 (2)}

	ISDN-AddressString,
	ExternalSignalInfo,
	IMSI,
	SubscriberId,
	IMEI,
	LocationInfo,
	HLR-List,
	LMSI,
	GlobalCellId,
	NetworkResource,
	Category,
	BearerServiceList,
	TeleserviceList,
	BasicServiceList
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}
;

-- location registration types

UpdateLocationArg ::= SEQUENCE {
	imsi			IMSI,
	locationInfo	LocationInfo,
	vlr-Number	ISDN-AddressString,
	lmsi			[10] LMSI	OPTIONAL,
	...}

UpdateLocationRes ::= CHOICE {
	hlr-Number	ISDN-AddressString,
	-- NU>1 hlr-Number must not be used in version greater 1
extensibleUpdateLocationRes	ExtensibleUpdateLocationRes}
	-- NU1 extensibleUpdateLocationRes must not be used in version 1

ExtensibleUpdateLocationRes ::= SEQUENCE {
	hlr-Number	ISDN-AddressString,
	...}

CancelLocationArg ::= CHOICE {
	imsi			IMSI,
	imsi-WithLMSI	IMSI-WithLMSI}

PurgeMS-Arg ::= SEQUENCE {
	imsi			IMSI,
	vlr-Number	ISDN-AddressString,
	...}

IMSI-WithLMSI ::= SEQUENCE {
	imsi			IMSI,
	lmsi			LMSI,
	-- a special value 00000000 indicates that the LMSI is not in use
	...}

SendIdentificationRes ::= SEQUENCE {
	imsi			IMSI,
	authenticationSetList	AuthenticationSetList	OPTIONAL,
	...}

�AuthenticationSetList ::= SEQUENCE SIZE (1..5) OF
				AuthenticationSet

AuthenticationSet ::= SEQUENCE {
	rand			RAND,
	sres			SRES,
	kc			Kc,
	...}

RAND ::= OCTET STRING (SIZE (16))

SRES ::= OCTET STRING (SIZE (4))

Kc ::= OCTET STRING (SIZE (8))

-- handover types

PrepareHO-Arg ::= SEQUENCE {
	targetCellId	GlobalCellId	OPTIONAL,
	ho-NumberNotRequired	NULL			OPTIONAL,
	bss-APDU		ExternalSignalInfo	OPTIONAL,
	...}

PerformHO-Arg ::= SEQUENCE {
	targetCellId	GlobalCellId,
	servingCellId	GlobalCellId,
	channelType	ChannelType,
	classmarkInfo	ClassmarkInfo,
	handoverPriority	[11] HandoverPriority	OPTIONAL,
	kc			[12] Kc		OPTIONAL}

ChannelType ::= OCTET STRING (SIZE (1..10))
	-- concatenation of
	-- speech data indicator
	-- channel rate
	-- speech encoding algorithm/ data rate
	-- and transparency indicator
	-- as defined in TS GSM 08.08

ClassmarkInfo ::= OCTET STRING (SIZE (1..2))
	-- classmark information element type 1 or 2 contents as defined
	-- in TS GSM 08.08 (phase 1)

HandoverPriority ::= OCTET STRING (SIZE (1))
	-- The internal structure is defined in TS GSM 08.08.

PrepareHO-Res ::= SEQUENCE {
	handoverNumber	ISDN-AddressString	OPTIONAL,
	bss-APDU		ExternalSignalInfo	OPTIONAL,
	...}

PerformHO-Res ::= SEQUENCE {
	handoverNumber	ISDN-AddressString,
	accessSignalInfo	ExternalSignalInfo}

�PrepareSubsequentHO-Arg ::= SEQUENCE {
	targetCellId	GlobalCellId,
	targetMSC-Number	ISDN-AddressString,
	bss-APDU		ExternalSignalInfo,
	...}

PerformSubsequentHO-Arg ::= SEQUENCE {
	targetCellId	GlobalCellId,
	servingCellId	GlobalCellId,
	targetMSC-Number	ISDN-AddressString,
	classmarkInfo	[10] ClassmarkInfo	OPTIONAL}

-- authentication management types

SendAuthenticationInfoArg ::= IMSI

SendAuthenticationInfoRes ::= AuthenticationSetList

Ki ::= OCTET STRING (SIZE (16))

-- security management types

EquipmentStatus ::= ENUMERATED {
	whiteListed (0),
	blackListed (1),
	greyListed (2)}

-- subscriber management types

SendParametersArg ::= SEQUENCE {
	subscriberId	SubscriberId,
	requestParameterList	RequestParameterList}

RequestParameterList ::= SEQUENCE SIZE (1..2) OF
				RequestParameter

RequestParameter ::= ENUMERATED {
	requestIMSI (0),
	requestAuthenticationSet (1),
	requestSubscriberData (2),
	requestKi (4)}

SentParameterList ::= SEQUENCE SIZE (1..maxNumOfSentParameter) OF
				SentParameter

SentParameter ::= CHOICE {
	imsi			[0] IMSI,
	authenticationSet	[1] AuthenticationSet,
	subscriberData	[2] SubscriberData,
	ki			[4] Ki}

maxNumOfSentParameter INTEGER ::= 6
	-- This NamedValue corresponds to the maximum number of
	-- authentication set which may be returned by a HLR plus 1

�InsertSubscriberDataArg ::= SEQUENCE {
	imsi			[0] IMSI		OPTIONAL,
	COMPONENTS OF	SubscriberData,
	...}

SubscriberData ::= SEQUENCE {
	msisdn		[1] ISDN-AddressString	OPTIONAL,
	category		[2] Category	OPTIONAL,
	subscriberStatus	[3] SubscriberStatus	OPTIONAL,
	bearerServiceList	[4] BearerServiceList	OPTIONAL,
	teleserviceList	[6] TeleserviceList	OPTIONAL,
	provisionedSS	[7] SS-InfoList	OPTIONAL,
	odb-Data		[8] ODB-Data	OPTIONAL,
	-- OA1 odb-Data must be absent in version 1
	roamingRestrictionDueToUnsupportedFeature [9] NULL	OPTIONAL,
	-- OA1 roamingRestrictionDueToUnsupportedFeature must be absent
	-- in version 1
	regionalSubscriptionData	[10] ZoneCodeList	OPTIONAL
	-- OA1 regionalSubscriptionData must be absent in version 1
	}

SubscriberStatus ::= ENUMERATED {
	serviceGranted (0),
	operatorDeterminedBarring (1)}

ODB-Data ::= SEQUENCE {
	odb-GeneralData	ODB-GeneralData,
	odb-HPLMN-Data	ODB-HPLMN-Data	OPTIONAL,
	...}

ODB-GeneralData ::= BIT STRING {
	allOG-CallsBarred (0),
	internationalOGCallsBarred (1),
	internationalOGCallsNotToHPLMN-CountryBarred (2),
	premiumRateInformationOGCallsBarred (3),
	premiumRateEntertainementOGCallsBarred (4),
	ss-AccessBarred (5)} (SIZE (6))

ODB-HPLMN-Data ::= BIT STRING {
	plmn-SpecificBarringType1 (0),
	plmn-SpecificBarringType2 (1),
	plmn-SpecificBarringType3 (2),
	plmn-SpecificBarringType4 (3)} (SIZE (4))

ZoneCodeList ::= SEQUENCE SIZE (1..maxNumOfZoneCodes)
				OF ZoneCode

ZoneCode ::= OCTET STRING (SIZE (2))
	-- internal structure is defined in TS GSM 03.03

maxNumOfZoneCodes INTEGER ::= 10

�InsertSubscriberDataRes ::= SEQUENCE {
	teleserviceList	[1] TeleserviceList	OPTIONAL,
	bearerServiceList	[2] BearerServiceList	OPTIONAL,
	ss-List		[3] SS-List	OPTIONAL,
	odb-GeneralData	[4] ODB-GeneralData	OPTIONAL,
	regionalSubscriptionResponse	[5]
			RegionalSubscriptionResponse			OPTIONAL,
	-- OA1 regionalSubscriptionResponse must be absent in version 1
	...}

RegionalSubscriptionResponse ::= ENUMERATED {
	msc-AreaRestricted	(0),
	tooManyZoneCodes	(1),
	zoneCodesConflict	(2),
	regionalSubscNotSupported	(3)}

DeleteSubscriberDataArg ::= SEQUENCE {
	imsi			[0] IMSI,
	basicServiceList	[1] BasicServiceList	OPTIONAL,
	ss-List		[2] SS-List	OPTIONAL,
	roamingRestrictionDueToUnsupportedFeature [4] NULL	OPTIONAL,
	-- OA1 roamingRestrictionDueToUnsupportedFeature must be absent
	-- in version 1
	regionalSubscriptionIdentifier	[5] ZoneCode	OPTIONAL,
	-- OA1 regionalSubscriptionIdentifier must be absent in version 1
	...}

DeleteSubscriberDataRes ::= SEQUENCE {
	regionalSubscriptionResponse	[0]
			RegionalSubscriptionResponse			OPTIONAL,
	...}

-- fault recovery types

ResetArg ::= SEQUENCE {
	networkResource	NetworkResource	OPTIONAL,
	-- OP1 networkResource must be present in version 1
	-- OA>1 networkResource must be absent in version greater 1
	hlr-Number	ISDN-AddressString,
	hlr-List		HLR-List		OPTIONAL,
	...}

RestoreDataArg ::= SEQUENCE {
	imsi			IMSI,
	lmsi			LMSI			OPTIONAL,
	...}

RestoreDataRes ::= SEQUENCE {
	hlr-Number	ISDN-AddressString,
	msNotReachable	NULL			OPTIONAL,
	...}

.#END
��14.7.2	Operation and maintenance data types
�.$MAP-OM-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-OM-DataTypes (12) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS
	ActivateTraceModeArg,
	DeactivateTraceModeArg,
	TraceSubscriberActivityArg,
	NoteInternalHO-Arg
;

IMPORTS
	AddressString,
	ExternalSignalInfo,
	IMSI,
	GlobalCellId
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}

;

ActivateTraceModeArg ::= SEQUENCE {
	imsi			[0] IMSI		OPTIONAL,
	traceReference	[1] TraceReference,
	traceType	[2] TraceType,
	omc-Id		[3] AddressString	OPTIONAL,
	...}

TraceReference ::= OCTET STRING (SIZE (1..2))

TraceType ::= INTEGER
	(0..255)
	-- Trace types are fully defined in TS GSM 12.08.

DeactivateTraceModeArg ::= SEQUENCE {
	imsi			[0] IMSI		OPTIONAL,
	traceReference	[1] TraceReference,
	...}

TraceSubscriberActivityArg ::= SEQUENCE {
	imsi			[0] IMSI		OPTIONAL,
	traceReference	[1] TraceReference,
	traceType	[2] TraceType,
	omc-Id		[3] AddressString	OPTIONAL,
	callReference	[4] CallReference	OPTIONAL}

CallReference ::= OCTET STRING (SIZE (1..3))
�
NoteInternalHO-Arg ::= SEQUENCE {
	handoverType	HandoverType,
	targetCellId	[1] GlobalCellId	OPTIONAL,
	channelId	[2] ExternalSignalInfo	OPTIONAL}

HandoverType ::= ENUMERATED {
	interBSS (0),
	intraBSS (1)}

.#END
��14.7.3	Call handling data types
�.$MAP-CH-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CH-DataTypes (13) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS
	SendRoutingInfoArg,
	SendRoutingInfoRes,
	ProvideRoamingNumberArg,
	NumberOfForwarding
;

IMPORTS
	CUG-Interlock,
	ForwardingData
FROM MAP-SS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-DataTypes (14) version2 (2)}

	ISDN-AddressString,
	ExternalSignalInfo,
	IMSI,
	LMSI
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}
;

CUG-CheckInfo ::= SEQUENCE {
	cug-Interlock	CUG-Interlock,
	cug-OutgoingAccess	NULL			OPTIONAL,
	...}

NumberOfForwarding ::= INTEGER (1..5)

SendRoutingInfoArg ::= SEQUENCE {
	msisdn		[0] ISDN-AddressString,
	cug-CheckInfo	[1] CUG-CheckInfo	OPTIONAL,
	-- OA1 cug-CheckInfo must be absent in version 1
	numberOfForwarding	[2] NumberOfForwarding	OPTIONAL,
	networkSignalInfo	[10] ExternalSignalInfo	OPTIONAL,
	...}

SendRoutingInfoRes ::= SEQUENCE {
	imsi			IMSI,
	routingInfo	RoutingInfo,
	cug-CheckInfo	CUG-CheckInfo	OPTIONAL,
	-- OA1 cug-CheckInfo must be absent in version 1
	...}

�RoutingInfo ::= CHOICE {
	roamingNumber	ISDN-AddressString,
	forwardingData	ForwardingData}

ProvideRoamingNumberArg ::= SEQUENCE {
	imsi			[0] IMSI,
	msc-Number	[1] ISDN-AddressString	OPTIONAL,
	-- OP>1 msc-Number must be present in version greater 1
	msisdn		[2] ISDN-AddressString	OPTIONAL,
	previousRoamingNumber	[3] ISDN-AddressString	OPTIONAL,
	lmsi			[4] LMSI		OPTIONAL,
	gsm-BearerCapability	[5] ExternalSignalInfo	OPTIONAL,
	networkSignalInfo	[6] ExternalSignalInfo	OPTIONAL,
	...}

.#END
��14.7.4	Supplementary service data types
�.$MAP-SS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-DataTypes (14) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS
	RegisterSS-Arg,
	SS-Info,
	SS-Status,
	CUG-Index,
	CUG-Interlock,
	SS-SubscriptionOption,
	SS-ForBS-Code,
	InterrogateSS-Res,
	SS-UserData,
	USSD-Arg,
	USSD-Res,
	Password,
	GuidanceInfo,
	BeginSubscriberActivityArg,
	SS-List,
	SS-InfoList,
	ForwardingData,
	IntraCUG-Options,
	InterCUG-Restrictions,
	OverrideCategory,
	CliRestrictionOption,
	NoReplyConditionTime,
	ForwardingOptions;

IMPORTS
	AddressString,
	ISDN-AddressString,
	ISDN-SubaddressString,
	maxSignalInfoLength,
	IMSI,
	BasicServiceCode,
	BasicServiceGroupList,
	maxNumOfBasicServiceGroups
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}

	SS-Code
FROM MAP-SS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-Code (15) version2 (2)}
;

RegisterSS-Arg ::= SEQUENCE{
	ss-Code		SS-Code,
	basicService	BasicServiceCode	OPTIONAL,
	forwardedToNumber	[4] AddressString	OPTIONAL,
	forwardedToSubaddress	[6] ISDN-SubaddressString	OPTIONAL,
	-- OA1 forwardedToSubaddress must be absent in version 1
	noReplyConditionTime	[5] NoReplyConditionTime	OPTIONAL,
	...}

NoReplyConditionTime ::= INTEGER (5..30)

SS-Info ::= CHOICE {
	forwardingInfo	[0] ForwardingInfo,
	callBarringInfo	[1] CallBarringInfo,
	cug-Info		[2] CUG-Info,
		-- NU1 cug-info must not be used in version 1
	ss-Data		[3] SS-Data}

�ForwardingInfo ::= SEQUENCE {
	ss-Code		SS-Code		OPTIONAL,
	forwardingFeatureList	ForwardingFeatureList,
	...}

ForwardingFeatureList ::=
	SEQUENCE SIZE (1..maxNumOfBasicServiceGroups) OF
				ForwardingFeature

ForwardingFeature ::= SEQUENCE {
	basicService	BasicServiceCode	OPTIONAL,
	ss-Status	[4] SS-Status	OPTIONAL,
	-- OP1 ss-Status must be present in version 1
	forwardedToNumber	[5] ISDN-AddressString	OPTIONAL,
	forwardedToSubaddress	[8] ISDN-SubaddressString	OPTIONAL,
	-- OA1 forwardedToSubaddress must be absent in version 1
	forwardingOptions	[6] ForwardingOptions	OPTIONAL,
	noReplyConditionTime	[7] NoReplyConditionTime	OPTIONAL,
	...}

SS-Status ::= OCTET STRING (SIZE (1))

	-- bits 8765: 0000 (unused)
	-- bits 4321: Used to convey the "P bit","R bit","A bit" and "Q bit",
	--		 representing supplementary service state information
	--		 as defined in TS GSM 03.11

	-- bit 4: "Q bit"

	-- bit 3: "P bit"

	-- bit 2: "R bit"

	-- bit 1: "A bit"

ForwardingOptions ::= OCTET STRING (SIZE (1))

	-- v1: bits 87: notification to forwarding party
	--	00 no notification
	--	01 notification
	--	10 notification

	-- v2: bit 8: notification to forwarding party
	--	0 no notification
	--	1 notification

	-- v2: bit 7: 0 (unused)

	-- v1: bits 65: notification to calling party
	--	00 no notification
	--	01 notification
	--	10 notification

	-- v2: bit 6: v2: notification to calling party
	--	0 no notification
	--	1 notification

	-- v2: bit 5: 0 (unused)

	-- v2: bits 43: forwarding reason
	--	00 ms not reachable
	--	01 ms busy
	--	10 no reply
	--	11 unconditional
	-- bits 21: 00 (unused)

�CallBarringInfo ::= SEQUENCE {
	ss-Code		SS-Code		OPTIONAL,
	-- OP1 ss-Code must be present in version 1
	callBarringFeatureList	CallBarringFeatureList,
	...}

CallBarringFeatureList ::=
	SEQUENCE SIZE (1..maxNumOfBasicServiceGroups) OF
				CallBarringFeature

CallBarringFeature ::= SEQUENCE {
	basicService	BasicServiceCode	OPTIONAL,
	ss-Status	[4] SS-Status	OPTIONAL,
	-- OP1 ss-Status must be present in version 1
	...}

CUG-Info ::= SEQUENCE {
	cug-SubscriptionList	CUG-SubscriptionList,
	cug-FeatureList	CUG-FeatureList	OPTIONAL,
	...}

CUG-SubscriptionList ::= SEQUENCE SIZE (1..maxNumOfCUG) OF
				CUG-Subscription

CUG-Subscription ::= SEQUENCE {
	cug-Index	CUG-Index,
	cug-Interlock	CUG-Interlock,
	intraCUG-Options	IntraCUG-Options,
	basicServiceGroupList	BasicServiceGroupList	OPTIONAL,
	...}

CUG-Index ::= INTEGER (0..32767)
	-- The internal structure is defined in ETS 300 138.

CUG-Interlock ::= OCTET STRING (SIZE (4))

IntraCUG-Options ::= ENUMERATED {
	noCUG-Restrictions (0),
	cugIC-CallBarred (1),
	cugOG-CallBarred (2)}

maxNumOfCUG INTEGER ::= 10

CUG-FeatureList ::= SEQUENCE SIZE (1..maxNumOfBasicServiceGroups) OF
				CUG-Feature

CUG-Feature ::= SEQUENCE {
	basicService	BasicServiceCode	OPTIONAL,
	preferentialCUG-Indicator	CUG-Index	OPTIONAL,
	interCUG-Restrictions	InterCUG-Restrictions,
	...}

�InterCUG-Restrictions::= OCTET STRING (SIZE (1))

	-- bits 876543: 000000 (unused)

	-- bits 21
	--	00 CUG only facilities
	--	01 CUG with outgoing access
	--	10 CUG with incoming access
	--	11 CUG with both outgoing and incoming access

SS-Data ::= SEQUENCE {
	ss-Code		SS-Code		OPTIONAL,
	-- OP1 ss-Code must be present in version 1
	ss-Status	[4] SS-Status	OPTIONAL,
	ss-SubscriptionOption	SS-SubscriptionOption	OPTIONAL,
	-- OA1 ss-SubscriptionOption must be absent in version 1
	basicServiceGroupList	BasicServiceGroupList	OPTIONAL,
	-- OA1 basicServiceGroupList must be absent in version 1
	...}

SS-SubscriptionOption ::= CHOICE {
	cliRestrictionOption	[2] CliRestrictionOption,
	overrideCategory	[1] OverrideCategory}

CliRestrictionOption ::= ENUMERATED {
	permanent (0),
	temporaryDefaultRestricted (1),
	temporaryDefaultAllowed (2)}

OverrideCategory ::= ENUMERATED {
	overrideEnabled (0),
	overrideDisabled (1)}

SS-ForBS-Code ::= SEQUENCE {
	ss-Code		SS-Code,
	basicService	BasicServiceCode	OPTIONAL,
	...}

Cli-RestrictionInfo ::= SEQUENCE {
	ss-Status	SS-Status,
	cliRestrictionOption	CliRestrictionOption	OPTIONAL,
	...}

InterrogateSS-Res ::= CHOICE {
	ss-Status	[0] SS-Status,
	forwardedToNumber	[1] ISDN-AddressString,
	-- NU>1 forwardedToNumber must not be used in version greater 1
	basicServiceGroupList	[2] BasicServiceGroupList,
	forwardingFeatureList	[3] ForwardingFeatureList,
	cli-RestrictionInfo	[4] Cli-RestrictionInfo}
	-- NU=1 cli-RestrictionInfo must not be used in version 1

SS-UserData ::= IA5String (SIZE (1.. maxSignalInfoLength))

USSD-Arg ::= SEQUENCE {
	ussd-DataCodingScheme	USSD-DataCodingScheme,
	ussd-String	USSD-String,
	...}

�USSD-Res ::= SEQUENCE {
	ussd-DataCodingScheme	USSD-DataCodingScheme,
	ussd-String	USSD-String,
	...}

USSD-DataCodingScheme ::= OCTET STRING (SIZE (1))
	-- The structure of the USSD-DataCodingScheme is defined by
	-- the Cell Broadcast Data Coding Scheme as described in
	-- TS GSM 03.38

USSD-String ::= OCTET STRING (SIZE (1..maxUSSD-StringLength))
	-- The structure of the contents of the USSD-String is dependent
	-- on the USSD-DataCodingScheme as described in TS GSM 03.38.

maxUSSD-StringLength INTEGER ::= 160

Password ::= NumericString
	(FROM ("0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"))
	(SIZE (4))

GuidanceInfo ::= ENUMERATED {
	enterPW (0),
	enterNewPW (1),
	enterNewPW-Again (2),
	badPW-TryAgain (3),
	-- NU>1 badPW-TryAgain must not be used in version greater 1
	badPW-FormatTryAgain (4)}
	-- NU>1 badPW-FormatTryAgain must not be used in version greater 1
	-- How this information is really delivered to the subscriber
	-- (display, announcement, ...) is not part of this
	-- specification.

BeginSubscriberActivityArg ::= SEQUENCE {
	imsi			IMSI,
	originatingEntityNumber	ISDN-AddressString}

SS-List ::= SEQUENCE SIZE (1..maxNumOfSS) OF
				SS-Code

maxNumOfSS INTEGER ::= 30

SS-InfoList ::= SEQUENCE SIZE (1..maxNumOfSS) OF
				SS-Info

ForwardingData ::= SEQUENCE {
	forwardedToNumber	[5] ISDN-AddressString	OPTIONAL,
	-- OP1 forwardedToNumber must be present in version 1
	forwardedToSubaddress	[4] ISDN-SubaddressString	OPTIONAL,
	-- OA1 forwardedToSubaddress must be absent in version 1
	forwardingOptions	[6] ForwardingOptions	OPTIONAL,
	...}

.#END
��14.7.5	Supplementary service codes
�.$MAP-SS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-Code (15) version2 (2)}

DEFINITIONS

::=

BEGIN

SS-Code ::= OCTET STRING (SIZE (1))
	-- This type is used to represent the code identifying a single
	-- supplementary service, a group of supplementary services, or
	-- all supplementary services. The services and abbreviations
	-- used are defined in TS GSM 02.04. The internal structure is
	-- defined as follows:
	--
	-- bits 87654321: group (bits 8765), and specific service
	-- (bits 4321)

allSS			SS-Code ::= '00000000'B
	-- reserved for possible future use
	-- all SS

allLineIdentificationSS	SS-Code ::= '00010000'B
	-- reserved for possible future use
	-- all line identification SS
clip			SS-Code ::= '00010001'B
	-- calling line identification presentation
clir			SS-Code ::= '00010010'B
	-- calling line identification restriction
colp			SS-Code ::= '00010011'B
	-- connected line identification presentation
colr			SS-Code ::= '00010100'B
	-- connected line identification restriction
mci			SS-Code ::= '00010101'B
	-- reserved for possible future use
	-- malicious call identification

allForwardingSS	SS-Code ::= '00100000'B
	-- all forwarding SS
cfu			SS-Code ::= '00100001'B
	-- call forwarding unconditional
allCondForwardingSS	SS-Code ::= '00101000'B
	-- all conditional forwarding SS
cfb			SS-Code ::= '00101001'B
	-- call forwarding on mobile subscriber busy
cfnry			SS-Code ::= '00101010'B
	-- call forwarding on no reply
cfnrc			SS-Code ::= '00101011'B
	-- call forwarding on mobile subscriber not reachable

allCallOfferingSS	SS-Code ::= '00110000'B
	-- reserved for possible future use
	-- all call offering SS includes also all forwarding SS
ect				SS-Code ::= '00110001'B
		-- explicit call transfer
mah			SS-Code ::= '00110010'B
	-- reserved for possible future use
	-- mobile access hunting

�allCallCompletionSS	SS-Code ::= '01000000'B
	-- reserved for possible future use
	-- all Call completion SS
cw				SS-Code ::= '01000001'B
	-- call waiting
hold			SS-Code ::= '01000010'B
	-- call hold
ccbs			SS-Code ::= '01000011'B
	-- reserved for possible future use
	-- completion of call to busy subscribers

allMultiPartySS	SS-Code ::= '01010000'B
	-- reserved for possible future use
	-- all multiparty SS
multiPTY		SS-Code ::= '01010001'B
	-- multiparty

allCommunityOfInterest-SS	SS-Code ::= '01100000'B
	-- reserved for possible future use
	-- all community of interest SS
cug			SS-Code ::= '01100001'B
	-- closed user group

allChargingSS	SS-Code ::= '01110000'B
	-- reserved for possible future use
	-- all charging SS
aoci			SS-Code ::= '01110001'B
	-- advice of charge information
aocc			SS-Code ::= '01110010'B
	-- advice of charge charging

allAdditionalInfoTransferSS	SS-Code ::= '10000000'B
	-- reserved for possible future use
	-- all additional information transfer SS
uus			SS-Code ::= '10000001'B
	-- reserved for possible future use
	-- UUS user-to-user signalling

allBarringSS	SS-Code ::= '10010000'B
	-- all barring SS
barringOfOutgoingCalls	SS-Code ::= '10010001'B
	-- barring of outgoing calls
baoc			SS-Code ::= '10010010'B
	-- barring of all outgoing calls
boic			SS-Code ::= '10010011'B
	-- barring of outgoing international calls
boicExHC		SS-Code ::= '10010100'B
	-- barring of outgoing international calls except those directed
	-- to the home PLMN
barringOfIncomingCalls	SS-Code ::= '10011001'B
	-- barring of incoming calls
baic			SS-Code ::= '10011010'B
	-- barring of all incoming calls
bicRoam			SS-Code ::= '10011011'B
	-- barring of incoming calls when roaming outside home PLMN
	-- Country

�allPLMN-specificSS	SS-Code ::= '11110000'B
-- NU1 *plmn-specific* must not be used in version 1
plmn-specificSS-1	SS-Code ::= '11110001'B
plmn-specificSS-2	SS-Code ::= '11110010'B
plmn-specificSS-3	SS-Code ::= '11110011'B
plmn-specificSS-4	SS-Code ::= '11110100'B
plmn-specificSS-5	SS-Code ::= '11110101'B
plmn-specificSS-6	SS-Code ::= '11110110'B
plmn-specificSS-7	SS-Code ::= '11110111'B
plmn-specificSS-8	SS-Code ::= '11111000'B
plmn-specificSS-9	SS-Code ::= '11111001'B
plmn-specificSS-A	SS-Code ::= '11111010'B
plmn-specificSS-B	SS-Code ::= '11111011'B
plmn-specificSS-C	SS-Code ::= '11111100'B
plmn-specificSS-D	SS-Code ::= '11111101'B
plmn-specificSS-E	SS-Code ::= '11111110'B
plmn-specificSS-F	SS-Code ::= '11111111'B

.#END
��14.7.6	Short message data types
�.$MAP-SM-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SM-DataTypes (16) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS
	RoutingInfoForSM-Arg,
	RoutingInfoForSM-Res,
	ForwardSM-Arg,
	ReportSM-DeliveryStatusArg,
	AlertServiceCentreArg,
	InformServiceCentreArg,
	ReadyForSM-Arg,
	SM-DeliveryOutcome,
	AlertReason
;

IMPORTS
	AddressString,
	ISDN-AddressString,
	SignalInfo,
	IMSI,
	LocationInfo,
	LMSI
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}

	TeleserviceCode
FROM MAP-TS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-TS-Code (19) version2 (2)}
;

RoutingInfoForSM-Arg ::= SEQUENCE {
	msisdn		[0] ISDN-AddressString,
	sm-RP-PRI	[1] BOOLEAN,
	serviceCentreAddress	[2] AddressString,
	teleservice	[5] TeleserviceCode	OPTIONAL,
	-- OA>1 teleservice must be absent in version greater 1
	...}

RoutingInfoForSM-Res::= SEQUENCE {
	imsi			IMSI,
	locationInfoWithLMSI		[0] LocationInfoWithLMSI,
	mwd-Set		[2] BOOLEAN	OPTIONAL,
	-- OA>1 mwd-Set must be absent in version greater 1
	...}

LocationInfoWithLMSI ::= SEQUENCE {
		locationInfo	LocationInfo,
		lmsi		LMSI			OPTIONAL,
	...}

ForwardSM-Arg ::= SEQUENCE {
	sm-RP-DA	SM-RP-DA,
	sm-RP-OA	SM-RP-OA,
	sm-RP-UI	SignalInfo,
	moreMessagesToSend	NULL			OPTIONAL,
	-- OA1 moreMessagesToSend must be absent in version 1
	...}

�SM-RP-DA ::= CHOICE {
	imsi			[0] IMSI,
	lmsi			[1] LMSI,
	roamingNumber	[3] ISDN-AddressString,
	-- NU>1 roaming number must not be used in version greater 1
	serviceCentreAddressDA	[4] AddressString,
	noSM-RP-DA	[5] NULL}
	-- NU1 noSM-RP-DA must not be used in version 1

SM-RP-OA ::= CHOICE {
	msisdn		[2] ISDN-AddressString,
	serviceCentreAddressOA	[4] AddressString,
	noSM-RP-OA	[5] NULL}
	-- NU1 noSM-RP-OA must not be used in version 1

ReportSM-DeliveryStatusArg ::= SEQUENCE {
	msisdn		ISDN-AddressString,
	serviceCentreAddress	AddressString,
	sm-DeliveryOutcome	SM-DeliveryOutcome	OPTIONAL,
	-- OA1 sm-DeliveryOutcome must be absent in version 1
	-- OP>1 sm-DeliveryOutcome must be present in version greater 1
	...}

SM-DeliveryOutcome ::= ENUMERATED {
	memoryCapacityExceeded (0),
	absentSubscriber (1),
	successfulTransfer (2)}

AlertServiceCentreArg ::= SEQUENCE {
	msisdn		ISDN-AddressString,
	serviceCentreAddress	AddressString,
	...}

InformServiceCentreArg ::= SEQUENCE {
	storedMSISDN	ISDN-AddressString	OPTIONAL,
	mw-Status	MW-Status	OPTIONAL,
	...}

MW-Status ::= BIT STRING {
	sc-AddressNotIncluded (0),
	mnrf-Set (1),
	mcef-Set (2)} (SIZE (6))

ReadyForSM-Arg ::= SEQUENCE {
	imsi			[0] IMSI,
	alertReason		AlertReason,
	...}

AlertReason ::= ENUMERATED {
	ms-Present (0),
	memoryAvailable (1)}

.#END
��14.7.7	Error data types
�.$MAP-ER-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-ER-DataTypes (17) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS
	RoamingNotAllowedCause,
	CallBarringCause,
	CUG-RejectCause,
	SS-IncompatibilityCause,
	PW-RegistrationFailureCause,
	SM-DeliveryFailureCause
;

IMPORTS
	SS-Status
FROM MAP-SS-DataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-DataTypes (14) version2 (2)}

	SignalInfo,
	BasicServiceCode
FROM MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}

	SS-Code
FROM MAP-SS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-SS-Code (15) version2 (2)}
;

RoamingNotAllowedCause ::= ENUMERATED {
	plmnRoamingNotAllowed (0),
	operatorDeterminedBarring (3)}

CallBarringCause ::= ENUMERATED {
	barringServiceActive (0),
	operatorBarring (1)}

CUG-RejectCause ::= ENUMERATED {
	incomingCallsBarredWithinCUG (0),
	subscriberNotMemberOfCUG (1),
	requestedBasicServiceViolatesCUG-Constraints (5),
	calledPartySS-InteractionViolation (7)}
	-- NU1 calledPartySS-InteractionViolation must not be used in
	-- version 1

�SS-IncompatibilityCause ::= SEQUENCE {
	ss-Code		[1] SS-Code	OPTIONAL,
	basicService	BasicServiceCode	OPTIONAL,
	ss-Status	[4] SS-Status	OPTIONAL,
	...}

PW-RegistrationFailureCause ::= ENUMERATED {
	undetermined (0),
	invalidFormat (1),
	newPasswordsMismatch (2)}

SM-DeliveryFailureCause ::= CHOICE {
	sm-DeliveryFailureCauseWithDiagnostic
			SM-DeliveryFailureCauseWithDiagnostic,
-- NU1 sm-DeliveryFailureCauseWithDiagnostic must not be used in
-- version 1
	sm-EnumeratedDeliveryFailureCause
			SM-EnumeratedDeliveryFailureCause}
-- NU>1 sm-EnumeratedDeliveryFailureCause must not be used in version
-- greater 1

SM-EnumeratedDeliveryFailureCause ::= ENUMERATED {
	memoryCapacityExceeded (0),
	equipmentProtocolError (1),
	equipmentNotSM-Equipped (2),
	unknownServiceCentre (3),
	sc-Congestion (4),
	invalidSME-Address (5),
	subscriberNotSC-Subscriber (6)}

SM-DeliveryFailureCauseWithDiagnostic ::= SEQUENCE {
	sm-EnumeratedDeliveryFailureCause SM-EnumeratedDeliveryFailureCause,
	diagnosticInfo	SignalInfo	OPTIONAL,
	...}

.#END
��14.7.8	Common data types
�.$MAP-CommonDataTypes {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-CommonDataTypes (18) version2 (2)}

DEFINITIONS

IMPLICIT TAGS

::=

BEGIN

EXPORTS

	-- general data types and values
	AddressString,
	ISDN-AddressString,
	ISDN-SubaddressString,
	ExternalSignalInfo,
	SignalInfo,
	maxSignalInfoLength,

	-- data types for numbering and identification
	IMSI,
	TMSI,
	SubscriberId,
	IMEI,
	LocationInfo,
	HLR-List,
	LMSI,
	GlobalCellId,
	NetworkResource,

	-- data types for subscriber management
	Category,
	BearerServiceList,
	TeleserviceList,
	BasicServiceCode,
	BasicServiceList,
	BasicServiceGroupList,
	maxNumOfBasicServiceGroups
;

IMPORTS
	TeleserviceCode
FROM MAP-TS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-TS-Code (19) version2 (2)}

	BearerServiceCode
FROM MAP-BS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-BS-Code (20) version2 (2)}
;

-- general data types

�TBCD-STRING ::= OCTET STRING
	-- This type (Telephony Binary Coded Decimal String) is used to
	-- represent several digits from 0 through 9, *, #, a, b, c, two
	-- digits per octet, each digit encoded 0000 to 1001 (0 to 9),
	-- 1010 (*), 1011 (#), 1100 (a), 1101 (b) or 1110 (c); 1111 used
	-- as filler when there is an odd number of digits.

	-- bits 8765 of octet n encoding digit 2n
	-- bits 4321 of octet n encoding digit 2(n-1) +1

AddressString ::= OCTET STRING (SIZE (1..maxAddressLength))
	-- This type is used to represent a number for addressing
	-- purposes. It is composed of
	--	a)	one octet for nature of address, and numbering plan
	--		indicator.
	--	b)	digits of an address encoded as TBCD-String.

	-- a)	The first octet includes a one bit extension indicator, a
	--		3 bits nature of address indicator and a 4 bits numbering
	--		plan indicator, encoded as follows:

	-- bit 8: 1 (no extension)

	-- bits 765: nature of address indicator
	--	000 unknown
	--	001 international number
	--	010 national significant number
	--	011 network specific number
	--	100 subscriber number
	--	101 reserved
	--	110 abbreviated number
	--	111 reserved for extension

	-- bits 4321: numbering plan indicator
	--	0000 unknown
	--	0001 ISDN/Telephony Numbering Plan (Rec CCITT E.164)
	--	0010 spare
	--	0011 data numbering plan (CCITT Rec X.121)
	--	0100 telex numbering plan (CCITT Rec F.69)
	--	0101 spare
	--	0110 land mobile numbering plan (CCITT Rec E.212)
	--	0111 spare
	--	1000 national numbering plan
	--	1001 private numbering plan
	--	1111 reserved for extension

	--	all other values are reserved.

	-- b)	The following octets representing digits of an address
	--		encoded as a TBCD-STRING.

maxAddressLength INTEGER ::= 20

ISDN-AddressString ::=
			AddressString (SIZE (1..maxISDN-AddressLength))
	-- This type is used to represent ISDN numbers.

maxISDN-AddressLength INTEGER ::= 9

�ISDN-SubaddressString ::=
			OCTET STRING (SIZE (1..maxISDN-SubaddressLength))
	-- This type is used to represent ISDN subaddresses.
	-- It is composed of
	--	a)	one octet for type of subaddress and odd/even indicator.
	--	b)	20 octets for subaddress information.

	--	a)	The first octet includes a one bit extension indicator, a
	--		3 bits type of subaddress and a one bit odd/even indicator,
	--		encoded as follows:

	--	bit 8: 1 (no extension)

	--	bits 765: type of subaddress
	--		000 NSAP (X.213/ISO 8348 AD2)
	--		010 User Specified
	--		All other values are reserved

	--	bit 4: odd/even indicator
	--		0 even number of address signals
	--		1 odd number of address signals
	--		The odd/even indicator is used when the type of subaddress
	--		is "user specified" and the coding is BCD.

	--	bits 321: 000 (unused)

	--	b) Subaddress information.
	--	The NSAP X.213/ISO8348AD2 address shall be formatted as specified
	--	by octet 4 which contains the Authority and Format Identifier
	--	(AFI). The encoding is made according to the "preferred binary
	--	encoding" as defined in X.213/ISO834AD2. For the definition
	--	of this type of subaddress, see CCITT Rec I.334.

	--	For User-specific subaddress, this field is encoded according
	--	to the user specification, subject to a maximum length of 20
	--	octets. When interworking with X.25 networks BCD coding should
	--	be applied.

maxISDN-SubaddressLength INTEGER ::= 21

ExternalSignalInfo ::= SEQUENCE {
	protocolId	ProtocolId,
	signalInfo	SignalInfo,
	...}
	-- Information about the internal structure is given in
	-- subclause 5.6.9.

SignalInfo ::= OCTET STRING (SIZE (1..maxSignalInfoLength))

maxSignalInfoLength INTEGER ::= 200
	-- This NamedValue represents the theoretical maximum number of
	-- octets which are available to carry a single data type,
	-- without requiring segmentation to cope with the network layer
	-- service. However, the actual maximum size available for a data
	-- type may be lower, especially when other information elements
	-- have to be included in the same component.

ProtocolId ::= ENUMERATED {
	gsm-0408 (1),
	gsm-0806 (2),
	gsm-BSSMAP (3),
	-- NU1 NU2 Value 3 must not be used in version 1 and
	-- must not be used in version 2.
	ets-300102-1 (4)}

�
-- data types for numbering and identification

IMSI ::= TBCD-STRING (SIZE (3..8))
	-- digits of MCC, MNC, MSIN are concatenated in this order.

TMSI ::= OCTET STRING (SIZE (1..4))

SubscriberId ::= CHOICE {
	imsi			[0] IMSI,
	tmsi			[1] TMSI}

IMEI ::= TBCD-STRING (SIZE (8))
	--	Refers to International Mobile Station Equipment Identity
	--	and Software Version Number (SVN) defined in TS GSM 03.03.
	--	If the SVN is not present the last octet shall contain the
	--	digit 0 and a filler.
	--	If present the SVN shall be included in the last octet.
	--	The SVN must not be present in version 1.

LocationInfo ::= CHOICE {
	roamingNumber	[0] ISDN-AddressString,
	-- NU>1 roamingNumber must not be used in version greater 1
	msc-Number	[1] ISDN-AddressString}

HLR-Id ::= IMSI
	-- leading digits of IMSI, i.e. (MCC, MNC, leading digits of
	-- MSIN) forming HLR Id defined in TS GSM 03.03.

HLR-List ::= SEQUENCE SIZE (1..maxNumOfHLR-Id) OF
				HLR-Id

maxNumOfHLR-Id INTEGER ::= 50

LMSI ::= OCTET STRING (SIZE (4))

GlobalCellId ::= OCTET STRING (SIZE (5..7))
	-- Refers to Cell Global Identification defined in TS GSM 03.03.
	-- Octets are coded according to TS GSM 04.08.
	-- The internal structure is defined as follows:
	--	Mobile Country Code:	3 digits according to CCITT Rec E.212
	--			1 digit filler (1111)
	--	Mobile Network Code:	2 digits according to CCITT Rec E.212
	--	Location Area Code:	2 octets according to TS GSM 04.08
	--	Cell Identity:	2 octets (CI) according to TS GSM 04.08

NetworkResource ::= ENUMERATED {
	plmn (0),
	hlr (1),
	vlr (2),
	pvlr (3),
	controllingMSC (4),
	vmsc (5),
	eir (6),
	rss (7)}

�-- data types for subscriber management

Category ::= OCTET STRING (SIZE (1))
	-- The internal structure is defined in CCITT Rec Q.763.

BearerServiceList ::= SEQUENCE SIZE (1..maxNumOfBearerServices) OF
				BearerServiceCode

maxNumOfBearerServices INTEGER ::= 50

TeleserviceList ::= SEQUENCE SIZE (1..maxNumOfTeleservices) OF
				TeleserviceCode

maxNumOfTeleservices INTEGER ::= 20

BasicServiceCode ::= CHOICE {
	bearerService	[2] BearerServiceCode,
	teleservice	[3] TeleserviceCode}

BasicServiceList ::= SEQUENCE SIZE (1..maxNumOfBasicServices) OF
				BasicServiceCode

maxNumOfBasicServices INTEGER ::= 70

BasicServiceGroupList ::= SEQUENCE SIZE (1..maxNumOfBasicServiceGroups) OF
				BasicServiceCode

maxNumOfBasicServiceGroups INTEGER ::= 13

.#END
��14.7.9	Teleservice Codes
�.$MAP-TS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-TS-Code (19) version2 (2)}

DEFINITIONS

::=

BEGIN

TeleserviceCode ::= OCTET STRING (SIZE (1))
	-- This type is used to represent the code identifying a single
	-- teleservice, a group of teleservices, or all teleservices. The
	-- services are defined in TS GSM 02.03.
	-- The internal structure is defined as follows:

	-- bits 87654321: group (bits 8765) and specific service
	-- (bits 4321)

allTeleservices	TeleserviceCode ::= '00000000'B

allSpeechTransmissionServices	TeleserviceCode ::= '00010000'B
telephony		TeleserviceCode ::= '00010001'B
emergencyCalls	TeleserviceCode ::= '00010010'B

allShortMessageServices	TeleserviceCode ::= '00100000'B
shortMessageMT-PP	TeleserviceCode ::= '00100001'B
shortMessageMO-PP	TeleserviceCode ::= '00100010'B

allFacsimileTransmissionServices	TeleserviceCode ::= '01100000'B
facsimileGroup3AndAlterSpeech	TeleserviceCode ::= '01100001'B
automaticFacsimileGroup3	TeleserviceCode ::= '01100010'B
facsimileGroup4	TeleserviceCode ::= '01100011'B
-- NU1 facsimileGroup4 must not be used in version 1

-- The following non-hierarchical Compound Teleservice Groups
-- are defined in TS GSM 02.30:
allDataTeleservices	TeleserviceCode ::= '01110000'B
	-- covers Teleservice Groups 'allFacsimileTransmissionServices'
	-- and 'allShortMessageServices'
allTeleservices-ExeptSMS	TeleserviceCode ::= '10000000'B
	-- covers Teleservice Groups 'allSpeechTransmissionServices' and
	-- 'allFacsimileTransmissionServices'
--
-- Compound Teleservice Group Codes are only used in call
-- independent supplementary service operations, i.e. they
-- are not used in InsertSubscriberData or in
-- DeleteSubscriberData messages. Compound Teleservice Group
-- NU1 Codes must not be used in version 1.

�allPLMN-specificTS	TeleserviceCode ::= '11010000'B
-- NU1 *plmn-specific* must not be used in version 1
plmn-specificTS-1	TeleserviceCode ::= '11010001'B
plmn-specificTS-2	TeleserviceCode ::= '11010010'B
plmn-specificTS-3	TeleserviceCode ::= '11010011'B
plmn-specificTS-4	TeleserviceCode ::= '11010100'B
plmn-specificTS-5	TeleserviceCode ::= '11010101'B
plmn-specificTS-6	TeleserviceCode ::= '11010110'B
plmn-specificTS-7	TeleserviceCode ::= '11010111'B
plmn-specificTS-8	TeleserviceCode ::= '11011000'B
plmn-specificTS-9	TeleserviceCode ::= '11011001'B
plmn-specificTS-A	TeleserviceCode ::= '11011010'B
plmn-specificTS-B	TeleserviceCode ::= '11011011'B
plmn-specificTS-C	TeleserviceCode ::= '11011100'B
plmn-specificTS-D	TeleserviceCode ::= '11011101'B
plmn-specificTS-E	TeleserviceCode ::= '11011110'B
plmn-specificTS-F	TeleserviceCode ::= '11011111'B

.#END
��14.7.10	Bearer Service Codes
�.$MAP-BS-Code {
 ccitt identified-organization (4) etsi (0) mobileDomain (0)
 gsm-Network (1) modules (3) map-BS-Code (20) version2 (2)}

DEFINITIONS

::=

BEGIN

BearerServiceCode ::= OCTET STRING (SIZE (1))
	-- This type is used to represent the code identifying a single
	-- bearer service, a group of bearer services, or all bearer
	-- services. The services are defined in TS GSM 02.02.
	-- The internal structure is defined as follows:
	--
	-- v1: bit 8: Transparency indicator (If applicable)
	--	0	transparent (postfix T) or if not applicable
	--		(no postfix T or NT)
	--	1	non transparent (postfix NT)
	--
	-- v2: bit 8: 0 (unused)
	-- plmn-specific bearer services:
	-- bits 87654321: defined by the HPLMN operator
	-- rest of bearer services:
	--
	-- bits 7654321: group (bits 7654), and rate, if applicable
	-- (bits 321)
	-- symbolic constants are assigned only for v2

allBearerServices	BearerServiceCode ::= '00000000'B

allDataCDA-Services	BearerServiceCode ::= '00010000'B
dataCDA-300bps	BearerServiceCode ::= '00010001'B
dataCDA-1200bps	BearerServiceCode ::= '00010010'B
dataCDA-1200-75bps	BearerServiceCode ::= '00010011'B
dataCDA-2400bps	BearerServiceCode ::= '00010100'B
dataCDA-4800bps	BearerServiceCode ::= '00010101'B
dataCDA-9600bps	BearerServiceCode ::= '00010110'B

allDataCDS-Services	BearerServiceCode ::= '00011000'B
dataCDS-1200bps	BearerServiceCode ::= '00011010'B
dataCDS-2400bps	BearerServiceCode ::= '00011100'B
dataCDS-4800bps	BearerServiceCode ::= '00011101'B
dataCDS-9600bps	BearerServiceCode ::= '00011110'B

allPadAccessCA-Services	BearerServiceCode ::= '00100000'B
padAccessCA-300bps	BearerServiceCode ::= '00100001'B
padAccessCA-1200bps	BearerServiceCode ::= '00100010'B
padAccessCA-1200-75bps	BearerServiceCode ::= '00100011'B
padAccessCA-2400bps	BearerServiceCode ::= '00100100'B
padAccessCA-4800bps	BearerServiceCode ::= '00100101'B
padAccessCA-9600bps	BearerServiceCode ::= '00100110'B

�allDataPDS-Services	BearerServiceCode ::= '00101000'B
dataPDS-2400bps	BearerServiceCode ::= '00101100'B
dataPDS-4800bps	BearerServiceCode ::= '00101101'B
dataPDS-9600bps	BearerServiceCode ::= '00101110'B

allAlternateSpeech-DataCDA	BearerServiceCode ::= '00110000'B

allAlternateSpeech-DataCDS	BearerServiceCode ::= '00111000'B

allSpeechFollowedByDataCDA	BearerServiceCode ::= '01000000'B

allSpeechFollowedByDataCDS	BearerServiceCode ::= '01001000'B

-- The following non-hierarchical Compound Bearer Service
-- Groups are defined in TS GSM 02.30:
allDataCircuitAsynchronous	BearerServiceCode ::= '01010000'B
	-- covers "allDataCDA-Services", "allAlternateSpeech-DataCDA" and
	-- "allSpeechFollowedByDataCDA"
allAsynchronousServices	BearerServiceCode ::= '01100000'B
	-- covers "allDataCDA-Services", "allAlternateSpeech-DataCDA",
	-- "allSpeechFollowedByDataCDA" and "allPadAccessCDA-Services"
allDataCircuitSynchronous	BearerServiceCode ::= '01011000'B
	-- covers "allDataCDS-Services", "allAlternateSpeech-DataCDS" and
	-- "allSpeechFollowedByDataCDS"
allSynchronousServices	BearerServiceCode ::= '01101000'B
	-- covers "allDataCDS-Services", "allAlternateSpeech-DataCDS",
	-- "allSpeechFollowedByDataCDS" and "allDataPDS-Services"
--
-- Compound Bearer Service Group Codes are only used in call
-- independent supplementary service operations, i.e. they
-- are not used in InsertSubscriberData or in
-- DeleteSubscriberData messages.
-- NU1 Compound Bearer Service Group Codes must not be used in
-- version 1.

allPLMN-specificBS	BearerServiceCode ::= '11010000'B
-- NU1 *plmn-specific* must not be used in version 1
plmn-specificBS-1	BearerServiceCode ::= '11010001'B
plmn-specificBS-2	BearerServiceCode ::= '11010010'B
plmn-specificBS-3	BearerServiceCode ::= '11010011'B
plmn-specificBS-4	BearerServiceCode ::= '11010100'B
plmn-specificBS-5	BearerServiceCode ::= '11010101'B
plmn-specificBS-6	BearerServiceCode ::= '11010110'B
plmn-specificBS-7	BearerServiceCode ::= '11010111'B
plmn-specificBS-8	BearerServiceCode ::= '11011000'B
plmn-specificBS-9	BearerServiceCode ::= '11011001'B
plmn-specificBS-A	BearerServiceCode ::= '11011010'B
plmn-specificBS-B	BearerServiceCode ::= '11011011'B
plmn-specificBS-C	BearerServiceCode ::= '11011100'B
plmn-specificBS-D	BearerServiceCode ::= '11011101'B
plmn-specificBS-E	BearerServiceCode ::= '11011110'B
plmn-specificBS-F	BearerServiceCode ::= '11011111'B

.#END
�15	General on MAP user procedures
15.1	Introduction
Clauses 15 to 21 describe the use of MAP services for GSM signalling procedures. GSM signalling procedures may involve one or several interfaces running one or several application protocols. This ETS addresses only the signalling procedures which require at least the use of one MAP service.
When a signalling procedure takes place in the network, an application process invocation is created in each system component involved. Part of the application process invocation acts as a MAP user and handles one or several MAP dialogues. For each dialogue it employs an instance of the MAP service provider. It may also use other communication services to exchange information on other interfaces, but detailed description of these aspects is outside the scope of this ETS.
15.2	Common aspects of user procedure descriptions
15.2.1	General conventions
For each signalling procedure this ETS provides a brief textual overview accompanied by a flow diagram which represent the functional interactions between system components. Functional interactions are labelled using the MAP service name when the interaction results from a service request or by this service name followed by the symbol "ack" when this interaction results from a service response.
For each of the system components involved, this ETS also provides a detailed textual description of the application process behaviour as well as an SDL diagram. SDL diagrams describe the sequence of events, as seen by the MAP-User, which occurs at MAP service provider boundaries as well as external events which occur at other interfaces and which impact on the previous sequence.
External events do not necessarily correspond to the messages of other protocols used in the system component. The MAP-user procedures are described as if a set of interworking functions (IWF) between the MAP-user and the other protocol entities was implemented (see figure 15.2/1). Such interworking functions are assumed to perform either an identity mapping or some processing or translation as required to eliminate information irrelevant to the MAP-user.
The mapping of service primitives on to protocol elements is described in clauses 11 to 14.
GSM signalling procedures are built from one or more sub-procedures (e.g. authentication, ciphering,). Sub-procedures from which signalling procedures are built are represented using SDL MACRO descriptions.
In case of any discrepancy between the textual descriptions and the SDL descriptions, the latter take precedence.
15.2.2	Naming conventions
Events related to MAP are represented by MAP service primitives. The signal names used in the SDL diagrams are derived from the service primitive names defined in clauses 5 to 10, with some lexical transformations for readability and parsability purposes (blanks between words are replaced by underscores, the first letter of each word is capitalized).
Events received and sent on other interfaces are named by appending the message or signal name to a symbol representing the interface type, with some lexical transformations for readability and parsability purposes (blanks between words are replaced by underscores, the first letter of each word is capitalized).
�The following symbols are used to represent the interface types:
"I":		For interfaces to the fixed network. "I" stands for ISUP interface.
"A":		For interfaces to BSS (i.e. A-interfaces);
"OM":		For network management interfaces (communication with OMC, MML interface, ...);
"SC":		For interfaces to a Service Centre;
"HO_CA":	For internal interfaces to the Handover Control Application.
"US":		For a local USSD application.

These naming conventions can be summarized by the following BNF description:
<Event_Name>		::= <MAP_Primitive> | <External_Event>

<MAP_Primitive>	::= <MAP_Open> | <MAP_Close> | <MAP_U_Abort> | <MAP_P_Abort> |
			 	<MAP_Specific> | <MAP_Notice>

<MAP_Open>		::= MAP_Open_Req | MAP_Open_Ind | MAP_Open_Rsp | MAP_Open_Cnf

<MAP_Close>		::= MAP_Close_Req | MAP_Close_Ind

<MAP_U_Abort>	::= MAP_U_Abort_Req | MAP_U_Abort_Ind

<MAP_P_Abort>	::= MAP_P_Abort_Ind

<MAP_Notice>		::= MAP_Notice_Ind

<MAP_Specific>	::= <MAP_Req> | <MAP_Ind> | <MAP_Rsp> | <MAP_Cnf>

<MAP_Req>		::= MAP_<Service_Name>_Req

<MAP_Ind>		::= MAP_<Service_Name>_Ind

<MAP_Rsp>		::= MAP_<Service_Name>_Rsp

<MAP_Cnf>		::= MAP_<Service_Name>_Cnf

<External_Event>	::= <Interface_Type>_<External_Signal>

<Interface_Type>	::= I | A | OM | SC | HO AC | US

<External_Signal>	::= <Lexical_Unit>

<Service_Name>	::= <Lexical_Unit>

<Lexical_Unit>		::= <Lexical_Component> | <Lexical_Unit>_ <Lexical_Component>

<Lexical_Component>	::= <Upper_Case_Letter><Letter_Or_Digit_List>

<Letter_Or_Digit_List>	::= <Letter_Or_Digit> | <Letter_Or_Digit_List><Letter_Or_Digit>

<Letter_Or_Digit>	::= <Letter> | <Digit>

<Letter>		::= <Lower_Case_Letter> | <Upper_Case_Letter>

<Upper_Case_Letter>	::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

<Lower_Case_Letter>	::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<Digit>			::= 1|2|3|4|5|6|7|8|9|0
� ³ � ³ � O&M (GSM 12.xy-series) SC (TS GSM 03.40) � ³ ³ � ÚÄÄÄÄÁÄÄ¿ ÚÄÄÄÄÄÁÄÄ¿ � ³ IWF ³ ³ IWF ³ � ³ ³ ³ ³ � ÀÄÄÄÄÂÄÄÙ ÀÄÂÄÄÄÄÄÄÙ � ³ ³ � ÀÄOM_<xx> ÚÄSC_<xx> � ³ ³ � ÚÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄ¿ � ÚÄÄÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄÄÄ¿ �ÄÄÄAÄÄ´ IWF ÃÄA_<xx>Ä´ MAP-User ÃÄÄI_<xx>ÄÄ´ IWF ÃÄISUP �TS GSM³ ³ ³ ³ ³ ³(CCITT �08.08 ÀÄÄÄÄÄÄÄÙ ÚÄ´ ÃÄÄ¿ ÀÄÄÄÄÄÄÄÙ Q.763)�04.08 ³ ÀÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ �ÚÄÄÄÄÄÄÄÄ¿ ³ ³ ³ ³ USSD ³ �³Handover³ ³ÚÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄ¿ ÀUS_<xx>´ ³ �³Control ÃÄHO_CA_<xx>Ù³ MAP-Provider ³ ³Application³ �³Applica ³ ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ �³ tion³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ �ÀÄÄÄÄÄÄÄÄÙ

Figure 15.2/1: Interfaces applicable to the MAP-User
15.2.3	Convention on primitives parameters
15.2.3.1	Open service
When the originating and destination reference parameters shall be included in the MAP-OPEN request primitive, their value are indicated as a comment to the signal which represents this primitive.
15.2.3.2	Close service
When a pre-arranged released is requested, a comment is attached to the signal which represents the MAP-CLOSE request primitive. In the absence of comment, a normal release is assumed.
15.2.4	Version handling at dialogue establishment
Unless explicitly indicated in subsequent subclauses, the following principles regarding version handling procedures at dialogue establishment are applied by the MAP-user:
15.2.4.1	Behaviour at the initiating side
When a MAP user signalling procedure has to be executed, the MAP-user issues a MAP-OPEN request primitive with an appropriate application-context-name. If several names are supported (i.e. several versions) a suitable one is selected using the procedures described in clause 3.
If a MAP-CLOSE Confirm primitive to a MAP-OPEN request with a result parameter set to "refused" and a diagnostic parameter indicating "application-context-not-supported" or "potential incompatibility problem", the MAP-User issues a new MAP-OPEN request primitive with the equivalent version one context. This is informally represented in the SDL diagrams by a task symbol indicating "Perform V1 procedure".
15.2.4.2	Behaviour at the responding side
On receipt of a MAP-OPEN indication primitive, the MAP-User analyses the application-context-name.
If it refers to a version one context, the associated V1 procedure is executed, otherwise the associated V2 procedure is executed.
�15.2.5	Abort Handling
Unless explicitly indicated in subsequent subclauses, the following principles are applied by the MAP-user regarding abort handling procedures:
On receipt of a MAP-P-ABORT indication or MAP-U-ABORT Indication primitive from any MAP-provider invocation, the MAP-User issues a MAP-U-ABORT Request primitive to each MAP-provider invocation associated with the same user procedure.
If applicable a decision is made to decide if the affected user procedure has to be retried or not.
15.2.6	SDL conventions
The MAP SDLs make use of a number of SDL concepts and conventions, where not all of them may be widely known. Therefore, this subclause outlines the use of a few concepts and conventions to improve understanding of the MAP SDLs.
The MAP User SDLs make use of SDL Processes, Procedures and Macros. Processes are independent from each other even if one process starts another one: The actions of both of them have no ordering in time. SDL Procedures and Macros are just used to ease writing of the specification: They contain parts of a behaviour used in several places, and the corresponding Procedure/Macro definition has to be expanded at the position of the Procedure/Macro call.
All Processes are started at system initialization and live forever, unless process creation/termination is indicated explicitly (i.e. a process is created by some other process).
The direction of Input/Output Signals in the SDL graphs is used to indicate the entity to which/from which communication is directed. If a process A communicates in parallel with processes B and C, all Inputs/Outputs to/from B are directed to one side, whereas communication with C is directed to the other side. However, there has been no formal convention used that communication to a certain entity (e.g. a HLR) will always be directed to a certain side (e.g. right).
In each state all those Input Signals are listed, which result in an action and/or state change. If an Input Signal is not listed in a state, receipt of this input should lead to an implicit consumption without any action or state change (according to the SDL rules). This implicit consumption is mainly used for receipt of the MAP DELIMITER indication and for receipt of a MAP CLOSE indication, except for a premature MAP CLOSE.
15.3	Interaction between MAP Provider and MAP Users
Each MAP User is defined by at least one SDL process. On the dialogue initiating side the MAP User will create a new instance of a MAP Provider implicit by issuing a MAP-OPEN request. This instance corresponds to a TC Dialogue and lives as long as the dialogue exists (see also subclause 11.3). There is a fix relation between MAP User and this Provider instance, i.e. all MAP service primitives from the MAP User for this dialogue are sent to this instance and all TC components received by this MAP Provider are mapped onto service primitives sent to this MAP User.
On the receiving side a MAP Provider instance is created implicit by receipt of a TC BEGIN indication. The corresponding MAP User is determined by the Application Context name included in this primitive, i.e. each Application Context is associated with one and only one MAP User. An instance of this User will be created implicit by receiving a MAP-OPEN indication. Note that in some cases there exist several SDL Processes for one MAP User (Application Context), e.g. the processes Register_SS_HLR, Erase_SS_HLR, Activate_SS_HLR, Deactivate_SS_HLR, Interrogate_SS_HLR, and Register_Password for the AC Network_Functional_SS_Handling. In these cases, a coordinator process is introduced acting as a MAP User, which in turn starts a sub-process depending on the first MAP service primitive received.
�16	Mobility procedures
16.1	Location management Procedures
This subclause comprises a number of processes to handle the mobile nature of the subscriber. The processes will be addressed by SCCP Sub-System Number (MSC, VLR or HLR) and the Application Context. The following processes are defined in this subclause:
Process Update Location Area:
Initiator:	Update_Location_Area_MSC, subclause 16.1.1.2;
Responder:	Update_Location_Area_VLR, subclause 16.1.1.3;

Process Update Location:
Initiator:	Update_Location_Area_VLR, subclause 16.1.1.3, or
		Update_Location_VLR, subclause 16.1.1.6;
Responder:	Update_Location_HLR, subclause 16.1.1.4;

Process Send Identification:
Initiator:	Update_Location_Area_VLR, subclause 16.1.1.3;
Responder:	Send_Identification_VLR, subclause 16.1.1.5;

Process Subscriber Present HLR:
Initiator:	Subscriber_Present_HLR, subclause 16.1.1.7;
Responder:	Short_Message_Alert_IWMSC, subclause 20.4.3;

Process Cancel Location:
Initiator:	Cancel_Location_HLR, subclause 16.1.2.2;
Responder:	Cancel_Location_VLR, subclause 16.1.2.3;

Process Detach IMSI:
Initiator:	Detach_IMSI_MSC, subclause 16.3.2;
Responder:	Detach_IMSI_VLR, subclause 16.3.3.

As both the Update Location Area and the Detach IMSI processes use the same application context name, the MAP Provider cannot distinguish between them. Therefore, a Location Management Coordinator Process will act as one user for this application context. This process (one in MSC, one in VLR) will create the Update Location Area or the Detach IMSI process, depending on the first service primitive received in the respective dialogue.
Additionally, a Location Management Coordinator process in the HLR coordinates the two application processes "Update Location HLR" (subclause 16.1.1.4) and "RESTORE_DATA_HLR" (subclause 16.3.3) that are addressed by the same application context.
Location Management Coordinator MSC
On receipt of a request for location updating from the A-interface, the Location Management Coordinator in the MSC will:
 -	create the process Update_Location_Area_MSC in case the updating type indicated in the A-interface primitive indicates normal updating, periodic updating or IMSI Attach;

 -	create the process Detach_IMSI_MSC in case the updating type indicated in the A-interface primitive indicates IMSI Detach.

The respective primitive is then forwarded to the created process. Henceforth, the coordinator will relay all service primitives from provider to the user and vice versa, until a request or indication for dialogue termination is received. This last primitive will be relayed, too, before the Coordinator process returns to idle state.
�Location Management Coordinator VLR
On receipt of a dialogue request for the Location Management Application Context (see Receive_Open_Ind macro in subclause 21.1), the Location_Management_Coordinator will:
 -	terminate the procedure in case of parameter problems;

 -	revert to the MAP version one procedure in case the MSC indicated version one protocol; or

 -	continue as below, if the dialogue is accepted.

Depending on the first service primitive received from the MAP Provider in this dialogue, the user process is created:
 -	Update_Location_Area_VLR in case the primitive is a MAP_UPDATE_LOCATION_AREA indication;

 -	Detach_IMSI_VLR in case the primitive is a MAP_DETACH IMSI indication.

In case a MAP_U_ABORT, MAP_P_ABORT or a premature MAP_CLOSE indication is received instead, the process returns to idle state. If a MAP_NOTICE indication is received, the dialogue towards the MSC is aborted and the process returns to idle state.
After creation of the user process the service primitive received from the provider is passed to the user process. Henceforth, the coordinator will relay all service primitives from provider to the user and vice versa, until a request or indication for dialogue termination is received. This last primitive will be relayed, too, before the Coordinator process returns to idle state.
Location Management Coordinator HLR
On receipt of a dialogue request for the Location Management Application Context (see Receive_Open_Ind macro in subclause 21.1), the Location_Management_Coordinator will:
 -	terminate the process in case of parameter problems; or

 -	revert to MAP version 1 protocol if the VLR requests version 1 protocol; or

 -	continue as described in the following, if the dialogue is accepted.

The user process is created depending on the first service primitive received from the MAP service provider within this dialogue:
 -	Update_Location_HLR if the primitive is a MAP_UPDATE_LOCATION indication;

 -	RESTORE_DATA_HLR if the primitive is a MAP_RESTORE_DATA indication.

If a MAP_NOTICE indication is received instead, the dialogue towards the MSC is terminated and the process returns to idle state.
After creation of the user process the service primitive received from the MAP service-provider is passed to the user process. Henceforth, the coordinator will relay all service primitives from MAP service-provider to the MAP service-user and vice versa, until a request or indication for dialogue termination is received. This last primitive will be relayed, too, before the Coordinator process returns to idle state.
�Figure 16.1/1: Process Location_Management_Coordinator_MSC
�
�Figure 16.1/2: Process Location_Management_Coordinator_VLR
�
�Figure 16.1/3: Process Location_Management_Coordinator_HLR
�
�16.1.1	Location updating
16.1.1.1	General
The location updating procedure is used to update the location information held in the network. This location information is used to route incoming calls, short messages and unstructured supplementary service data to the roaming subscriber. Additionally, this procedure is used to provide the VLR with the information that a subscriber already registered, but being detached, is reachable again (IMSI Attach, see TS GSM 03.12). The use of this Detach / Attach feature is optional for the network operator.
To minimize the updates of the subscriber's HLR, the HLR holds only information about the VLR and MSC the subscriber is attached to. The VLR contains more detailed location information, i.e. the location area the subscriber is actually roaming in. Therefore, the VLR needs to be updated at each location area change (see figure 16.1.1/1 for this procedure), whereas the HLR needs updating only in the following cases:
 -	when the subscriber registers in a new VLR, i.e. the VLR has no data for that subscriber;

 -	when the subscriber registers in a new location area of the same VLR and new routing information is to be provided to the HLR (change of MSC area);

 -	if the indicator "Confirmed by HLR" or the indicator "Location Information Confirmed in HLR" is set to "Not Confirmed" because of HLR or VLR restoration, and the VLR receives an indication that the subscriber is present.

If a mobile subscriber registers in a visitor location register (VLR) not holding any information about this subscriber and is identified by a temporary mobile subscriber identity (TMSI) allocated by a previous visitor location register (PVLR), if the PVLR identity can be derived from LAI the new VLR must obtain the IMSI from PVLR to identify the HLR to be updated (see figure 16.1.1/2). If the IMSI cannot be retrieved from PVLR, it is requested from the MS (see figure 16.1.1/3).
The following MAP services are invoked by the location update procedure:
MAP_UPDATE_LOCATION_AREA	(see subclause 6.1);
MAP_UPDATE_LOCATION		(see subclause 6.1);
MAP_CANCEL_LOCATION		(see subclause 6.1);
MAP_INSERT_SUBSCRIBER_DATA	(see subclause 6.8);
MAP_SEND_IDENTIFICATION		(see subclause 6.1);
MAP_PROVIDE_IMSI		(see subclause 6.9);
MAP_AUTHENTICATE		(see subclause 6.5);
MAP_SET_CIPHERING_MODE	(see subclause 6.6);
MAP_FORWARD_NEW_TMSI		(see subclause 6.9);
MAP_CHECK_IMEI		(see subclause 6.7);
MAP_ACTIVATE_TRACE_MODE	(see subclause 7.2);
MAP_TRACE_SUBSCRIBER_ACTIVITY	(see subclause 7.2).
�ÚÄÄÄÄ¿ ÚÄÄÄÄ¿ A ÚÄÄÄÄ¿ B ÚÄÄÄÄ¿�³ MS ³ÄÄÄÄÄÄÄ³ BS ³ÄÄÄÄÅÄÄÄÄÄÄ´MSC ³ÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄ³VLR ³�ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ� ³ ³ ³ � ³ A_LU_REQUEST ³ ³ � ³---------------------------->³ MAP_UPDATE_ ³ � ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ LOCATION_AREA ³ � ³ (note 1) ³ ³ � ³ ³ MAP_AUTHENTICATE ³ � ³<----------------------------³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ MAP_AUTHENTICATE ack ³ � ³---------------------------->³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ (note 2) ³ � ³ ³ ³ � ³ ³MAP_SET_CIPHERING_MODE ³ � ³<----------------------------³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ ³ � ³ ³ MAP_TRACE_SUBSCRIBER_ ³ � ³ ³ ACTIVITY ³ � ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ ³ � ³ ³ MAP_CHECK_IMEI ³ � ³<----------------------------³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ MAP_CHECK_IMEI ack ³ � ³---------------------------->³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³ � ³ ³ MAP_FORWARD_NEW_TMSI ³ � ³<----------------------------³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ ³ � ³ ³ MAP_UPDATE_LOCATION_ ³ � ³ A_LU_CONFIRM ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³<----------------------------³ AREA ack ´ � ³ ³ ³ � ³ ³MAP_FORW._NEW_TMSI ack ³ � ³---------------------------->³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³ � ³ ³ ³ �
NOTE 1:	For details of the procedure on the radio path, see TS GSM 04.08. The services shown in dotted lines indicate the trigger provided by the signalling on the radio path, and the signalling triggered on the radio path.
NOTE 2:	Optional services are printed in italics.
Figure 16.1.1/1: Interface and services for location updating when roaming within an visitor location registers area (without need to update HLR)
�ÚÄÄÄÄ¿ ÚÄÄÄÄ¿ A ÚÄÄÄÄ¿ B ÚÄÄÄÄ¿ D ÚÄÄÄÄ¿�³ MS ³-³ BS ³--Å--³MSC ³ÄÄÄÅÄÄÄÄ³VLR ³ÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄ³HLR ³�ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÂÄÙ ÀÄÄÂÄÙ� ³ ³ � ³ G ÚÄÄÄÄ¿ D ³ � ÀÄÄÄÄÄÅÄÄÄÄÄ´PVLRÃÄÄÄÄÅÄÄÄÄÄÙ � ÀÄÄÄÄÙ � ³ A_LU_REQUEST ³ ³ ³ ³ � ³---------------->³ MAP_UPDATE_ ³ ³ ³ � ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ ³ � ³ ³ LOCATION_AREA³MAP_SEND_IDENTIFICATION ³ � ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ � ³ ³ ³ ³ ³ � ³ ³ ³MAP_SEND_IDENTIFICATION ³ � ³ ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ³ ³ ³ ack ³ � ³ ³ ³ ³ � ³ ³ ³ MAP_UPDATE_LOCATION ³ � ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ´ � ³ ³ ³ ³ � ³ ³ ³ ³MAP_CANCEL_ ³ � ³ ³ ³ ³ LOCATION ³ � ³ ³ ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄ´ � ³ ³ ³ ³ ³ � ³ ³ ³ ³MAP_CANCEL_ ³ � ³ ³ ³ ³LOCATION ack ³ � ³ ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³ ³ ³ � ³ ³ ³MAP_ACTIVATE_TRACE_MODE ³ � ³ MAP_TRACE_SUBSCR³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ³ � ³ ³ _ACTIVITY ³ ³ � ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄ³ ³ � ³ ³ ³MAP_ACTIVATE_TRACE_MODE ack³ � ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ � ³ ³ ³ ³ � ³ ³ ³MAP_INSERT_SUBSCRIBER_DATA ³ � ³ ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ´ � ³ ³ ³ ³ � ³ ³ ³MAP_INSERT_SUBSCR._DATA ack³ � ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ´ � ³ ³ ³ ³ � ³ ³ ³MAP_UPDATE_LOCATION ack ³ � ³ ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ´ � ³ ³ MAP_UPDATE_ ³ ³ � ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄ³ ³ � ³ A_LU_CONFIRM ³LOCATION_AREA ack ³ � ³<----------------³ ³ ´ � ³ ³ ³ ³ � ³ ³ ³ ³ � ³ ³ ³ ³ � ³ ³ ³ ³ � ³ ³ ³ ³

NOTE:	The optional procedures in figure 16.1.1/1 apply here respectively.
Figure 16.1.1/2: Interface and services for location updating when changing the VLR area
�ÚÄÄÄÄ¿ ÚÄÄÄÄ¿ A ÚÄÄÄÄ¿ B ÚÄÄÄÄ¿ D ÚÄÄÄÄ¿�³ MS ³----³ BS ³---³---³MSC ³ÄÄÄÄÄÄÅÄÄÄÄÄÄ´VLR ³ÄÄÄÄÄÄÅÄÄÄÄÄÄ´HLR ³�ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ� ³ G ÚÄÄÄÄ¿ D ³ � ÀÄÄÄÅÄÄ´PVLRÃÄÄÅÄÄÄÄÙ � ÀÄÄÄÄÙ � ³ A_LU_REQUEST ³ ³ ³ � ³--------------------->³ MAP_UPDATE_ ³ ³ � ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ � ³ ³ LOCATION_AREA ³ ³ � ³ ³ ³ ³ � ³ ³ MAP_PROVIDE_IMSI ³ ³ � ³<---------------------³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ ³ � ³ ³ ³ ³ � ³ ³ MAP_PROVIDE_IMSI ³ ³ � ³--------------------->³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ � ³ ³ ack ³MAP_UPDATE_LOCATION³ � ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³ ³ � ³ ³ ³ ³ MAP_CANCEL_³ � ³ ³ ³ ³ LOCATION ³ � ³ ³ ³ ³<ÄÄÄÄÄÄÄÄÄÄÄ´ � ³ ³ ³ ³ ³ � ³ ³ ³ ³ MAP CANCEL ³ � ³ ³ ³ ³LOCATION ack³ � ³ ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³ ³ � ³ ³ ³MAP_ACTIVATE_TRACE_³ � ³ ³ MAP_TRACE_SUB - ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ SCRIBER_ACTIVITY³ MODE ³ � ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ ³ � ³ ³ ³MAP_ACTIVATE_TRACE_³ � ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³ MODE ack ³ � ³ ³ ³ ³ � ³ ³ ³ MAP_INSERT_ ³ � ³ ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ ³ SUBSCRIBER_DATA ³ � ³ ³ ³ ³ � ³ ³ ³ MAP_INSERT_ ³ � ³ ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³SUBSCRIBER_DATA ack³ � ³ ³ ³ ³ � ³ ³ ³MAP_UPDATE_LOCATION³ � ³ ³ MAP_UPDATE_ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ � ³ A_LU_CONFIRM ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ack ³ � ³<---------------------³LOCATION_AREA ack ³ ³ � ³ ³ ³ ³ �
NOTE:	The optional procedures in figure 16.1.1/1 apply here respectively.
Figure 16.1.1/3: Interface and services for location updating involving both a VLR and an HLR, when IMSI can not be retrieved from the previous VLR
�16.1.1.2	Detailed procedure in the MSC
Figure 16.1.1/4 shows the MSC process for location register updating, containing macro calls for:
Receive_Open_Cnf		subclause 21.1;
Authenticate_MSC			subclause 21.5;
Check_IMEI_MSC			subclause 21.6;
Obtain_IMSI_MSC			subclause 21.8;
Trace_Subscriber_Activity_MSC	subclause 21.9.

For structuring purposes, the second part of the process is placed into the macro Update Location Completion MSC, which is specific to this process (see figure 16.1.1/5).
When the VLR receives an A_LU_REQUEST (normal location updating, periodic location updating or IMSI attach) for a subscriber via the radio path, the MSC opens a dialogue to the VLR (MAP_OPEN request without any user specific parameters) and sends a MAP_UPDATE_LOCATION_AREA request, containing the parameters provided in the A_LU_REQUEST by the MS or BSS (for the parameter mapping see TS GSM 09.10).
If the dialogue is rejected or the VLR indicates a fallback to the version 1 procedure (see Receive_Open_Cnf macro in subclause 21.1), the MSC will send an A_LU_Rej towards the MS and terminate the procedure.
If the dialogue is accepted, the VLR will process this updating request, invoking optionally the MAP_PROVIDE_IMSI, MAP_TRACE_SUBSCRIBER_ACTIVITY, MAP_CHECK_IMEI or the MAP_AUTHENTICATE services first (see subclause 16.1.1.3 for initiation conditions, subclause 21 for macros defining the handling of services in the MSC). For these macros there are two possible outcomes:
 -	a positive outcome, in which case the process continues waiting for the MAP_UPDATE_LOCATION_AREA confirmation; or

 -	an error is reported, in which case the process terminates (not applicable for Trace_Subscriber_Activity_MSC, which has only a positive outcome).

After receiving the MAP_UPDATE_LOCATION_AREA indication and handling these optional services, the VLR will decide whether a new TMSI need to be allocated to the subscriber or not.
Updating without TMSI reallocation
If the VLR does not reallocate the TMSI, the MSC will receive a MAP_UPDATE_LOCATION_AREA confirmation next (figure 16.1.1/4).
 -	if there are no parameters with this primitive, updating was successful and a confirmation will be sent to the MS;

 -	if there is an error cause contained in the received primitive, this cause will be mapped to the corresponding cause in the confirmation sent to the MS (see TS GSM 09.10 for the mapping of messages and causes).

�Updating including TMSI reallocation
This case is covered by the macro Update Location Completion MSC given in figure 16.1.1/5. The MSC will upon receipt of a MAP_SET_CIPHERING_MODE request send a ciphering command towards BSS/MS. Thereafter, the MAP_FORWARD_NEW_TMSI indication and the MAP_UPDATE_LOCATION_AREA confirmation are received in arbitrary order, causing a confirmation on the radio path containing both new LAI and new TMSI. If the MAP_UPDATE_LOCATION_AREA confirmation contains any error, the updating request is rejected towards the MS:
 -	the MS will confirm receipt of the new TMSI, resulting in an empty MAP_FORWARD_NEW_TMSI response terminating the dialogue;

 -	if there is no confirmation received from the A-interface, the dialogue is terminated locally.

Before receiving a MAP_UPDATE_LOCATION_AREA confirmation, the MSC may receive a MAP_CHECK_IMEI indication. Handling of this indication, comprising IMEI request towards the MS and IMEI checking request towards the EIR, is given in the macro description in subclause 21.6. The result may either be to return to the state Wait for TMSI or to return to terminate.
Forwarding the Check SS Indication
When the VLR receives a MAP_FORWARD_CHECK_SS_INDICATION_Ind during the Update LOCATION Area process, this indication is relayed to the MS (see TS GSM 09.11 for detailed interworking) and the MSC remains in the current state.
Abort handling
If the VLR receives a MAP_U_ABORT, a MAP_P_ABORT or a premature MAP_CLOSE indication from the VLR during the location update process, the MSC terminates the process by sending an A_LU_CONFIRM containing the error cause Updating Failure to the MS. If the MSC had already confirmed the location update towards the MS, the process terminates without notification towards the A-interface.
If the MSC receives a MAP_NOTICE indication, it issues a MAP_CLOSE and terminates the A-interface dialogue, and the process terminates.
When the procedure is terminated abnormally on the radio path, the dialogue towards the VLR is aborted with the appropriate diagnostic information, and the procedure terminates.
�Figure 16.1.1/4: Process Update_Location_Area_MSC
�
�Figure 16.1.1/5: Macro Update_Location_Completion_MSC
�
�16.1.1.3	Detailed procedure in the VLR
Figure 16.1.1/6 shows the process for location updating in the VLR. The following general macros are used:
Receive_Open_Ind						subclause 21.1;
Receive_Open_Cnf						subclause 21.1;
Authenticate_VLR						subclause 21.5;
Check_IMEI_VLR							subclause 21.6;
Insert_Subscriber_Data_VLR					subclause 21.7;
Obtain_IMSI_VLR to request the IMSI for the subscriber		subclause 21.8;
Activate_Tracing_VLR and Trace_Subscriber_Activity_VLR	subclause 21.9,
Subscriber_Present_VLR						subclause 21.10.

Additionally, the process specific macro
	Location_Update_Completion_VLR, for optional initiation of Ciphering and TMSI reallocation as for acknowledgement of the MAP_UPDATE_LOCATION_AREA service, see figure 16.1.1/7,

and the optional process specific macro
	VLR_Update_HLR to update the HLR and download subscriber data from there, see figure 16.1.1/8,

are invoked by this process.
Process Initiation
The location area updating process will be activated by receiving a MAP_UPDATE_LOCATION_AREA indication from the MSC. If there are parameter errors in the indication, the process is terminated with the appropriate error sent in the MAP_UPDATE_LOCATION_AREA response to the MSC. Else, The behaviour will depend on the subscriber identity received, either an IMSI or an TMSI.
Updating using IMSI
If the subscriber identity is an IMSI, the VLR checks whether the subscriber is unknown (i.e. no IMSI record). If so, the indicator "Location Information Confirmed in HLR" is set to "Not Confirmed" to initiate HLR updating later on. If the IMSI is known, the VLR checks whether the previous location area identification (LAI) provided in the primitive received from the MSC belongs to this VLR. If it does not, the indicator "Location Information Confirmed in HLR" is set to "Not Confirmed" to initiate HLR updating later on. The process may continue in both cases with the authentication check (see below).
Updating using TMSI
If the subscriber identity is a TMSI, the VLR checks whether the previous location area identification (LAI) provided in the primitive received from MSC belongs to an area of this VLR:
 -	if so, the TMSI will be checked. In case of location area change within a VLR, the TMSI should be known and the process may continue with the authentication check. Additionally, the indicator "Location Information Confirmed in HLR" is set to "Not confirmed" and the trace activity status is checked in case the target Location Area Id belongs to a new MSC.

 -	if the TMSI is not known or the subscriber data stored are incomplete, e.g. because the new LA belongs to a different VLR or due to VLR restoration, the indicator "Confirmed by VLR" is set to "Not Confirmed" to initiate HLR updating later on.

�If the subscriber has not already been registered in the VLR, i.e. the previous LAI belongs to a different VLR, the indicators "Confirmed by HLR" and "Location Information Confirmed in HLR" are set to "Not Confirmed" and the VLR checks whether the identity of the Previous VLR (PVLR) is derivable from the previous LAI:
 -	if so, the IMSI and authentication parameters are requested from that VLR using the MAP_SEND_IDENTIFICATION service (see sheet 3 of figure 16.1.1/6), containing the subscriber's TMSI.

 -	if the dialogue is rejected by the PVLR, the process continues requesting the IMSI from the MS. In case the PVLR reverts to the MAP version one dialogue, the VLR will perform the respective procedure of version one, too, with outcomes as for the version two dialogue. Else, the process waits the for the respective MAP_SEND_IDENTIFICATION response from the PVLR:

 -	if the IMSI is received in that primitive, the process continues with the authentication check;

 -	if the IMSI is not received from the previous VLR for any reason, the dialogue to the PVLR is terminated and the IMSI will be requested from the MS;

 -	if a MAP_NOTICE indication is received from the PVLR, the dialogue will be terminated by sending a MAP_CLOSE indication, and the process continues requesting the IMSI from the MS;

 -	if a MAP_P_ABORT or MAP_U_ABORT indication is received from the MSC while waiting for the MAP_SEND_IDENTIFICATION response, the process is terminated;

 -	if a MAP_NOTICE indication is received from the MSC while waiting for the MAP_SEND_IDENTIFICATION response, the dialogue with the PVLR will be aborted by sending a MAP_U_ABORT indication (Remote Operations Failure), the dialogue with the MSC will be terminated by sending a MAP_CLOSE and the process terminates;

 -	if the identity of the previous VLR cannot be derived, the process continues by requesting the IMSI from the MS.

Requesting IMSI from the MS
For requesting the IMSI from the MS, the macro Obtain_IMSI_VLR described in subclause 21.8 is invoked (see figure 16.1.1/6 sheet 3). The outcome will be:
 -	OK, i.e. receipt of IMSI, in which case the process continues with the authentication check described below; or

 -	receipt of an Absent Subscriber error, indicating that the MS did not respond. In this case the System Failure error is reported in the MAP_UPDATE_LOCATION_AREA response towards the MSC and the updating process is terminated;

 -	aborted, i.e. the MSC dialogue has been released while waiting for the IMSI. In this case the updating process is terminated, too.

�Authentication check
After a subscriber identity has been received, either in the service indication or by an explicit request procedure, the VLR checks whether authentication of this identity is required (see figure 16.1.1/6 sheet 2). If so, the authentication macro described in subclause 21.5 is invoked. The outcome of this macro can be:
 -	OK, i.e. the subscriber has been authenticated successfully, in which case the process is continued by setting the indicator "Confirmed by Radio Contact" to "Confirmed" and updating the location information held in the register. Thereafter,
 -	if one or both of the indicators "Confirmed by HLR" and "Location Information Confirmed in HLR" is set to "Not Confirmed", HLR updating is invoked first;
 -	otherwise the process continues with the Location Update Completion VLR macro described below, and the register is updated after successful completion of this macro.

 -	Illegal subscriber, i.e. there was a mismatch between expected and received SRES. The VLR checks whether authentication had been performed using the TMSI, in which case a new authentication attempt with IMSI may be started (VLR operator option).
 -	if so, the process continues by requesting the IMSI from the MS;
 -	else, the Illegal Subscriber error is reported in the MAP_UPDATE_LOCATION_AREA response.

 -	Unknown Subscriber, i.e. the IMSI given is unknown in the HLR. In this case, the subscriber data are deleted in the VLR and the same error is returned in the MAP_UPDATE_LOCATION_AREA response.

 -	Procedure error, i.e. the authentication process was unsuccessful for some other reason, e.g. because of a failure while requesting authentication information from the HLR. In this case the System Failure error is reported in the MAP_UPDATE_LOCATION_AREA response.

 -	Null, indicating impossible dialogue continuation (e.g. termination of the radio path), and leading to procedure termination without any further action.

Updating the HLR
If the HLR is to be updated, the VLR_Update_HLR macro described below is performed, with one of the following results (see sheet 4 of figure 16.1.1/6):
 -	OK, if HLR updating has been completed successfully. The response will contain the HLR number as parameter. Next, the Location_Update_Completion VLR macro is invoked (checking amongst others the roaming restrictions and regional subscription data), and upon successful outcome of this macro the register is updated and the process terminates.

 -	Roaming Not Allowed, qualified by PLMN Roaming Not Allowed if the location information indicates a PLMN for which the subscriber has no subscription or if the subscribers HLR cannot be reached (e.g. SS7 links to the subscribers HPLMN do not yet exist). In this case, the error Roaming Not Allowed qualified by PLMN Roaming Not Allowed is sent in the MAP_UPDATE_LOCATION_AREA response. The Subscriber Data are deleted in the VLR.

 -	if Roaming Not Allowed was qualified by the parameter Operator Determined Barring, the same value is sent in the MAP_UPDATE_LOCATION_AREA response to the MSC. The subscriber data are deleted in the VLR.

 -	Unknown Subscriber, if the subscriber is not known in the HLR. In this case, the subscriber data are deleted in the VLR, and the same error is sent in the MAP_UPDATE_LOCATION_AREA response.

� -	Procedure error, if there occurs some other error during HLR updating (e.g. abort of the connection to HLR):
 -	if the VLR can proceed in stand alone mode (VLR operator option), the Location Update Completion VLR macro is invoked to complete the VLR updating, and the indicator "Confirmed by HLR" remains unchanged;
 -	otherwise, the System Failure error is sent in the MAP_UPDATE_LOCATION_AREA response.

 -	Aborted, indicating that during HLR updating the MSC dialogue has been terminated. In this case, the updating process terminates without any further action.

The macro Location Update Completion VLR
This macro completes the VLR updating process. First, the VLR checks whether there is a roaming restriction for the subscriber (see figure 16.1.1/7):
 -	if the target LA is not allowed for the subscriber due to national roaming restrictions, the error Roaming Not Allowed with cause National Roaming Not Allowed is returned in the MAP_UPDATE_LOCATION_AREA response towards the MSC.

	The subscriber data are not deleted from VLR, to avoid unnecessary HLR updating when roaming into other LAs of the same MSC. An indication that the subscriber is not allowed to roam is set in the VLR (LA Not Allowed Flag set to not allowed). As a consequence the subscriber is not reachable (checked for MTC, SMS and MT USSD) and cannot perform outgoing actions (checked in Access Management).

 -	if the target LA is not allowed for the subscriber because of regional subscription data (Zone Code List) or Roaming Restriction Due To Unsupported Feature stored in the VLR, the error Roaming Not Allowed with cause Location Area Not Allowed is returned towards the MSC in the MAP_UPDATE_LOCATION_AREA response.

	Also in this case the subscriber data are not deleted from VLR, to avoid unnecessary HLR updating when roaming into other LAs of the same MSC. The LA Not Allowed Flag is set to not allowed in the VLR.

 -	if, after check of possible roaming restrictions, the subscriber is allowed to roam in the target LA, the LA Not Allowed Flag is set to allowed (if necessary), the IMSI Detached Flag is set to attached and the process SUBSCRIBER_PRESENT_VLR is started; this may inform the HLR that the subscriber is present again to retry an SMS delivery (see subclause 16.1.1.7). Thereafter, the VLR checks whether TMSI reallocation is required.
 -	if so, the VLR sends a MAP_SET_CIPHERING_MODE request containing:
 -	Ciphering Mode (version 1 GSM); and
 -	Kc, the cipher key to be used.

 -	if IMEI checking is required by the operator, the VLR will invoke the CHECK_IMEI_VLR macro (see subclause 21.6) to initiate both requesting IMEI from the MS and checking of this IMEI towards the EIR. As result either the service is granted, with process continuation as given below, or the service is rejected, in which case the VLR marks the subscriber as detached and returns an Illegal Equipment error in the MAP_UPDATE_LOCATION_AREA response before the process terminates.
 -	the VLR then sends a MAP_FORWARD_NEW_TMSI request containing the new TMSI, and the MAP_UPDATE_LOCATION_AREA response containing no parameters. The process will thereafter wait for the MAP_FORWARD_NEW_TMSI confirm. If this indicates a negative outcome, or if a MAP_P_ABORT or a MAP_U_ABORT primitive is received, the old TMSI is frozen. Subsequent accesses of the MS shall be accepted with both old or new TMSI.

� -	if TMSI reallocation is not required, the VLR invokes the CHECK_IMEI_VLR macro (see subclause 21.6) to initiate both requesting IMEI from the MS and checking of this IMEI towards the EIR, if IMEI Checking is required by the operator. As a result, either the service is granted, in which case the MAP_UPDATE_LOCATION_AREA response is sent without any parameters, or the service is rejected, in which case an Illegal Equipment error is returned in the MAP_UPDATE_LOCATION_AREA response, before the process terminates.

In all cases where the VLR sends a MAP_UPDATE_LOCATION_AREA response to the MSC, the dialogue towards the MSC is terminated by a MAP_CLOSE request with parameter Release Method indicating Normal Release.
The macro VLR Update HLR
This macro is invoked by the VLR process for location updating or by some other process handling the first subscriber access to the network after a register failure in order to perform HLR updating. If the VLR does not know the subscribers HLR (e.g. no IMSI translation exists as there are not yet any SS7 links to the subscribers HPLMN), the error Roaming Not Allowed with cause PLMN Roaming Not Allowed is returned.
If the subscribers HLR can be reached, the VLR opens a dialogue towards the HLR (see figure 16.1.1/8) by sending a MAP_OPEN request without any user specific parameters, together with a MAP_UPDATE_LOCATION request containing the parameters
 -	IMSI, identifying the subscriber;

 -	Location Info, containing the MSC number;

 -	VLR Number, the E.164 address of the VLR, to be used by the HLR when addressing the VLR henceforth (e.g. when requesting an MSRN);

 -	the LMSI as an VLR operator option; this is a subscriber identification local to the VLR, used for fast data base access.

In case the HLR rejects dialogue opening (see subclause 21.1), the VLR will terminate the procedure indicating procedure error. If the HLR indicates version one protocol to be used, the VLR will revert to the version one procedure concerning the dialogue with the HLR, with outcomes as for the version two procedure.
If the HLR accepts the dialogue, the HLR will respond with:
 -	a MAP_INSERT_SUBSCRIBER_DATA indication, handled by the macro Insert_Subs_Data_VLR defined in subclause 21.7;

NOTE:	The HLR may repeat this service several times depending on the amount of data to be transferred to the VLR and to replace subscription data in case they are not supported by the VLR.
 -	a MAP_ACTIVATE_TRACE_MODE indication, handled by the macro Activate_Tracing_VLR defined in subclause 21.9;

 -	a MAP_FORWARD_CHECK_SS_INDICATION_ind. This indication will be relayed to the MSC without any change of the current state.

� -	the MAP_UPDATE_LOCATION confirmation:

 -	if this confirmation contains the HLR Number, this indicates that the HLR has passed all information and that updating has been successfully completed. The VLR is updated using the parameters provided in the service and needed by the VLR. If certain parameters are not needed in the VLR, e.g. because some service is not supported, the corresponding data may be discarded. The VLR sets the "Confirmed by HLR" and "Location information confirmed in HLR" indicators to "Confirmed" to indicate successful subscriber data updating;

 -	if the confirmation contains an User error cause (Unknown Subscriber, Roaming Not Allowed or some other), the process calling the macro continues accordingly. In the last case, the subscriber data are marked as incomplete by setting the indicators "Confirmed by HLR" and "Location information confirmed in HLR" to "Not Confirmed". The same holds if there is a Provider error or a Data error in the confirmation;

 -	a MAP_P_ABORT, MAP_U_ABORT, or MAP_CLOSE indication. In these cases, the subscriber data are marked to be incomplete and the process continues as in the case of an error reported by the HLR;

 -	a MAP_NOTICE indication. Then, the dialogue towards the HLR is terminated, the subscriber data are marked to be incomplete and the process continues as in the case of an error reported by the HLR;

 -	if during HLR updating the VLR receives a MAP_P_ABORT, MAP_U_ABORT or a MAP_CLOSE indication concerning the MSC dialogue, the process is terminated by sending a MAP_U_ABORT request towards the HLR, and subscriber data are marked to be incomplete;

 -	if during HLR updating the VLR receives a MAP_NOTICE indication concerning the MSC dialogue, the dialogue with the MSC is terminated by sending a MAP_CLOSE, the dialogue with the HLR is terminated by sending a MAP_U_ABORT, subscriber data are marked to be incomplete and the process is terminated.

Abort Handling
If the VLR receives a MAP_NOTICE indication from the MSC while waiting for a MAP service primitive, the VLR will terminate the MSC dialogue by sending a MAP_CLOSE and any pending HLR dialogue by sending a MAP_U_ABORT (Remote Operations Failure), and the process is terminated.
�Figure 16.1.1/6 (sheet 1 of 4): Process Update_Location_Area_VLR
�
�Figure 16.1.1/6 (sheet 2 of 4): Process Update_Location_Area_VLR
�
�Figure 16.1.1/6 (sheet 3 of 4): Process Update_Location_Area_VLR
�
�Figure 16.1.1/6 (sheet 4 of 4): Process Update_Location_Area_VLR
�
�Figure 16.1.1/7: Macro Location_Update_Completion_VLR
�
�Figure 16.1.1/8 (sheet 1 of 2): Macro VLR_Update_HLR
�
�Figure 16.1.1/8 (sheet 2 of 2): Macro VLR_Update_HLR
�
�16.1.1.4	Detailed procedure in the HLR
The following macros are used by this process:
 -	Receive_Open_Ind, defined in subclause 21.1;
 -	Check_indication, defined in subclause 21.2;
 -	Insert_Subs_Data_Framed_HLR, described in subclause 16.4.1;
 -	Control_Tracing_HLR, described in subclause 21.9;

and the processes Cancel_Location_HLR (see subclause 16.1.2) and Subscriber_Present_HLR (see subclause 16.1.1.7) are invoked.
The location updating process in the HLR is activated by receipt of a MAP_UPDATE_LOCATION indication (see figure 16.1.1/9):
 -	if there is a parameter problem in the indication, the error Unexpected Data Value is returned in the MAP_UPDATE_LOCATION response (see Check_indication macro defined in subclause 21.2); if the subscriber is not known in the HLR, the error Unknown Subscriber is returned in the response. In either case the process terminates;

-	tracing shall be set to deactive in the VLR

 -	if the VLR address received in the MAP_UPDATE_LOCATION indication differs from the one actually stored against the subscriber, the Cancel_Location_HLR process is started to cancel the subscriber data in the stored VLR (see subclause 16.1.2).

The next action will be to check whether the subscriber is allowed to roam into the PLMN indicated by the VLR Number given in the MAP_UPDATE_LOCATION indication:
 -	if the subscriber is not allowed to roam into the PLMN, the error Roaming not Allowed with cause PLMN Roaming Not Allowed is returned in the MAP_UPDATE_LOCATION response, and the routing information stored (VLR number, MSC Number, LMSI) is deleted (deregistration);

 -	otherwise the HLR database will be updated with information received in the indication. The HLR sets the "MS purged" flag to False and checks whether tracing is required for that subscriber. This is handled by the macro Control_Tracing_HLR described in subclause 21.9.

Thereafter, the macro Insert_Subs_Data_Framed_HLR described in subclause 16.4.1 is invoked. The outcome of this macro may be:
 -	aborted, in which case the process terminates;

 -	error, in which case the error System Failure is returned in the MAP_UPDATE_LOCATION response and the process terminates;

 -	OK, indicating successful outcome of downloading the subscriber data to the VLR.

The SUBSCRIBER_PRESENT_HLR process is then started to alert the Short Message Service Centre, if required (see subclause 16.1.7). Additionally, the MAP_FORWARD_CHECK_SS_INDICATION request is sent to inform the subscriber about an uncertain state of his SS-Data if this is needed due to previous HLR restoration (use of this service may be omitted as an HLR operator option).
Finally the HLR number is returned in the MAP_UPDATE_LOCATION response.
In all cases where the HLR sends a MAP_UPDATE_LOCATION response to the VLR, the dialogue towards the VLR is terminated by a MAP_CLOSE request with parameter Release Method indicating Normal Release.
�Figure 16.1.1/9 (sheet 1 of 2): Process Update_Location_HLR
�
�Figure 16.1.1/9 (sheet 2 of 2): Process Update_Location_HLR
�
�16.1.1.5	Send Identification
16.1.1.5.1	General
This service is invoked by a VLR when it receives a MAP_UPDATE_LOCATION_AREA indication containing a LAI indicating that the subscriber was registered in a different VLR (henceforth called the Previous VLR, PVLR). If the identity of the PVLR is derivable for the VLR (usually if both are within the same network), the IMSI and authentication sets are requested from the PVLR (see subclause 16.1.1.3), using the service described in subclause 6.1.4.
ÚÄÄÄÄ¿ B ÚÄÄÄÄ¿ G ÚÄÄÄÄ¿�³MSC ³-----------³------------³VLR ³ÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄ³PVLR³�ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ� ³ ³ ³ � ³ MAP_UPDATE_LOCATION_ ³ ³ � ³---------------------------->³ ³ � ³ AREA ³ MAP_SEND_ ³ � ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ IDENTIFICATION ³ � ³ ³ ³ � ³ ³ MAP_SEND_ ³ � ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ IDENTIFICATION ack ³ � ³ ³ ³ �
NOTE:	The service shown in dotted lines indicates the trigger provided by other MAP signalling.

Figure 16.1.1/10: Interface and services for Send Identification
16.1.1.5.2	Detailed procedure in the VLR
The VLR procedure is part of the location area updating process described in subclause 16.1.1.3, see also figure 16.1.1/6 sheet 3.
16.1.1.5.3	Detailed procedure in the PVLR
On receipt of a dialogue request for the Send Identification procedure, (see Receive_Open_Ind macro in subclause 21.1), the PVLR will:
 -	terminate the procedure in case of parameter problems;

 -	revert to the MAP version one procedure (Send Parameters with request for IMSI plus authentication sets) in case the VLR indicated version one protocol; or

 -	continue as below, if the dialogue is accepted.

If the PVLR process receives a MAP_NOTICE indication, it terminates the dialogue by sending a MAP_CLOSE request.
If the PVLR process receives a MAP_SEND_IDENTIFICATION indication from the VLR (see figure 16.1.1/11), it checks whether the subscriber identity provided is known:
 -	if so, the IMSI and - if available - authentication parameters for the subscriber are returned in the MAP_SEND_IDENTIFICATION response;

 -	if not, the error Unidentified Subscriber is returned in the MAP_SEND_IDENTIFICATION response.

In all cases where the PVLR sends a MAP_SEND_IDENTIFICATION response to the VLR, the dialogue towards the VLR is terminated by a MAP_CLOSE request with parameter Release Method indicating Normal Release.
�Figure 16.1.1/11: Process Send_Identification_PVLR
�
�16.1.1.6	The Process Update Location VLR
This process is started by some other MAP user process in case the HLR need to be updated due to previous network failure. It is invoked when the subscriber accesses the network, e.g. for mobile originated call set-up, response to paging or supplementary services handling. Here, location updating consists only of invoking the macro VLR_Update_HLR described above (see subclause 16.1.1.3), which performs HLR updating and downloading of subscriber data.
	If updating is successful (OK) the HLR Number is received in the MAP_UPDATE_LOCATION confirm primitive and the process terminates.

	If one of the errors Roaming not Allowed or Unknown Subscriber is received instead, all subscriber data are deleted from the VLR before the process terminates.

	In case some other error occurs during HLR updating, the process simply terminates. Note, in all error cases the initiating restoration flags in VLR remain false, therefore a new HLR updating attempt will be started later on.

NOTE:	This process will be performed independent from the calling process, no coordination is required.
�Figure 16.1.1/12: Process UL_VLR
�
�16.1.1.7	The Process Subscriber Present HLR
The process Subscriber Present HLR is started by the location updating process in HLR to perform actions required for short message alerting. The process checks the Message Waiting Data flag, and if this is set, the macro Alert_Service_Centre_HLR defined in subclause 21.10 is invoked. This macro will alert all service centres from which there are short messages waiting for this subscriber.
�Figure 16.1.1/13: Process Subscriber_Present_HLR
�
�16.1.2	Location Cancellation
16.1.2.1	General
The purpose of this process is to delete a subscriber's record from a previous visitor location register after she has registered with a new visitor location register. The procedure may also be used if the subscriber's record is to be deleted for other operator determined purposes, e.g. withdrawal of subscription, imposition of roaming restrictions or modifications to the subscription which result in roaming restrictions. Location cancellation can be used to enforce location updating including updating of subscriber data in the VLR at the next subscriber access.
In all cases, the process is performed independently of the invoking process (e.g. Location Updating).
The service as described in subclause 6.1.3 is invoked when an HLR receives a MAP_UPDATE_LOCATION indication from a VLR other than that stored in its table for this subscriber. Additionally the service may be invoked by operator intervention. The MAP_CANCEL_LOCATION service is in any case invoked towards the VLR whose identity is contained in the HLR table.
ÚÄÄÄÄ¿ D ÚÄÄÄÄ¿ D ÚÄÄÄÄ¿�³VLR ÃÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄ´HLR ³ÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄ³PVLR³�ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ� ³ ³ ³ � ³ MAP_UPDATE_LOCATION ³ ³ � ³---------------------------->³ ³ � ³ ³ MAP_CANCEL_ ³ � ³ ³ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ LOCATION ³ � ³ ³ ³ � ³ ³ ³ � ³ ³ MAP_CANCEL_LOCATION ³ � ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ³ � ³ ³ ack ´ � ³ ³ ³ �
NOTE:	The service shown in dotted lines indicates the trigger provided by other MAP signalling.
Figure 16.1.2/1: Interface and services for Location Cancellation
16.1.2.2	Detailed procedure in the HLR
The location cancellation process is started by an external process as stated above. The HLR opens a dialogue with the VLR whose identity is contained in the HLR table (MAP_OPEN request without any user specific parameters), sending the MAP_CANCEL_LOCATION request primitive (see figure 16.1.2/2), containing the parameters:
 -	IMSI, to identify the subscriber to be deleted from that VLR;
 -	LMSI, which is included if available in the HLR.

The HLR then waits for the MAP_OPEN confirmation (see macro Receive_Open_Cnf, subclause 21.1), indicating either:
 -	reject of the dialogue (process terminates);

 -	reversion to version one (process will be performed according to MAP version one); or

 -	dialogue acceptance.
�When the VLR accepts the dialogue, it will return a MAP_CANCEL_LOCATION confirmation, containing:
 -	no parameter, indicating successful outcome of the procedure;

 -	a user error, provider error or a data error indicating unsuccessful outcome of the procedure.

In case of unsuccessful outcome or if a MAP_P_ABORT indication has been received, the HLR may repeat the MAP_CANCEL_LOCATION request later, where the number of repeat attempts and time in between are HLR operator options, depending on the error returned by the VLR.
16.1.2.3	Detailed procedure in the VLR
Opening of the dialogue is described in the macro Receive_Open_Ind in subclause 21.1, with outcomes:
 -	reversion to version one procedure;

 -	procedure termination; or

 -	dialogue acceptance, with processing as below.

If the VLR process receives a MAP_NOTICE indication, it terminates the dialogue by sending a MAP_CLOSE request.
If the VLR process receives a MAP_CANCEL_LOCATION indication from the HLR (see figure 16.1.2/3), the parameters are checked first (macro Check_Indication, see subclause 21.2). In case of parameter problems the appropriate error is sent in the MAP_CANCEL_LOCATION response.
If the MAP_CANCEL_LOCATION indication contains both the IMSI and the LMSI, the VLR checks whether the stored IMSI matches the received IMSI. If it does not, the VLR attempts to process the request using the IMSI received from the HLR to define the subscriber record to be deleted.
Thereafter the VLR checks whether the subscriber identity provided is known in the VLR:
 -	if so, the data of the subscriber are deleted from VLR table and a MAP_CANCEL_LOCATION response is returned without any parameters;

 -	if not, location cancellation is regarded as being successful, too, and the MAP_CANCEL_LOCATION response is returned without any parameters.

In either case, after sending the MAP_CANCEL_LOCATION response the VLR process releases any TMSI which may be associated with the IMSI of the subscriber, terminates the dialogue (MAP_CLOSE with Release Method Normal Release) and returns to the idle state.
�Figure 16.1.2/2: Process Cancel_Location_HLR
�
�Figure 16.1.2/3: Process Cancel_Location_VLR
�
�16.1.3	Detach IMSI
16.1.3.1	General
On receipt of an A_LU_REQUEST (DETACH IMSI) indication from the radio interface this procedure invokes the MAP_DETACH_IMSI service described in subclause 6.1.5 in order to inform the visitor location register that a subscriber is no longer reachable (see figure 16.1.3/1), e.g. due to switched off station. This information is used by the VLR to reject mobile terminating calls or short messages without sending page messages on the radio path. The service is unconfirmed as it is likely that the MS is switched off before receiving a confirmation.
The detach IMSI feature is optional for the network operator. The MS is informed by the network whether detach IMSI is to be used or not.
ÚÄÄÄÄ¿ ÚÄÄÄÄ¿ A ÚÄÄÄÄ¿ B ÚÄÄÄÄ¿�³ MS ³ÄÄÄÄÄÄÄ³ BS ³ÄÄÄÄÅÄÄÄÄÄÄ³MSC ³ÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄ³VLR ³�ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ ÀÄÄÄÄÙ� ³ ³ ³ � ³ A_LU_Request ³ ³ � ³---------------------------->³ ³ � ³ (DETACH IMSI) ³ MAP_DETACH_IMSI ³ � ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ ³ �
NOTE:	The service shown in dotted lines indicates the trigger provided by the radio interface (see TS GSM 09.10).
Figure 16.1.3/1: Interface and services for MAP_DETACH_IMSI
16.1.3.2	Detailed procedure in the MSC
The MAP_DETACH_IMSI service is invoked by the MSC when receiving an A_LU_Request (DETACH IMSI) for a subscriber (see figure 16.1.3/2).
The MSC will open the dialogue to the VLR with a MAP_OPEN request containing no user specific parameters. The MAP_DETACH_IMSI request will contain the following parameter received from the radio side (for the mapping see TS GSM 09.10):
 -	Subscriber Id, being either a TMSI or an IMSI.

The MSC then waits for the MAP_OPEN confirmation (see macro Receive_Open_Cnf, subclause 21.1), indicating either:
 -	reject of dialogue (process terminates);

 -	reversion to version one (process will be repeated according to MAP version one); or

 -	dialogue acceptance.

Thereafter, the dialogue is terminated locally by the MSC (MAP_CLOSE request with Release Method Prearranged End).
�16.1.3.3	Detailed procedure in the VLR
When the VLR receives a MAP_DETACH_IMSI indication (see figure 16.1.3/3), it first checks the indication data (macro Check_Indication, see subclause 21.2). Thereafter it is checked whether the subscriber is known:
 -	if the subscriber is unknown the VLR ignores the indication;

 -	if the subscriber is known in the VLR, the IMSI detached flag is set.

The VLR process will terminate the dialogue locally (MAP_CLOSE request with Release Method Prearranged End).
�Figure 16.1.3/2: Process Detach_IMSI_MSC
�
�Figure 16.1.3/3: Process Detach_IMSI_VLR
�
�16.1.4	Purge MS
16.1.4.1	General
When the VLR receives an indication on the O&M interface that the MS record is to be purged (either because of administrative action or because the MS has been inactive for an extended period), this procedure invokes the MAP_PURGE_MS service described in subclause 6.1.6 to request the HLR to set the "MS purged" flag for the MS so that any request for routing information for a mobile terminated call or a mobile terminated short message will be treated as if the MS is not reachable. The message flow is shown in figure 16.1.4/1.
It is optional for the network operator to delete MS records from the VLR, but if the option is used the VLR shall notify the HLR when a record has been deleted.
The O&M process in the VLR must ensure that during the MS purging procedure any other attempt to access the MS record is blocked, to maintain consistency of data.
ÚÄÄÄÄÄ¿ ÚÄÄÄÄÄ¿�³ VLR ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ HLR ³�ÀÄÄÂÄÄÙ ÀÄÄÂÄÄÙ� ³ ³ � ³ MAP_PURGE_MS ³ � ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³ ³ � ³ MAP_PURGE_MS_ack ³ � ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³ � ³ ³ � ³ ³ �

Figure 16.1.4/1: Interface and services for MAP_PURGE_MS
16.1.4.2	Detailed procedure in the VLR
When the VLR receives an indication from O&M that an MS record is to be purged, it invokes the MAP_PURGE_MS service (see figure 16.1.4/2).
The VLR opens the dialogue to the HLR with a MAP_OPEN request containing no user specific parameters. The MAP_PURGE_MS request contains the IMSI of the MS which is to be purged and the VLR number.
The VLR then waits for the MAP_OPEN confirmation (see macro Receive_Open_Cnf, subclause 21.1), indicating one of:
 -	rejection of the dialogue (process terminates);

 -	reversion to version one (process terminates);

 -	dialogue acceptance.

If the HLR accepts the dialogue it returns a MAP_PURGE_MS confirmation, containing no parameter, indicating successful outcome of the procedure.
If a MAP_PURGE_MS confirmation containing a provider error, data error or user error, or a MAP_P_ABORT, MAP_NOTICE or premature MAP_CLOSE indication, has been received, the failure is reported to the O&M interface. Successful outcome of the procedure leads to deletion of the subscriber data and freezing of the TMSI, and is reported to the O&M interface.
�16.1.4.3	Detailed procedure in the HLR
Opening of the dialogue is described in the macro Receive_Open_Ind in subclause 21.1. The possible outcomes are:
 -	termination of the procedure if the AC indicates a version 1 dialogue, as this procedure is defined only for version 2;

 -	termination of the procedure if there is an error;

 -	dialogue acceptance, in which case the procedure is as described below.

If the HLR receives a MAP_NOTICE indication, it terminates the dialogue by sending a MAP_CLOSE request.
If the HLR receives a MAP_PURGE_MS indication (see figure 16.1.4/3), it first checks the indication data (macro Check_Indication, see subclause 21.2). If there is a parameter error the HLR terminates the dialogue by sending a MAP_CLOSE request (local termination). If there is no parameter error the HLR then checks whether the subscriber is known.
 -	if the subscriber is unknown, the HLR reports an error to the O&M interface, and terminates the dialogue by sending a MAP_CLOSE request (local termination);

 -	if the subscriber is known, the HLR checks whether the purging notification came from the VLR where the MS was last registered:

 -	if the received VLR number and the stored VLR number match, the HLR sets the "MS purged" flag for the subscriber and sends a MAP_PURGE_MS response containing an empty result to indicate successful outcome;

 -	if the received VLR number and the stored VLR number do not match, the HLR sends a MAP_PURGE_MS response containing an empty result to indicate successful outcome. Since the MS is known by the HLR to be in a different VLR area, it is not appropriate to block mobile terminated calls or short messages to the MS, but the VLR which initiated the purging procedure can safely purge its record for the MS.

In either cases of successful termination the HLR terminates the dialogue by sending a MAP_CLOSE request.
�Figure 16.1.4/2: Process Purge_MS_VLR
�
�Figure 16.1.4/3: Process Purge_MS_HLR
�
�16.2	Handover procedure
16.2.1	General
The handover between different MSCs is called Inter-MSC handover. The interfaces involved for Inter-MSC handover are shown in figure 16.2/1. Following two Inter-MSC handover procedures apply:
1)	Basic Inter-MSC handover:

	The call is handed over from the controlling MSC, called MSC-A to another MSC, called MSC-B (figure 16.2/1a).

	Figure 16.2/2 shows a successful handover between MSC-A and MSC-B including a request for handover number allocation by MSC-B to VLR-B.

2)	Subsequent Inter-MSC handover:

	After the call has been handed over from MSC-A to MSC-B, a handover to either MSC-A (figure 16.2/1a) or to a third MSC (MSC-B') (figure 16.2/1b) is necessary in order to continue the connection.

Figure 16.2/3 shows a successful subsequent handover.

ÚÄÄÄÄÄÄ¿ E ÚÄÄÄÄÄÄ¿ B ÚÄÄÄÄÄÄ¿�³MSC-A ÃÄÄÄÅÄÄÄ´MSC-B ÃÄÄÄÅÄÄÄ´VLR-B ³�ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ

a) Basic handover procedure MSC-A to MSC-B and subsequent handover procedure MSC-B to MSC-A.
ÚÄÄÄÄÄÄ¿ E ÚÄÄÄÄÄÄ¿ B ÚÄÄÄÄÄÄ¿�³ MSC-AÃÄÄÄÅÄÄÄ´MSC-B ÃÄÄÄÅÄÄÄ´VLR-B ³�ÀÄÄÂÄÄÄÙ ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ� ³ E ÚÄÄÄÄÄÄ¿ B ÚÄÄÄÄÄÄ¿� ÀÄÄÄÄÄÄÄÅÄÄÄ´MSC-B'ÃÄÄÄÅÄÄÄ´VLR-B'³� ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ

b) Subsequent handover procedure MSC-B to MSC-B'.

Figure 16.2/1: Interface structure for handover
The MAP handover procedures achieve the functionality required to set up an MSC-MSC dialogue, to optionally allocate a handover number and to transport BSSAP messages.
The transported BSSAP messages are controlled and handled by the Handover Control Application in the MSCs. This information will be transparent to the MAP protocol. If the MSC receives via the MAP protocol BSSAP messages, this information will be forwarded to the Handover Control Application (shown in the handover SDL diagrams with the internal HO_CA signalling, it is an internal process in the MSC) and vice versa if the Handover Control Application requires the sending of BSSAP messages via the MAP protocol.
�For detailed interworking between the A-interface and MAP procedures, see TS GSM 03.09 and TS GSM 09.10.
ÚÄÄÄÄÄÄ¿ E ÚÄÄÄÄÄÄ¿ B ÚÄÄÄÄÄÄ¿�³MSC-A ÃÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄ´MSC-B ÃÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ´VLR-B ³�ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ� ³ ³ ³ � ³ MAP_PREPARE_HANDOVER ³ ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ ³ � ³ ³ MAP_ALLOCATE_HANDOVER_³ � ³ ³ NUMBER ³ � ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ � ³ ³ ³ � ³ ³ MAP_SEND_HANDOVER_ ³ � ³ ³ REPORT ³ � ³ ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ � ³ ³ ³ � ³ MAP_PREPARE_HANDOVER ack ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ÄÁÄ ÄÁÄ ÄÁÄ � ÄÂÄ ÄÂÄ MAP_SEND_HANDOVER_ ÄÂÄ � ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ � ÄÁÄ ÄÁÄ REPORT ack (note) ÄÁÄ � ÄÂÄ ÄÂÄ ÄÂÄ � ³ MAP_PROCESS_ACCESS_ ³ ³ � ³ SIGNALLING ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ³ MAP_SEND_END_SIGNAL ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ÄÁÄ ÄÁÄ ÄÁÄ � ÄÂÄ ÄÂÄ ÄÂÄ � ³ MAP_FORWARD_ACCESS_ ³ ³ � ³ SIGNALLING ³ ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ ³ � ³ MAP_PROCESS_ACCESS_ ³ ³ � ³ SIGNALLING ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ÄÁÄ ÄÁÄ ÄÁÄ � ÄÂÄ ÄÂÄ ÄÂÄ � ³ MAP_SEND_END_SIGNAL ack ³ ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ ³ � ³ ³ ³ �

NOTE:	This can be sent at any time after the connection between MSC-A and MSC-B is established.
Figure 16.2/2: Example of a successful basic handover procedure to MSC-B
� E ÚÄÄÄÄÄÄ¿ B ÚÄÄÄÄÄÄ¿ � ÚÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄ´MSC-B'ÃÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ´VLR-B'³ � ³ ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ �ÚÄÄÄÄÄÄ¿ ³ E ÚÄÄÄÄÄÄ¿ B ÚÄÄÄÄÄÄ¿ �³MSC-A ÃÄÄÄÄÁÄÄÄÄÅÄÄÄÄÄÄÄ´MSC-B ÃÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ´VLR-B ³ �ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ � ³ ³ ³ � ³ ³ ³ � ³ MAP_PREPARE_HANDOVER ³ ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> Ã ³ � ³ ³ MAP_ALLOCATE_HANDOVER_³ � ³ ³ NUMBER ³ � ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ � ³ ³ ³ � ³ ³ MAP_SEND_HANDOVER_ ³ � ³ ³ REPORT ³ � ³ ´ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ � ³ MAP_PREPARE_HANDOVER ack³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ´ � ³ ³ ³ � ÄÁÄ ÄÁÄ ÄÁÄ � ÄÂÄ ÄÂÄ ÄÂÄ � ³ ³ MAP_SEND_HANDOVER_ ³ � ³ ³ REPORT ack (note) ³ � ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ � ÄÁÄ ÄÁÄ ÄÁÄ � ÄÂÄ ÄÂÄ ÄÂÄ � ³ ³ ³ � ³ MAP_PROCESS_ACCESS_ ³ ³ � ³ SIGNALLING ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ³ ³ ³ � ³ MAP_SEND_END_SIGNAL ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ÄÁÄ ÄÁÄ ÄÁÄ � ÄÂÄ ÄÂÄ ÄÂÄ � ³ MAP_PREPARE_SUBSEQUENT- ³ ³ � ³ HANDOVER ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ � ³ ³ ³ ³ ³ � ³ ³ ³ ³ ³ � ³ MAP_PREPARE_HANDOVER ³ ³ ³ ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ> ³ ³ ³ � ³ ³ ³ MAP_ALLOCATE_HANDOVER_ ³ � ³ ³ ³ NUMBER ³ � ³ ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄ> ³ � ³ ³ ³ ³ ³ � ³ ³ ³ MAP_SEND_HANDOVER_ ³ � ³ ³ ³ REPORT ³ � ³ ³ ´ <ÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄ´ � ³ MAP_PREPARE_HANDOVER ack³ ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ´ ³ ³ � ÄÁÄ ³ ÄÁÄ ³ ÄÁÄ� ÄÂÄ ÄÁÄ ÄÂÄ ÄÁÄ ÄÂÄ� ³ ÄÂÄ ³ ÄÂÄ ³ � ³ ³ ³ ³ ³ � ³ ³ ³ ³ ³ � ³ ³ MAP_SEND_HANDOVER_ ³ ³ � ³ ³ REPORT ack (note) ³ ³ � ³ ÃÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄ> ³ ³ � ÄÁÄ ³ ÄÁÄ ³ ÄÁÄ� ÄÂÄ ÄÁÄ ÄÂÄ ÄÁÄ ÄÂÄ� ³ ÄÂÄ ³ ÄÂÄ ³ � ³ ³ ³ ³ ³ � ³ MAP_PREPARE_SUBSEQUENT- ³ ³ ³ ³ � ³ HANDOVER ack ³ ³ ³ ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ ³ ³ ³ � ³ ³ ³ ³ ³ � ÄÁÄ ³ ÄÁÄ ³ ÄÁÄ�� ÄÂÄ ÄÁÄ ÄÂÄ ÄÁÄ ÄÂÄ� ³ ÄÂÄ ³ ÄÂÄ ³ � ³ ³ ³ ³ ³ � ³ MAP_PROCESS_ACCESS_ ³ ³ ³ ³ � ³ SIGNALLING ³ ³ ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ´ ³ ³ � ³ ³ ³ ³ ³ � ³ MAP_SEND_END_SIGNAL ³ ³ ³ ³ � ³ <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ´ ³ ³ � ³ ³ ³ ³ ³ � ³ ³ ³ ³ ³ � ³ MAP_SEND_END_SIGNAL ack ³ ³ ³ ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ> ³ ³ ³ ³ � ÄÁÄ ³ ÄÁÄ ³ ÄÁÄ� ÄÂÄ ÄÁÄ ÄÂÄ ÄÁÄ ÄÂÄ� ³ ÄÂÄ ³ ÄÂÄ ³ � ³ ³ ³ ³ ³ � ³ The subsequent handover is completed, MSC-B' is ³ � ³ considered as MSC-B. Any further inter MSC-handover ³ � ³ is handled as described for a basic handover. ³ �

NOTE:	This can be sent at any time after the connection between MSC-A and MSC-B is established
Figure 16.2/3: Example of a handover towards a third MSC
�16.2.2	Handover procedure in MSC-A
This subclause describes the handover procedure in MSC-A, including the request for a basic handover to another MSC (MSC-B), subsequent handover to a third MSC (MSC-B') or back to the controlling MSC (MSC-A).
16.2.2.1	Basic handover
When MSC-A has decided that a call has to be handed over to MSC-B, the Handover Control Application in MSC-A requests the MAP application to initiate the MAP_PREPARE_HANDOVER request to MSC-B.
MSC-A opens the dialogue to MSC-B with a MAP_OPEN request containing no user specific parameters and sends a MAP_PREPARE_HANDOVER request. This request may optionally contain an indication that a handover number allocation is not required, targetCellId, for compatibility reasons, and all information required by MSC-B to allocate the necessary radio resources.
If MSC-B accepts the dialogue, it returns a MAP_PREPARE_HANDOVER confirmation containing a handover number, unless the request has included the HO-NumberNotRequired parameter, and BSSAP information which is forwarded to and handled by the Handover Control Application in MSC-A.
Optionally MSC-A can receive, after a MAP_PREPARE_HANDOVER confirmation, a MAP_PROCESS_ACCESS_SIGNALLING indication containing BSSAP information.
When the connection has been established between the MS and MSC-B, MSC-A will be informed by a MAP_SEND_END_SIGNAL indication.
When MSC-A wants to clear the connection with BSS-B, an indication from the Handover Control Application is received in the Map Application to send the MAP_SEND_END-SIGNAL response to MSC-B to close the MAP dialogue.
MSC-A may abort the handover procedure at any time (e.g. if the call is cleared).
16.2.2.2	Handling of access signalling
If required, the Handover Control Application in MSC-A requests the MAP application to invoke the MAP_FORWARD_ACCESS_SIGNALLING request containing the information to be transferred to the A-interface of MSC-B (e.g. call control information).
MAP_FORWARD_ACCESS_SIGNALLING is a non-confirmed service.
MSC-B will then forward the required information to the Handover Control Application. The MAP_FORWARD_ACCESS_SIGNALLING is composed in such a way that the information can be passed transparently to the A-interface for call control and mobility management information. Any response received in MSC-B from the A-interface that should be brought to MSC-A will require a new independent request from the Handover Control Application in MSC-B to MSC-A by invoking a MAP_PROCESS_ACCESS_SIGNALLING request.
16.2.2.3	Other procedures in stable handover situation
During a call and after handover, a number of procedures between MSC-A and BSS-B controlled by or reported to MSC-A may be initiated in both directions by invoking a MAP_FORWARD_ACCESS_SIGNALLING request and reception of a MAP_PROCESS_ACCESS_SIGNALLING indication.
�16.2.2.4	Subsequent handover
When MSC-A receives a MAP_PREPARE_SUBSEQUENT_HANDOVER request, it will start the procedure of handing the call over to a third MSC (MSC-B'), or back to the controlling MSC (MSC-A). If the new handover procedure towards MSC-B' or MSC-A is successful, the handover control application in MSC-A will request the release of the dialogue towards MSC-B by sending the MAP_SEND_END_SIGNAL confirmation.
16.2.2.5	SDL Diagrams
The SDL diagrams on the following pages describe the user processes in MSC-A for the procedures described in this subclause.
The services used are defined in subclause 6.4.
NOTE:	The message primitives HO_CA_MESSAGE used in the SDL-Diagrams are used to show the internal co-ordination between the MAP application and the Handover Control Application. For a detailed description of the co-ordination between the applications for the handover procedure, see TS GSM 03.09.
Note that in case of reception of errors from the MSCs (see the Handover error handling macro), the MAP user reports them to the Handover Control Application and does not take any action except in cases explicitly mentioned in the SDL diagrams.
�Figure 16.2.2/1 (sheet 1 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 2 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 3 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 4 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 5 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 6 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 7 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 8 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 9 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 10 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 11 of 12): Process MSC_A_HO
�
�Figure 16.2.2/1 (sheet 12 of 12): Process MSC_A_HO
�
�16.2.3	Handover procedure in MSC-B
This subclause describes the handover procedure in MSC-B, including the request for a handover from another MSC (MSC-A), subsequent handover to a third MSC (MSC-B') or back to the controlling MSC (MSC-A).
16.2.3.1	Basic handover
Opening of the dialogue is described in the macro Receive_Open_Ind in subclause 21.1.
When MSC-B process receives a MAP_PREPARE_HANDOVER indication from MSC-A, MSC-B requests its associated VLR to provide a handover number, unless the parameter HO-NumberNotRequired is received in the indication.
When the connection between the MS and MSC-B is established on MSC-B, the Handover Control Application will request the MAP application to indicate this event to MSC-A by invoking the MAP_SEND_END_SIGNAL request. When a call is released, MSC-A will inform MSC-B by MAP_SEND_END_SIGNAL response and the MAP dialogue between MSC-A and MSC-B is closed.
16.2.3.2	Allocation of handover number
When a handover number is required, a MAP_ALLOCATE_HANDOVER_NUMBER request will be sent to the VLR. The handover number is received in the MAP_SEND_HANDOVER_REPORT request, and will be included in the MAP_PREPARE_HANDOVER response to MSC-A.
As soon as the call from MSC-A using the handover number arrives in MSC-B, MSC-B shall release the handover number in the VLR using the MAP_SEND_HANDOVER_REPORT response.
16.2.3.3	Handling of access signalling
If required by the Handover Control Application, MSC-B invokes the MAP_PROCESS_ACCESS_SIGNALLING request containing the information received on the A-interface that should be transferred to MSC-A (e.g. call control information).
MAP_PROCESS_ACCESS_SIGNALLING is a non-confirmed service and any response from MSC-A will require a MAP_FORWARD_ACCESS_SIGNALLING request.
16.2.3.4	Other procedures in stable handover situation
During a call and after handover, a number of procedures between MSC-A and BSS-B controlled by or reported to MSC-A may be initiated by involving access signalling transfer in both directions.
16.2.3.5	Subsequent handover
The procedure is used when the Handover Control Application in MSC-B has decided that a call is to be handed over to another MSC (either back to the controlling MSC (MSC-A) or to a third MSC (MSC-B')).
After the MAP_PREPARE_SUBSEQUENT_HANDOVER response is received from MSC-A, MSC-B will await the disconnection of the call. Once the disconnect is complete, MSC-B will inform its VLR by invoking the MAP_SEND_HANDOVER_REPORT confirmation. VLR-B will then release the allocated handover number.
The subsequent handover procedure is shown in figure 16.2/3.
�16.2.3.6	SDL Diagrams
The SDL diagrams on the following pages describe the user process in MSC-B for the procedures described in this subclause.
The services used are defined in subclause 6.4.
NOTE 1:	The message primitives HO_CA_MESSAGE in the SDL-diagrams are used to show the internal co-ordination between the MAP application and the Handover Control Application. For a detailed description of the co-ordination between the applications for the handover procedure, see TS GSM 03.09.
NOTE 2:	The order in the SDL diagrams to allocate first the handover number and then the radio resources is not binding.
�Figure 16.2.3/1 (sheet 1 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 2 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 3 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 4 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 5 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 6 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 7 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 8 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 9 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 10 of 11): Process MSC_B_HO
�
�Figure 16.2.3/1 (sheet 11 of 11): Process MSC_B_HO
�
�16.2.4	Handover error handling macro
This macro is used for the handover procedures to receive errors from the MSCs and from the Handover Control Application at any state of a handover process.
If a MAP_NOTICE indication is received, the Handover Control Application is informed and the actual situation is kept and the Handover Control Application decides how the handover process should continue. In all other cases the MSC is returned to a "NULL" state.
�Figure 16.2.4/1: Macro Receive_error_from_HO_CA_or_MSC
�
�16.2.5	Handover procedure in VLR
16.2.5.1	Allocation of handover number
When receiving the MAP_ALLOCATE_HANDOVER_NUMBER indication, the VLR will determine whether a handover number is available. If no handover number is available, this will be indicated by a MAP_ALLOCATE_HANDOVER_NUMBER response with the appropriate error.
The handover number allocated will otherwise be returned to MSC-B in the MAP_SEND_HANDOVER_REPORT request.
The handover number will be reserved until a MAP_SEND_HANDOVER_REPORT confirmation is received from MSC-B.
16.2.5.2	SDL Diagrams
The SDL diagrams on the following pages describe the user processes in VLR for the procedures described in this subclause.
The services used are defined in subclause 6.4.
�Figure 16.2.5/1 (sheet 1 of 2): Process VLR_B_HO
�
�Figure 16.2.5/1 (sheet 2 of 2): Process VLR_B_HO
�
�16.3	Fault recovery procedures
After a fault of a location register, the fault recovery procedures ensure that the subscriber data in the VLR become consistent with the subscriber data that are stored in the HLR for the MS concerned and that the location information in HLR and VLR reflect accurately the current location of the MS.
The detailed specification of fault recovery procedures of location registers is given in TS GSM 03.07.
16.3.1	VLR fault recovery procedures
The following processes are involved with the restoration of one IMSI record in the VLR:
 -	In case of a location registration request from the MS:
Update_Location_Area_VLR	subclause 16.1.1.3;
Update_Location_HLR		subclause 16.1.1.4.

 -	In case of a mobile terminated call:
PRN_VLR			subclause 18.2.4;
RESTORE_DATA_VLR		subclause 18.2.4;
RESTORE_DATA_HLR		subclause 16.3.3;
ICS_VLR				subclause 18.3.3.

After a restart, the VLR shall erase all IMSI records affected by the failure and shall cause all affected TMSIs and all affected LMSIs to become invalid. There will be no subscriber data or location information stored for an affected mobile station until after the VLR has received either a MAP_PROVIDE_ROAMING_NUMBER indication or a MAP_UPDATE_LOCATION_AREA indication for that mobile station. Restoration of subscriber data in the VLR is triggered individually for each IMSI record by receipt of either of these indications.
Reception of either a MAP_UPDATE_LOCATION_AREA indication or a MAP_PROVIDE_ROAMING_NUMBER indication with an IMSI that is unknown in the VLR causes creation of a skeleton IMSI record that is marked as:
 -	not confirmed by radio contact by the indicator "Confirmed by Radio Contact" (The function of this indicator is described in TS GSM 03.07), and

 -	not confirmed by HLR by the indicator "Confirmed by HLR" (The function of this indicator is described in TS GSM 03.07).

A third indicator "Location Information Confirmed in HLR" is allocated to each IMSI record in the VLR (The function of this indicator is described in TS GSM 03.07).
The indicator "Location Information Confirmed in HLR" shall be checked whenever authenticated radio contact with an MS has been established. The status "Not Confirmed" of this indicator shall force the VLR to invoke the MAP_UPDATE_LOCATION service but it shall never cause rejection of a mobile originated request. The status is changed from "Not Confirmed" to "Confirmed" only after successful completion of a MAP_UPDATE_LOCATION procedure for the MS concerned.
If the VLR serves only one MSC, the indicator "Location Information Confirmed in HLR" is only relevant to the HLR restoration procedure and an initial value must be assigned when an IMSI record is created in the VLR:
 -	if the IMSI record was created due to a roaming number request, the initial value must be set to "Confirmed";

 -	if reception of a MAP_UPDATE_LOCATION_AREA indication causes creation of the IMSI record, the initial value must be "Not Confirmed".

�If the VLR serves more than one MSC, the indicator "Location Information Confirmed in HLR" is used in the VLR restoration procedure as well as in the HLR restoration procedure. When an IMSI record is created in the VLR, the indicator must be set to "Not Confirmed".
VLR restoration triggered by a location registration request
Upon receipt of a MAP_UPDATE_LOCATION_AREA indication, the VLR retrieves authentication data from the HLR by using the MAP_SEND_AUTHENTICATION_INFO service if authentication is required and if no authentication data are available in the VLR for the IMSI concerned (see figure 16.1.1/6).
Receipt of a MAP_UPDATE_LOCATION_AREA indication for an MS whose IMSI is unknown in the VLR or whose data stored in the VLR are marked as "Not Confirmed" by the indicator "Confirmed by HLR" and/or by the indicator "Location Information Confirmed in HLR" forces the VLR to invoke the MAP_UPDATE_LOCATION service after successful authentication, if required. The location updating procedure is performed as described in subclause 16.1.
Any other mobile originated request from an MS whose IMSI is unknown in the VLR or whose subscriber data stored in the VLR are marked as "Not Confirmed" by the indicator "Confirmed by HLR" shall be rejected with error cause "Unidentified Subscriber". This causes the MS to trigger the location registration procedure.
After successful completion of the MAP_UPDATE_LOCATION procedure, the indicators "Confirmed by HLR" and "Location Information Confirmed in HLR" are set to "Confirmed".
The indicator "Confirmed by Radio Contact" is set to "Confirmed" when the radio contact with the MS is authenticated.
VLR restoration triggered by a roaming number request
Figure 16.3/1 illustrates the signalling sequence for restoration of an IMSI record in the VLR triggered by a mobile terminating call set-up.
Upon receipt of a MAP_PROVIDE_ROAMING_NUMBER indication for an IMSI that is unknown in the VLR and for which authentication is required, the VLR retrieves authentication data from the HLR by using the MAP_SEND_AUTHENTICATION_INFO service after an MSRN has been sent to the HLR in the MAP_PROVIDE_ROAMING_NUMBER response.
Receipt of a MAP_PROVIDE_ROAMING_NUMBER indication for an MS whose IMSI is unknown in the VLR or whose data record in the VLR is marked as "Not Confirmed" by the indicator "Confirmed by HLR" forces the VLR to request subscriber data from the HLR by sending a MAP_RESTORE_DATA request which triggers one or more INSERT_SUBSCRIBER_DATA operations from the HLR. The MAP_RESTORE_DATA request may also be used to send the LMSI to the HLR.
The MAP_RESTORE_DATA process in the VLR is described in subclause 18.2.4.
The MAP_RESTORE_DATA process in the HLR is described in subclause 16.3.3.
After successful completion of the MAP_RESTORE_DATA procedure, the indicator "Confirmed by HLR" is set to "Confirmed".
If restoration of an IMSI record was triggered by a MAP_PROVIDE_ROAMING_NUMBER indication (i.e. by a mobile terminating call), the VLR has no valid Location Area Identity information for the MS concerned before successful establishment of the first authenticated radio contact. Upon receipt of a MAP_SEND_INFO_FOR_INCOMING_CALL indication from the MSC (see 5 in figure 16.3/1) for an MS whose subscriber data are marked as "Confirmed" by the indicator "Confirmed by HLR" but not confirmed by radio contact, the VLR shall invoke a "MAP_SEARCH_FOR_MS" instead of a "MAP_PAGE".
�A MAP_SEARCH_FOR_MS shall also be performed if the VLR receives a MAP_SEND_INFO_FOR_MT_SMS indication from the MSC for an MS whose IMSI record is marked as "Confirmed" by the indicator "Confirmed by HLR" but not confirmed by radio contact.
The indicator "Confirmed by Radio Contact" is set to "Confirmed" when authenticated radio contact caused by a mobile originated or a mobile terminated activity is established.
ÚÄÄÄÄÄ¿ (B) ÚÄÄÄÄÄ¿ D ÚÄÄÄÄÄ¿�³ MSC ÃÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄ´ VLR ÃÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄ´ HLR ³�ÀÄÄÄÄÄÙ (no external ÀÄÄÄÄÄÙ ÀÄÄÄÄÄÙ� ³ interface) ³ ³ � ³ ³ ³ � ³ ³ MAP_PROVIDE_ROAMING_NUMBER ³) � ³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´) � ³ ³ PROVIDE_ROAMING_NUMBER_ack ³)1� ³ ³ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³) � ³ ³ ³ � ³ ³MAP_SEND_AUTHENTICATION_INFO³) � ³ (note 1) ³--------------------------->³) � ³ ³SEND_AUTHENTICATION_INFO_ack³)2� ³ ³<---------------------------³) � ³ ³ ³) � ³ ³ MAP_RESTORE_DATA ³ � ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � (³ ³ ³ � (³ ³ MAP_ACTIVATE_TRACE_MODE ³ � (³ (note 2) ³<---------------------------³ � (³ ³MAP_ACTIVATE_TRACE_MODE_ack ³ � (³ ³--------------------------->³ � (³ ³ ³ �4(³ ³MAP_INSERT_SUBSCRIBER_DATA ³) � (³ 1) see subclause 18.2.4 ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ³) � (³ 2) see subclause 21.5 ³ INSERT_SUBSCRIBER_DATA_ack ³)3� (³ 3) see subclauses 16.4.1 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³) � (³ 21.7 ³ ³) � (³ 4) see subclauses 16.3.3 ³ MAP_RESTORE_DATA_ack ³ � (³ 18.2.4 ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ � ³ ³ ³ �ÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄ � ³ ³ ³ � (³MAP_SEND_INFO_FOR_INCOMING_CALL or ³ � (ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ � (³ MAP_SEND_INFO_FOR_MT_SMS ³ ³ � (³ ³ ³ �5(³ MAP_SEARCH_FOR_MS ³ ³ � (³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ-³ ³ � (³ ³ ³ � (³ MAP_SEARCH_FOR_MS_ack ³ ³ � (ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ � (³ ³ ³ � (³MAP_PROCESS_ACCESS_REQUEST ³ ³ � (ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³5) see subclauses 18.3, 20.3³ � ³ ³ ³ �

NOTE 1:	If authentication required.
NOTE 2:	If subscriber tracing active in HLR.
Figure 16.3/1: Procedures related to restoration of VLR in case of mobile terminated call set-up
�16.3.2	HLR fault recovery procedures
The following processes are involved with the restart of the HLR:
 -	HLR_RESTART				subclause 16.3.2;
 -	REC_RESET_IN_VLR			subclause 16.3.2.

In the case of a location registration request from the MS, the following processes are involved with the HLR restoration procedure:
 -	Update_Location_Area_VLR		subclause 16.1.1.3;
 -	Update_Location_HLR			subclause 16.1.1.4.

In the case of a mobile originated service request, the
 -	Macro Process_Access_Request_VLR	subclause 21.4.2; and the
 -	Process Update_Location_HLR		subclause 16.1.1.4,

are involved with the HLR restoration procedure.
For the HLR, periodic back-up of data to non-volatile memory is mandatory.
Data that have been changed in the period of time after the last back-up storage and before the restart of the HLR cannot be recovered by reload from the non-volatile memory. Therefore, a restoration procedure is triggered individually for each IMSI record that has been affected by the HLR fault at the first authenticated radio contact that is established with the MS concerned.
The HLR restoration procedure forces updating of MSC number, VLR number and, if provided by the VLR, LMSI in the HLR. Consistency of subscriber data that are stored in the VLR for an MS that has been affected by a HLR fault with the subscriber data stored in the HLR for this MS will be achieved.
As an implementation option, a notification can be forwarded to the MS to alert the subscriber to check the parameters for supplementary services that allow subscriber controlled input (MAP_FORWARD_CHECK_SS_INDICATION service). If the VLR receives this notification from the HLR it shall forward the notification to the MS.
Figure 16.3/2 illustrates the signalling sequence for HLR restoration.
After a restart, the home location register performs the following actions for the subscriber data records that have been affected by the HLR fault (see figure 16.3/3):
 -	reload all data from the non-volatile back-up;

 -	if the MAP_FORWARD_CHECK_SS_INDICATION service is implemented, mark each subscriber record "SS Check Required" by setting the "Check SS" indicator;

-	set subscriber tracing deactive in the VLR for each of its Mss;

 -	reset the "MS Purged" flag for each of its MSs;

 -	send a MAP_RESET request to the VLRs where its MSs are located (see figure 16.3/4).

The MAP_RESET request contains the HLR number and optionally the HLR Identity List.
When receiving a MAP_RESET indication, the VLR will derive all involved MSs of that HLR either from the HLR Identity List (if present), or from the HLR number. The VLR will then mark these MSs with the indicator "Location Information Confirmed in HLR" set to "Not Confirmed" and will deactivate all subscriber tracings for these Mss (see figure 16.3/5).
�The status "Not Confirmed" of the indicator "Location Information Confirmed in HLR" forces the VLR to invoke the MAP_UPDATE_LOCATION service after establishment of authenticated radio contact with the MS concerned.
The MAP_UPDATE_LOCATION procedure is performed as described in subclause 16.1.
After receipt of the MAP_UPDATE_LOCATION acknowledge containing the HLR number, the status of the indicator "Location Information Confirmed in HLR" is changed to "Confirmed".
If the MAP_UPDATE_LOCATION procedure is unsuccessful for any reason, the status of the indicator "Location Information Confirmed in HLR" remains unchanged except for the case that the IMSI record in the VLR is deleted because either of the errors "Unknown Subscriber" or "Roaming Not Allowed" has been received from the HLR in response to a MAP_UPDATE_LOCATION request.
ÚÄÄÄÄÄ¿ D ÚÄÄÄÄÄ¿ (B) ÚÄÄÄÄÄ¿�³ HLR ÃÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄ´ VLR ÃÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄ´ MSC ³�ÀÄÄÄÄÄÙ ÀÄÄÄÄÄÙ (no external ÀÄÄÄÄÄÙ� ³ MAP_RESET ³ interface) ³ � ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ � ³ ³ ³ � ³ ³³ MAP_UPDATE_LOCATION_AREA ³ � ³ ³³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ � ³ ³³MAP_PROCESS_ACCESS_REQUEST ³ � ³ MAP_UPDATE_LOCATION ³³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ �ÚÄÄ´<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´³ ³ �³ ³ MAP_ACTIVATE_TRACE_MODE ³) ³ �³ ³-------------------------->³) If subscriber tracing ³ �³ ³ ACTIVATE_TRACE_MODE_ack ³) is active in HLR. ³ �³ ³<--------------------------³) ³ �³ ³ MAP_INSERT_SUBSCR_DATA ³ ³ �³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ ³ �³ ³ INSERT_SUBSCR_DATA_ack ³ ³ �³ ³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ �³ ³ MAP_UPDATE_LOCATION_ack ³ MAP_FORWARD_CHECK_SS_ ³ �ÀÄ>ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>ÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³ � ³and MAP_FORWARD_CHECK_SS_ ³ INDICATION ³ � ³ INDICATION (optional) ³ (if received from HLR) ³

Figure 16.3/2: Procedures related to restoration of HLR
�Figure 16.3/3: Process HLR_RESTART
�
�Figure 16.3/4: Process SEND_RESET_TO_VLR
�
�Figure 16.3/5: Process REC_RESET_IN_VLR
�
�16.3.3	VLR restoration: the restore data procedure in the HLR
The MAP_RESTORE_DATA procedure in the HLR (Process RESTORE_DATA_HLR) is described in this subclause; the corresponding procedure in the VLR (RESTORE_DATA_VLR) is described in subclause 18.2.4.
The process RESTORE_DATA_HLR makes use of the following macros:
 -	Receive_Open_Ind			subclause 21.1.1;
 -	Check_Indication				subclause 21.2.1;
 -	Insert_Subs_Data_Framed_HLR		subclause 16.4.1.

The MAP_RESTORE_DATA service is invoked by the VLR after provision of a roaming number in response to a MAP_PROVIDE_ROAMING_NUMBER indication for an unidentified MS (i.e. IMSI unknown in VLR), or for a known MS whose IMSI record is marked as "Not Confirmed" by the indicator "Confirmed by HLR" (see 4 in figure 16.3/1). The process RESTORE_DATA_VLR is shown in figure 18.2/6.
The restore data process in the HLR is activated by receipt of a MAP_RESTORE_DATA indication from the VLR (see figure 16.3/6). If there is a parameter problem in the indication, either of the errors "Unexpected Data Value" or "Data Missing" is returned in the MAP_RESTORE_DATA response; if the subscriber is not known in the HLR, the error "Unknown Subscriber" is returned in the MAP_RESTORE_DATA response. In all of these cases the process in the HLR terminates.
If the MAP_RESTORE_DATA indication is accepted and if the LMSI is received, the HLR updates the LMSI for the IMSI received in the MAP_RESTORE_DATA indication. For this IMSI the HLR sets "subscriber-tracing-not-active-in-VLR" and checks whether tracing is required. This check is handled by the macro "Control_Tracing_HLR" that is described in subclause 21.9. Thereafter, the macro "Insert_Subs_Data_Framed_HLR" that is described in subclause 16.4.1 is invoked. The outcome of the macro Insert_Subs_Data_Framed_HLR is one of:
 -	abort, in which case the process terminates;

 -	error, in which case the HLR returns the error "System Failure" in the MAP_RESTORE_DATA response, and the process terminates;

 -	OK, indicating successful outcome of downloading the subscriber data to the VLR.

After successful completion of the framed MAP_INSERT_SUBSCRIBER_DATA procedure, the HLR Number and, if applicable, the "MS Not Reachable Flag" which is used for SMS, are provided in the MAP_RESTORE_DATA response.
Upon receipt of the MAP_RESTORE_DATA confirmation, the VLR behaves as described in subclause 18.2.4, figure 18.2/6.
�Figure 16.3/6: Process RESTORE_DATA_HLR
�
�16.4	Macro Insert_Subs_Data_Framed_HLR
This macro is used by any procedure invoked in HLR which requires the transfer of subscriber data by means of the InsertSubscriberData operation (e.g. Update Location or Restore Data).
The invocation of the operation is done in a dialogue already opened by the framing procedure. Therefore the latter is the one that handles the reception of the open indication and sends the dialogue close request.
The macro calls the process "Send_Insert_Subs_Data" (see subclause 21.7.4) as many times as it is needed for transferring all subscriber data. This process call is meant to describe two possible behaviours of HLR to handle service requests and confirmations:
 -	either the HLR handles requests and confirmations in parallel; or

 -	the HLR sends the next request only after receiving the confirmation to the previous one.

Another call is done to the macro "Wait_for_Insert_Subscriber_Data" (see subclause 21.7.3). There the reception and handling of the service confirmations is described.
If certain services required for a subscriber are not supported by the VLR (e.g. Advice of Charge Charging Level), this may result in one of the following outcomes:
 -	The HLR stores and sends "Roaming Restriction Due To Unsupported Feature" in a subsequent MAP_INSERT_SUBSCRIBER_DATA service. If "Roaming Restriction Due To Unsupported Feature" is stored in the HLR, the "MSC Area Restricted Flag" shall be set to "restricted". This will prevent MT calls, MT SM and MT USSD from being forwarded to the MSC/VLR;

 -	The HLR stores and sends other induced subscriber data (e.g. a specific barring program) in a subsequent MAP_INSERT_SUBSCRIBER_DATA service. This will cause rejection of mobile originated service requests, except emergency calls.

When the VLR receives regional subscription data (Zone Code List) it may respond with "MSC Area Restricted" in the MAP_INSERT_SUBSCRIBER_DATA response. In this case the "MSC Area Restricted Flag" shall be set to "restricted" in the HLR. This will prevent MT calls, MT SM and MT USSD from being forwarded to the MSC/VLR.
If the HLR neither stores "Roaming Restriction Due To Unsupported Feature" nor receives "MSC Area Restricted" in the MAP_INSERT_SUBSCRIBER_DATA response, the "MSC Area Restricted Flag" in the HLR shall be set to "not restricted".
The SDL diagram is shown in figure 16.4/1.
�Figure 16.4/1: Macro Insert_Subs_Data_Framed_HLR
�
�Blank page
�
Page � PAGE �330��Draft prETS 300 599: August 1996 (GSM 09.02 version 5.3.0

Page � PAGE �331��Draft prETS 300 599: August 1996 (GSM 09.02 version 5.3.0)

