LTE Rel-9 and LTE-Advanced in 3GPP

September 8, 2009
Takehiro Nakamura
NTT DOCOMO, INC.
3GPP TSG-RAN Chairman
Introduction

In 3GPP
- Rel-8 LTE/SAE core specification work has been completed.
- Small improvements are being discussed for Rel-9 LTE/SAE, due to be finalized by end of 2009.
- As LTE Release 10 and beyond, project on LTE-Advanced is on going
 - Study item: LTE-Advanced was approved in March 2008
 - Technology description on LTE-Advanced was submitted to ITU-R WP 5D in June 2009 as a candidate of IMT-Advanced
 - Detailed technical information and self-evaluation results will be provided to ITU-R WP 5D in October

Rel-9 LTE/SAE topics
- Home eNB
- SON (self-organizing networks)
- MBMS
- LCS

LTE-Advanced topics
- Support for wider bandwidth
- Extension of uplink multiple access
- Extension of MIMO techniques
- CoMP (coordinated multiple point transmission and reception)
- Relaying
- Self-evaluation results
LTE Rel-9
Home eNB (HeNB)

- Basic functions for Home eNB are supported in Rel-8.

- HeNB architecture

- CSG (Closed Subscriber Group) control
 - CSG subscription info (allowed CSG ID list) concept in the UE and NW
 - Broadcasting of CSG ID
 - Implementation dependent UE autonomous search for CSG cells
 - No special inbound mobility procedure in Rel-8 to resolve potential PCI confusion
HeNB enhancements in Rel-9

The following enhancements are under discussion:

- **Inbound mobility from macro eNB to HeNB**
 - To resolve PCI confusion at handover (i.e., handover support when different HeNBs neighboring a macro cell are using the same PCI)

- **Support for Hybrid Access modes**
 - Closed access mode: Only UEs belonging to the CSG is entitled to access the cell
 - Hybrid access mode: All UEs are allowed to access the cell, but UEs belonging to the CSG is entitled to access with priority

- **Support of accessibility check in the NW**
 - To provide the support of a secondary access control in the NW in addition to UE’s preliminary access check

- **Local breakout**
 - To reduce load on operator’s core network

- **SON for HeNB**
 - Plug and play
 - Interference coordination

- **Local IP access to home based NW**
- **Local IP access to the Internet**
- **IMS aspect for HeNB**
SON (self-organizing network)

SON is an integral part of LTE. A number of SON features are supported in Rel-8, and work is continuing for Rel-9.

SON solutions can be divided into two categories:

- **Self-configuration**: This function enables the network to automatically perform installation procedure (plug and play)
- **Self-optimisation**: This function enables the network to auto-tune its operational parameters using UE, eNB and performance measurements.

Self-Configuration (pre-operational state)

- **(A) Basic Setup**
 - a-1: configuration of IP address and detection of OAM
 - a-2: authentication of eNB/NW
 - a-3: association to aGW
 - a-4: downloading of eNB software (and operational parameters)

Self-Optimisation (operational state)

- **(B) Initial Radio Configuration**
 - b-1: neighbour list configuration
 - b-2: coverage/capacity related parameter configuration

- **(C) Optimization / Adaptation**
 - c-1: neighbour list optimisation
 - c-2: coverage and capacity control
Rel-8 SON features

The following SON features are supported in Rel-8.

- **Self-configuration:**
 - S1 (eNB – core NW) interface dynamic configuration
 - X2 (inter-eNB) interface dynamic configuration
 - Framework for PCI (Physical Cell ID) selection
 - Automatic neighbor cell discovery

- **Self-optimisation:**
 - Basic intra-LTE mobility load balancing
 - Resource-related information exchange between eNBs over X2 I/F
 - Interference management
 - UL interference-related information exchange between eNBs over X2 I/F

- **Other:**
 - Standardized eNB measurements for multi-vendor SON interworking
For Rel-9, the following self-optimisation features are being discussed.

- **Mobility load balancing**
 - Optimisation of cell reselection/ handover parameters to distribute traffic load across the network.

- **Mobility robustness optimisation**
 - Optimisation of cell reselection/ handover parameters to minimise radio link failures due to mobility.

- **Common channel configuration optimisation**
 - Optimisation of common channel configuration, e.g., random access channel configuration based on eNB measurements.

- **Minimisation of drive tests**
 - Logging and reporting of various measurement data (e.g., location information, radio link failure events, throughputs) by the UE and collection of data in a server to minimise drive tests run by operators.

- **Coverage/ capacity optimisation**
 - Optimisation of system parameters to maximise (adjust to the desired balance between) system coverage and capacity.
E-MBMS functionalities

E-MBMS discussion was postponed in Rel-8 due to lack of time and is continued in Rel-9.

Basic Rel-8 L2/L3 architecture is reused in Rel-9.

E-MBMS in Rel-9 will support the following functionalities:
- Broadcast mode and enhanced broadcast mode
- Static MBSFN area (only)
- One cell belongs to only one MBSFN area
- Multiple non overlapping MBSFN areas in a PLMN
- Broadcast transmission only in a shared carrier deployment (no dedicated carrier)
- MBSFN without feedback (i.e. no ACK/ NACK or counting)
- Signalling support, e.g. MCCH over LTE-Uu

Note that the following functionalities are not supported:
- MBMS in Home eNB
- Mobility procedures to support MBMS continuity

<table>
<thead>
<tr>
<th>C/U-plane</th>
<th>Logical Entity</th>
<th>Function</th>
</tr>
</thead>
</table>
| C-plane | MME (or MBMS GW C-plane) | - Session control
- Session control message filtering for a certain service area (FFS) |
| U-plane | MBMS GW U-plane | - U-plane data IP Multicast transmission
- IP Multicast address allocation for each eNB |
Location service (LCS)

Location method candidates in LTE:
- Cell coverage based positioning method
- OTDOA positioning method
- A-GNSS based positioning methods
- U-TDOA positioning method

Applicability of each method is being evaluated.

General LCS architecture:

The necessary support in each interface (LTE-Uu, S1, SLs, SLg) is under discussion in the relevant 3GPP WGs.
Protocol architecture in the following figures are adopted for LCS in LTE.

- LPP (LTE Positioning Protocol) is terminated between UE and E-SMLC
- LPPa (LTE Positioning Protocol Annex) is terminated between eNB and E-SMLC

Fig.1: Protocol Stack for signaling between UE and E-SMLC

Fig.2: Protocol stack for signaling between eNB and E-SMLC
Other Rel-9 enhancements

- IMS emergency call support
 - Including USIM-less UE support
- PWS (Public Warning System)/ CMAS (Commercial Mobile Alert System) support
 - New SIB to support up to 64 concurrent CMAS notifications
 - S1 procedure modifications to support CMAS transfer
- Vocoder adaptation
 - Based on ECN (RFC3168)
- RLF (Radio Link Failure) enhancements
 - Dedicated configuration of RLF timers
 - GBR bearer handling improvements
- SSAC (service specific access control)
 - Differentiated access control of MMTEL-voice/ video
- CS fallback enhancements
 - Measurement enhancements for faster procedure
 - Simultaneous fallback to CDMA 1xRTT + HRPD
LTE-Advanced
Schedule for IMT-Advanced

<table>
<thead>
<tr>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **5D meetings**
- **ITU WP5D meetings**
- **WRC-07**
- **SDOs and ARIB etc.**
- **3GPP RAN #38**
- **LTE**
- **LTE Advanced CR phase**
- **WS**
- **2nd WS**
- **Technical specifications**

Key Milestones:

- **2007:** Spectrum identified
- **2008:** Circular letter
- **2009:** Initial technology submission of LTE-Advanced
- **2010:** Complete submission incl. self-evaluation of LTE-Advanced
- **2011:** Study item approved in 3GPP

LTE-Advanced – candidate for IMT-Advanced in 3GPP (3rd Generation Partnership Project)
General Requirements

- LTE-Advanced is an evolution of LTE
- All relevant requirements of LTE are valid also for LTE-Advanced
- LTE-Advanced shall meet or exceed IMT-Advanced requirements within the ITU-R time plan
- Targets of LTE-Advanced are adopted as long term targets

![Diagram showing system performance over time with Rel-8 LTE and LTE-Advanced targets]

IMT-Advanced requirements and time plan
System Performance Requirements (1)

Peak data rate and peak spectrum efficiency

<table>
<thead>
<tr>
<th></th>
<th>Rel. 8 LTE</th>
<th>LTE-Advanced</th>
<th>IMT-Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak data rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>300 Mbps</td>
<td>1 Gbps</td>
<td>1 Gbps(*)</td>
</tr>
<tr>
<td>UL</td>
<td>75 Mbps</td>
<td>500 Mbps</td>
<td></td>
</tr>
<tr>
<td>Peak spectrum efficiency [bps/Hz]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>15</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>UL</td>
<td>3.75</td>
<td>15</td>
<td>6.75</td>
</tr>
</tbody>
</table>

“100 Mbps for high and 1 Gbps for low mobility” is one of the key features as written in Circular Letter (CL)

Peak data rate
- 1 Gbps data rate will be achieved by 4-by-4 MIMO and transmission bandwidth wider than approximately 70 MHz

Peak frequency efficiency
- DL: Rel. 8 LTE satisfies IMT-Advanced requirement
- UL: Need to double to satisfy IMT-Advanced requirement
System Performance Requirements (2)

Capacity and cell-edge user throughput

<table>
<thead>
<tr>
<th></th>
<th>Ant. Config.</th>
<th>Rel. 8 LTE</th>
<th>LTE-Advanced*</th>
<th>IMT-Advanced**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity [bps/Hz/cell]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>2-by-2</td>
<td>1.69</td>
<td>2.4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>4-by-2</td>
<td>1.87</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>4-by-4</td>
<td>2.67</td>
<td>3.7</td>
<td>–</td>
</tr>
<tr>
<td>UL</td>
<td>1-by-2</td>
<td>0.74</td>
<td>1.2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2-by-4</td>
<td>–</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Cell-edge user throughput [bps/Hz/cell/user]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>2-by-2</td>
<td>0.05</td>
<td>0.07</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>4-by-2</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>4-by-4</td>
<td>0.08</td>
<td>0.12</td>
<td>–</td>
</tr>
<tr>
<td>UL</td>
<td>1-by-2</td>
<td>0.024</td>
<td>0.04</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2-by-4</td>
<td>–</td>
<td>0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* For Case 1 scenario in 3GPP
** For Base Coverage Urban scenario in IMT.EVAL

DL/UL: Need further improvements to satisfy IMT-Advanced requirements on capacity and cell-edge user throughput

- DL/UL: Need further improvements to satisfy IMT-Advanced requirements on capacity and cell-edge user throughput.
Support of wider bandwidth
- Carrier aggregation to achieve wider bandwidth
- Support of spectrum aggregation
 ➔ Peak data rate, spectrum flexibility

Multiple access and radio parameters
- Rel. 8 LTE based multiple access per component carrier
- Same radio parameters as those of Rel. 8 LTE
 ➔ Backward compatibility

Advanced MIMO techniques
- Extension to up to 8-layer transmission in downlink
- Introduction of single-user MIMO up to 4-layer transmission in uplink
 ➔ Peak data rate, capacity, cell-edge user throughput

Coordinated multipoint transmission and reception (CoMP)
- CoMP transmission in downlink
- CoMP reception in uplink
 ➔ Cell-edge user throughput, coverage, deployment flexibility

Relaying
- Type 1 relays create a separate cell and appear as Rel. 8 LTE eNB to Rel. 8 LTE UEs
 ➔ Coverage, cost effective deployment
Carrier Aggregation for Wider Bandwidth

- Wider bandwidth transmission using carrier aggregation
 - Entire system bandwidth up to, e.g., 100 MHz, comprises multiple basic frequency blocks called component carriers (CCs)
 - Satisfy requirements for peak data rate
 - Each CC is backward compatible with Rel. 8 LTE
 - Maintain backward compatibility with Rel. 8 LTE
 - Carrier aggregation supports both contiguous and non-contiguous spectrum, and asymmetric bandwidth for FDD
 - Achieve flexible spectrum usage

System bandwidth, e.g., 100 MHz

- CC, e.g., 20 MHz

UE capabilities

- 100-MHz case
- 40-MHz case
- 20-MHz case (Rel. 8 LTE)
Downlink Multiple Access Scheme

- **Downlink**: OFDMA with component carrier (CC) based structure
 - Priority given to reusing Rel. 8 specification for low-cost and fast development
 - One transport block (TB), which corresponds to channel coding block and retransmission unit, is mapped within one CC
 - Parallel-type transmission for multi-CC transmission
 - Good affinity to Rel. 8 LTE specifications
 - No additional frequency diversity gain from Rel. 8 LTE
Uplink Multiple Access Scheme

- **Uplink:** N-times DFT-Spread OFDM
 - Achieve wider band transmission by avoiding physical uplink control channel (PUCCH)
 - Satisfy requirements for peak data rate while maintaining backward compatibility
 - Adopt parallel-type transmission for multi-CC transmission allowing increase in peak-to-average power ratio (PAPR)
 - Reuse Rel. 8 specification for low-cost and fast development

Diagram:

```
PUCCH region  CC  CC
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PUSCH (Physical uplink shared channel)
```

“N-times DFT-Spread OFDM”
Advanced MIMO techniques in Downlink

- Extension up to 8-stream transmission
 - Rel. 8 LTE supports up to 4-stream transmission, LTE-Advanced supports up to 8-stream transmission

 ➤ Satisfy requirement for peak spectrum efficiency, i.e., 30 bps/Hz

- Specify additional reference signals (RS)
 - Two RSs are specified in addition to Rel. 8 common RS (CRS)
 - Channel state information RS (CSI-RS)
 - UE-specific demodulation RS (DM-RS)
 - UE-specific DM-RS, which is precoded, makes it possible to apply non-codebook based precoding
 - UE-specific DM-RS will enable application of enhanced multi-user beamforming such as zero forcing (ZF) for, e.g., 4-by-2 MIMO

Higher-order MIMO up to 8 streams

Enhanced MU-MIMO

Max. 8 streams

CSI feedback
Introduction of single user (SU)-MIMO up to 4-stream transmission

- Whereas Rel. 8 LTE does not support SU-MIMO, LTE-Advanced supports up to 4-stream transmission
 ➔ Satisfy requirement for peak spectrum efficiency, i.e., 15 bps/Hz

Signal detection scheme with affinity to DFT-Spread OFDM for SU-MIMO

- Turbo serial interference canceller (SIC) is assumed for eNB receiver to achieve higher throughput performance for DFT-Spread OFDM
 ➔ Improve user throughput maintaining single-carrier based signal transmission

Max. 4 streams

SU-MIMO up to 4 streams
Downlink CoMP Transmission

- CoMP transmission schemes in downlink
 - Joint processing (JP)
 - Joint transmission (JT): Downlink physical shared channel (PDSCH) is transmitted from multiple cells with precoding using DM-RS among coordinated cells
 - Dynamic cell selection: PDSCH is transmitted from one cell, and the cell is dynamically selected
 - Coordinated scheduling/beamforming (CS/CB)
 PDSCH is transmitted only from one cell site, and scheduling/beamforming is coordinated among cells

- CSI feedback (FB)
 - Explicit CSI FB (direct channel FB) is investigated to conduct precise precoding, as well as implicit CSI FB (precoding matrix index FB) based on Rel. 8 LTE ➔ Tradeoff between gain and FB signaling overhead

Coherent combining or
dynamic cell selection

Joint transmission/dynamic cell selection

Coordinated scheduling/beamforming
CoMP reception scheme in uplink

- Physical uplink shared channel (PUSCH) is received at multiple cells
- Scheduling is coordinated among the cells
 - Improve especially cell-edge user throughput
- Note that CoMP reception in uplink is implementation matter and does not require change of radio interface

Receiver signal processing at central eNB (e.g., MRC, MMSEC)

Multipoint reception
Relaying use cases

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Mobility</th>
<th>Hops</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Hot Spot</td>
<td>Fixed, Nomadic</td>
<td>Two hops</td>
<td>Coverage and Throughput</td>
</tr>
<tr>
<td>Dead Spot</td>
<td>Fixed</td>
<td>Two hops or Multi-hops</td>
<td>Coverage</td>
</tr>
<tr>
<td>Indoor Hot Spot</td>
<td>Fixed, Nomadic</td>
<td>Two hops</td>
<td>Throughput</td>
</tr>
<tr>
<td>Rural Area</td>
<td>Fixed</td>
<td>Two hops</td>
<td>Coverage and Throughput</td>
</tr>
<tr>
<td>Emergency or Temporary Coverage</td>
<td>Nomadic</td>
<td>Two hops or Multi-hops</td>
<td>Coverage and Throughput</td>
</tr>
<tr>
<td>Wireless Backhaul only</td>
<td>Fixed</td>
<td>Two hops or Multi-hops</td>
<td>Coverage or Throughput</td>
</tr>
<tr>
<td>Group Mobility</td>
<td>Mobile</td>
<td>Two hops</td>
<td>Throughput</td>
</tr>
</tbody>
</table>
Type 1 (Layer 3) relaying

- **Type 1 relaying** is assumed as one type of relaying (other types are FFS).
 - Layer 3 (RRC) is terminated in Relay Node for the Uu (Relay Node – UE) interface.
 - L1/L2 signaling (CQI, HARQ, etc) is performed between Relay Node and UE.
 - Un (Donor eNB – Relay Node) transmission is time multiplexed with Uu for UEs connected to the Relay Node.
 - Relay Node has their own PCI (physical cell identity).

→ From a Rel-8 UE, a Relay Node is seen as Rel-8 eNB.

![Diagram of Type 1(Layer 3) relaying](image)

- **Core Node**
- **Donor eNB**
- **Relay Node**
- **UE**

- **SDU assembly**
- **PDU processing**
- **eNB functionality**
- **Decoding**
- **Encoding**
- **Amplifier**

TDM

- **Uu**
- **Un** (wireless)

Diagram showing the flow of data from Core Node to UE via Donor eNB and Relay Node.
Self-evaluation results

Self-evaluation for LTE-Advanced was conducted in 3GPP

The self-evaluation results shows:

Baseline configuration exceeding ITU-R requirements with minimum extension

- LTE release 8 fulfills the requirements in most cases (no extensions needed)
- Minor extensions in some scenarios (Urban Macro/Micro DL)

More advanced configurations with further enhanced performance

- Many (18) companies participated in simulations
 - **High reliability**

Self evaluation results will be captured in Technical Report TR 36.912 and provided to ITU-R WP 5D meeting in October.