3GPP TR 32.880 V0.8.1 (2017-11)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication management;

Study on implementation for the partitioning of Itf-N
(Release 15)
[image: image1.jpg]s

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4
Background
6
5
Study on grouping IRP functionality for Itf-N
7
5.1
Configuration Management (CM)
7
5.2
Performance Management (PM)
7
5.3
Fault Management (FM)
7
5.3.1
getAlarmLists
7
5.3.2
notifyNewAlarm
8
5.3.3
notifyClearedAlarm
8
5.4
File Transfer (FT)
8
5.4.1
notifyFileReady
8
5.4.2
notifyFilePreparationError
8
6
Analysis on diverse solution sets for Itf-N
9
6.1
Overview
9
6.1.1
CORBA
9
6.1.1.1
Overview and concepts
9
6.1.1.2
Interoperation
9
6.1.1.3
Features
10
6.1.2
SOAP
10
6.1.2.1
Overview and concepts
10
6.1.2.2
Interoperation
10
6.1.2.3
Features
11
6.1.3
Protocols based on Socket API
11
6.1.3.1
Overview and concepts
11
6.1.3.2
Interoperation
12
6.1.3.3
Features
12
6.2
Comparative analysis
12
6.2.1
Overview and concepts
12
6.2.2
Complexity
13
6.2.3
Performance
14
6.3
Business consequence
14
7
Recommendation for IRP solution sets for Itf-N
14
8
Conclusions
15
Annex <A>: Change history
16

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Refer to actual network operation & maintenance, a subset of IRP requirements on Itf-N has been described in TR 32.861 [2] based on existing TS 32-series specifications. In order to put it into practice, both functionalities and solution sets for the simplified Itf-N are urgently needed to be studied. The present document is subsequent study to TR 32.861 [2] (Study on Application and Partitioning of Itf-N), which also takes existing 32-series specifications into consideration.
The present document aims to provide one solution sets for requirements of Itf-N raised by TR 32.861 [2].
1
Scope

The present document examines the IRP Information Service (IS) of Itf-N from existing TS 32-series specifications and identifies one subset of IRP functionality according to the IRP requirements in TR 32.861 [2], also studies diverse solution sets and compares them between each other on efficiency and complexity. Finally, the present document gives a suggestion of one or more solution set(s) for above identified IS subset.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TR 32.861: "Study on Application and Partitioning of Itf-N".
[3]
3GPP TS 32.111-2: "Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)".
[4]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP); Information Service (IS)".
[5]
3GPP TS 32.312: "Telecommunication management; Generic Integration Reference Point (IRP) management; Information Service (IS)".
[6]
3GPP TS 32.342: "Telecommunication management; File Transfer (FT) Integration Reference Point (IRP); Information Service (IS)".
[7]
3GPP TS 32.352: "Telecommunication management; Communication Surveillance (CS) Integration Reference Point (IRP); Information Service (IS)".
[8]
3GPP TS 32.412: "Telecommunication management; Performance Management (PM) Integration Reference Point (IRP): Information Service (IS)".
[9]
3GPP TS 32.612: "Telecommunication management; Configuration Management (CM); Bulk CM Integration Reference Point (IRP): Information Service (IS)".
[10]
OMG, Common Object Request Broker Architecture (CORBA) Specification, Part 1 – Interfaces, Version 3.3, http://www.omg.org/spec/CORBA/3.3/Interfaces/PDF
[11]
W3C, SOAP Version 1.2 Part 0: Primer (Second Edition), https://www.w3.org/TR/soap12-part0/
[12]
3GPP TR 32.809 (V7.0.0): "Feasibility Study of XML-based (SOAP/HTTP) IRP Solution Sets"

[13]
IETF RFC-147: "The Definition of a Socket", https://tools.ietf.org/html/rfc147
[14]
IETF RFC-6458: "Sockets API Extensions for the Stream Control Transmission Protocol (SCTP)", https://tools.ietf.org/html/rfc6458
3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2
Symbols

void
3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

CM
Configuration Management
EMS
Element Management System
FM
Fault Management

IRP
Integration Reference Point

IS
Information Service
NMS
Network Management System
NRM
Network Resource Model
PM
Performance Management
SS
Solution Set
4
Background
In order to keep the stability of Itf-N and improve the efficiency of network maintenance for operators, a study on partitioning of Itf-N has been carried out in TR 32.861 [2]. The report provides a subset of IRP requirements which consist of Fault Management (FM), Performance Management (PM) and Configuration Management (CM). The subset of IRP requirements is listed as following:
-
FM
-
Real-time forwarding of alarm reports
-
Real-time forwarding of Alarm clearing message
-
Retrieval of current alarm information on NM request
-
PM

-
Transfer of performance measurements
-
CM

-
Transfer of NRM data when needed
Based on above study, IRP requirements are simplified according to actual practice of operators. To simply Itf-N further, a "better" implementation is necessary. By examining the exist IRP Information Service, choose the most appropriate subsets of functionalities which satisfy the all the requirements in TR 32.861 [2]. Then the solution sets should be carefully studied by analysing the complexity and performance of each interface protocol. Meanwhile, business consequence must be taken into account when making a decision of "better" SS.
5
Study on grouping IRP functionality for Itf-N

5.1
Configuration Management (CM)
According to the subset of requirements of Configuration Management (see TR 32.861 [2], clause 6.3), the IRPAgent should create files containing configuration data on the demand of the IRPManager or automatically on a presented schedule. IRPManager and IRPAgent should have an agreement on the NRMs for the configuration data.
Data files shall be transferred through file transfer mechanism covered by the File Transfer IRP IS (see TS 32.342 [6]).

When the files have been prepared, IRPAgent emits the notifyFileReady notification (see clause 5.4.1) to subscribed IRPManager(s). An IRPManager can request to transfer the files appropriately according to the file information. The subscribed IRPManager(s) are notified by notifyFilePreparationError (see clause 5.4.2) regarding the occurrence of an error during the preparation of the file.

5.2
Performance Management (PM)
According to the subset of requirements of Performance Management (see TR 32.861 [2], clause 6.2), the operations and notifications of PM IRP IS are not needed. The IRPAgent should create files containing performance measurement data automatically on a presented schedule. IRPManager and IRPAgent should have an agreement on the scope of measurementTypes.

Data files shall be transferred through file transfer mechanism covered by the File Transfer IRP IS (see TS 32.342 [6]).

When the files have been prepared, IRPAgent emits the notifyFileReady notification (see clause 5.4.1) to subscribed IRPManager(s). An IRPManager can request to transfer the files appropriately according to the file information. The subscribed IRPManager(s) are notified by notifyFilePreparationError (see clause 5.4.2) regarding the occurrence of an error during the preparation of the file.

 5.3
Fault Management (FM)
5.3.1
getAlarmLists
(Quote from TS 32.111-2 [3], version 12.1.0, clause 6.3.2.1)

"The IRPManager invokes this operation to request the AlarmIRP to provide either the complete list of AlarmInformation instances in the AlarmList or only a part of this list (partial alarm alignment).

The parameters baseObjectClass and baseObjectInstance are used to identify the part of the alarm list to be returned. If they are absent, then the complete alarm list shall be provided (full alarm alignment). If they identify a particular class instance, then only a) the AlarmInformation instances related to this class instance and b) the AlarmInformation instances related to the subordinate class instances of this class instance shall be provided (partial alarm alignment). An instance-a is said to be subordinate to instance-b if the DN of the latter is part of the DN of the former.

There are two modes of operation. One mode is synchronous. In this mode, the list of AlarmInformation instances in AlarmList is returned synchronously with the operation. The other mode is asynchronous. In this mode, the list of AlarmInformation instances is returned via notifications. In asynchronous mode of operation, the only information returned synchronously is the status of the operation. A method allowing to abort an ongoing alarm alignment process shall be available in the asynchronous mode. The mode of operation to be used is determined by means outside the scope of specification. To use asynchronous mode, the IRPManager must have established a subscription with the NotificationIRP via the subscribe operation specified in 3GPP TS 32.302 [5]."

The input parameters are in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.3.2.2.

The output parameters are in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.3.2.3.

The pre-condition is in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.3.2.4.

The post-condition is in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.3.2.5.

The exceptions are in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.3.2.6.

5.3.2
notifyNewAlarm
(Quote from TS 32.111-2 [3], version 12.1.0, clause 6.8.1.1)

"A new AlarmInformation has been added in the AlarmList. The subscribed IRPManager instances are notified of this fact if the added AlarmInformation satisfies the current filter constraint of their subscription.

There are two tables for Input Parameters. If alarmType parameter indicates "Communications Alarm", "Processing Error Alarm", "Environmental Alarm". "Quality Of Service Alarm" or "Equipment Alarm", the first table (see clause 6.8.1.2) shall be applicable for this notifyNewAlarm. If alarmType parameter indicates "Integrity Violation", "Operational Violation", "Physical Violation", "Security Service or Mechanism Violation" or "Time Domain Violation", the second table (see clause 6.8.1.3) shall be applicable."

The input parameters are in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.8.1.2 and 6.8.1.3.

The trigger event is in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.8.1.4.

5.3.3
notifyClearedAlarm
(Quote from TS 32.111-2 [3], version 12.1.0, clause 6.8.3.1)

"IRPAgent notifies the subscribed IRPManager of alarm clearing if the subject AlarmInformation satisfies the optional filter constraint expressed in the subscribe operation.

The notification shall contain all parameters that are filterable and are present in the original (related) notifyNewAlarm notification."

The input parameters are in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.8.3.2.

The trigger event is in compliance with the features specified in 3GPP TS 32.111-2 [3], clause 6.8.3.3.
5.4
File Transfer (FT)
5.4.1
notifyFileReady
(Quote from TS 32.342 [6], version 12.0.0, clause 6.5.1.1)

"After the management data files have been prepared ready in the IRPAgent, IRPAgent will emit notification to subscribed IRPManager(s) to notify the availability of the file(s)."

The input parameters are in compliance with the features specified in 3GPP TS 32.342 [6], clause 6.5.1.2.

The trigger event is in compliance with the features specified in 3GPP TS 32.342 [6], clause 6.5.1.3.
5.4.2
notifyFilePreparationError
 (Quote from TS 32.342 [6], version 12.0.0, clause 6.5.2.1)

"The subscribed IRPManagers are notified regarding the occurrence of an error during the preparation of the file. This notification is an event and will not be treated as alarms defined in Alarm IRP IS (3GPP TS 32.111-2 [3])."

The input parameters are in compliance with the features specified in 3GPP TS 32.342 [6], clause 6.5.2.2.

The trigger event is in compliance with the features specified in 3GPP TS 32.342 [6], clause 6.5.2.3.
6
Analysis on diverse solution sets for Itf-N
6.1
Overview
6.1.0
Introduction
Diverse solutions for Itf-N are adopted for the management of actual networks. Some of the solutions are in the scope of existing specifications, such as solution sets based on CORBA or SOAP, while others are not. The IRPs' requirements and information services are well supported by existing solution sets, but these IRPs do not support some operators' need for a simpler solution, as stated in the previous study for partitioning of Itf-N [2]. Solutions beyond the scope of existing specifications are adopted to implement the subset of IRPs.

This clause is a technical overview of the protocols of several solution sets, and provides information for the comparison and recommendations in following clauses.
6.1.1
CORBA

6.1.1.1
Overview and concepts
Common Object Request Broker Architecture (CORBA) is OMG's vendor-neutral, open standard for distributed object technology. Since the beginning it has gone through various improvement and enhancements and the current version is CORBA 3.3 presented in November 2012 [10].
The components of CORBA are Object Management Architecture (OMA), Object Request Broker (ORB) to support interaction between objects, and object services, and its main functions include locating objects, communication between servers and clients. Communication between clients and servers are not direct, it is always carried out via an Object Request Broker (ORB). Moreover, ORB objects are accessed through the use of interfaces, defined using Interface Definition language (IDL).

6.1.1.2
Interoperation
When an object in the client role invokes an operation, the request is processed by an ORB to identify the server object to perform the request. The client is not aware of either the location or implementation details of the server object. The client makes the request using the object reference. An Interoperable Object Reference (IOR) contains the contact details for all the protocols that clients can use to communicate with an object in a server.

The ORB is responsible for all of the mechanisms required to find the object implementation for the request, to prepare the object implementation to receive the request, and to communicate the data making up the request. The interface which the client sees is completely independent of where the object is located, what programming language it is implemented in, or any other aspect that is not reflected in the interface of the object. In the client-server model an object plays roles of a client and a server and an object may assume both client and server roles for different operations.
ORB interoperability specifies a comprehensive, flexible approach to supporting networks of objects that are distributed across and managed by multiple, heterogeneous CORBA-compliant ORBs. General Inter-ORB Protocol (GIOP) is the abstract protocol by which ORBs communicate. This protocol defines the different message types – such as request and reply messages – that can be exchanged between client and server applications and also specifies a binary format for the on-the-wire representation of IDL types.

The GIOP is specifically built for ORB to ORB interactions and is designed to work directly over any connection-oriented transport protocol that meets a minimal set of assumptions. Instead, the choice of transport mechanism is decided in a specialization of GIOP.

A specialization of GIOP is the Internet Inter-ORB Protocol (IIOP), which is specified how GIOP messages are exchanged using TCP/IP connections. CORBA uses IIOP (Internet-Inter ORB Protocol) for interoperability in distributed heterogeneous environment.
CORBA products are obliged to support IIOP, but they may optionally also support other GIOP-based protocols or Environment Specific Inter-ORB protocols (ESIOP).
6.1.1.3
Features

CORBA has many advantages such as it is neither language nor operating system dependent paradigm, there are many languages supported by various CORBA providers, the most popular languages are Java and C++. CORBA's design is meant to be OS-independent. CORBA is available in Java (OS-independent), as well as natively for Linux/Unix, Windows, Solaris, etc. This provides extensibility to support any future language paradigm and OS.

Moreover, CORBA Server and clients are transparent to implementation and underlying layers, thus system details are hidden from developer and there is no need for server and clients to know underlying architecture.

CORBA is a true object-oriented component framework, with CORBA, there is a tight coupling between the client and the server. First of all, both of them must share the same interface and must run an ORB (Object Request Broker) at both ends. Then, the interaction between the client and the server may be achieved directly with no need to further intermediation.
In CORBA, the Portable Object Adapter (POA) policies combined with the Fault-tolerant CORBA features and the Load-balancing CORBA service provide the desired scalability to CORBA applications.
6.1.2
SOAP

6.1.2.1
Overview and concepts

SOAP is a lightweight protocol defined by the w3c organisation [11]. SOAP is intended to exchange information in decentralized and distributed environment. It uses XML technologies that allow defining an extensible messaging framework providing a message construct that can be exchanged over a variety of underlying protocols. As well, the framework has been designed to be independent of any particular programming model and other implementations specific semantics. SOAP does not specify a transport event though it is very commonly used with HTTP.

6.1.2.2
Interoperation

SOAP provides a distributed processing model that assumes a SOAP message originates at an initial SOAP sender and is sent to an ultimate SOAP receiver via a number of SOAP intermediaries.

A SOAP message is specified as an XML message that consists in a SOAP envelope, a SOAP header and a SOAP body. The SOAP envelope element information item is embedded within an XML message and specifies that this message is a SOAP message. It contains a local name (envelope) as well as a namespace and a number of namespace qualified attribute information items. Therefore it has to contain a Body element information item and optionally a Header element information item.

The SOAP header provides a mechanism for extending a SOAP message in a decentralized and modular way. The SOAP body provides a mechanism to transmit information to an ultimate SOAP receiver. It is a mandatory field since it contains the message or payload that is to be processed by the ultimate SOAP receiver.

While a SOAP receiver processing a message, a SOAP node (identified by an URI) is said to act in one or more SOAP role, each of which is identified by a URI known as the SOAP role name. For example, there are three main role names in the context of SOAP:

-
Next: Each SOAP intermediary and the ultimate SOAP receiver must act in this role

-
None: SOAP nodes must NOT act in this role

-
Ultimate Receiver: Only the ultimate receiver must act in this role
A solution set based on SOAP also needs WSDL as a description language and UDDI as a discovery "layer".

WSDL is a Standard to define Web Services. WSDL is an XML format that allows Web Services description as a set of endpoints operating on messages containing either a document oriented or procedure oriented information. Operations and messages are described at an abstract level and then bound to a concrete network protocol and message format to define an endpoint. WSDL describes the format and protocols of a web service in a standardized way.

The Service provider publishes service WSDL description to a UDDI registry. The service requestor discovers the service by searching the UDDI registry and then binds the WSDL description to a specific message it uses to access the service. Finally, the service requestor can use the service.
UDDI allows service providers to publish information about their services. The requestor can then find those information when looking for a service. This is done using the UDDI functionalities providing a registry in which information such as business entity, service provided by this entity and the WSDL description of those services is stored. UDDI provides as well an interface to insert information of the registry and possibly search for a service.

6.1.2.3
Features

SOAP version 1.2 is based on the XML Information Set [11]. SOAP 1.2 places no restriction about how the message is transported. Building on top of the XML message, the SOAP 1.2 specification defines a binding framework explaining the responsibility of the mechanism carrying a SOAP message from one SOAP node to another. This makes SOAP processors underlying protocol agnostics and SOAP version 1.2 protocol independent. SOAP 1.2 messages can be carried over HTTP, SMTP or any other protocol for which a binding conforms the binding framework.
SOAP 1.2 defines a web method feature and the SOAP HTTP binding provides support for both HTTP GET and POST operations. This implies that SOAP gets the benefits of the web infrastructure such as HTTP caches. Basically, SOAP 1.2 uses existing, established web technologies and it allows achieving better performance.

The biggest strength of SOAP 1.2 is coming from its extensibility model. SOAP 1.1 model has been reworked and formalized as features and properties that can be expressed either in the SOAP envelope or via the underlying protocol binding, making SOAP1.2 very flexible and making it take advantage of any feature that the underlying protocol would be providing.
6.1.3
Protocols based on Socket API

6.1.3.1
Overview and concepts

A Socket defines an endpoint of connection for the communication across networks for a process, is an abstract reference (or handle) that a local program can pass to the networking application programming interface (API) to use the connection. The original definition of Socket is given in IETF RFC 147 [13]. The Socket is designed to implement the client-server model for inter-process communication where the interface to network protocols needs to accommodate multiple transport protocols, such as TCP, UDP, and SCTP.

The Socket API, defines interface between application and transport layer, is usually provided by the operating system, allows application programs to control and use network sockets. Each transport protocol offers a set of services, and the Socket API provides the abstraction to access these services. Operating system maintains information about the Socket and its connection, and application references the Socket for sends and receives. In inter-process communication, each end will generally have its own Socket, but may use different APIs.

Socket APIs are usually based on the Berkeley sockets standard. In the Berkeley sockets standard, sockets are a form of file descriptor (a file handle), gives a file system like abstraction to the capabilities of the network, due to the UNIX philosophy that "everything is a file", and the analogies between sockets and files. The API defines function calls to create, close, read and write to/from a Socket. Two processes communicate by sending data into Socket, reading data out of Socket.

There are three types of sockets:

-
Stream sockets allow processes to communicate using TCP. A stream Socket provides bidirectional, sequenced, and unduplicated flow of data with no record boundaries. After the connection has been established, data can be read from and written to these sockets as a byte stream. SCTP may also be used for stream sockets [14]. Stream sockets are the most commonly used type of Socket.

-
Datagram sockets allow processes to communicate using UDP. A datagram Socket supports bidirectional flow of messages. A process on a datagram Socket can receive messages in a different order from the sending sequence and can receive duplicate messages.

-
Raw sockets provide access to ICMP. Raw sockets are not for most applications. They are provided to support developing new communication protocols or for access to more esoteric facilities of an existing protocol.

To specify a protocol of management interface based on Socket, the protocol stack above transport layer needs to be defined. Many of the application layer protocols like HTTP, FTP, as well as CORBA and SOAP, make use of sockets to establish connection between client and server and then for exchanging data. Each of these protocols defines a set of rules to encapsulate the data payload or controlling information. They also utilize some other protocols to assist the interoperation of the interface, such as CORBA objects communicating with each other via IIOP.

In contrast to above protocols, the protocol to be proposed and analysed in this study makes a more direct use of Socket. String-based and human-readable messages are sent and received in form of byte stream via Socket. The protocol definition focuses on data format of the application layer, including the structure of messages, message types (request and response of operations, notification, etc.), parameters, and any other necessary features according to the management requirements. The interoperation of the protocol is based on the original functionality of Socket API, e.g. setup and closing connections, writing and reading messages.

6.1.3.2
Interoperation

Basically two parameters are needed to setup a Socket connection: a Socket address including IP address and port number, and a transport protocol type (e.g. TCP). In the Socket API, this information is communicated by binding the socket.

Computer processes that provide application services are referred to as servers, and create sockets on start-up that are in listening state. These sockets are waiting for initiatives from client programs.
For stream socket, a server may serve several clients concurrently, by creating a child process for each client and establishing a TCP connection between the child process and the client. Unique dedicated sockets are created for each connection. These are in established state when a socket-to-socket virtual connection, also known as a TCP session, is established with the remote socket, providing a duplex byte stream.
A server may create several concurrently established TCP sockets with the same local port number and local IP address, each mapped to its own server-child process, serving its own client process. They are treated as different sockets by the operating system, since the remote socket address are different.
6.1.3.3
Features

Socket API can be implemented with different language mapping, e.g. C, Java, Perl and Python. Sockets are low-level interface to network protocols, therefore a protocol based on Socket API could be highly customized and with good flexibility, and developers could focus on the key requirements without taking care of unconcerned details and constraints.

A stream socket provides a connection-oriented flow of data, with well-defined mechanisms for creating and destroying connections and for detecting errors. A stream socket transmits data reliably, in order, and with out-of-band capabilities. Because the stream sockets are implemented on top of TCP, data of applications can run across any networks using TCP/IP protocol.

The management requirements in actual networks may change due to technology improvements, modification to the system architecture and increasing scale of network. The management interface should be able to keep up with the performance and usability requirements of the management systems and network elements that it connects. An interface of a customized protocol based on Socket API could be rapidly developed, quickly deployed and easily upgraded, when new features are added to existing interface functionalities.

For an interface protocol with messages designed to be string-based, no special decoder is needed for debugging, and new messages can be added with minimal effort. In certain scenarios, such as a subset of the IRPs requirements, such a protocol based on Socket API could be a good option for the implementation of Itf-N.
6.2
Comparative analysis
6.2.1
Overview and concepts

As mentioned above, in fundamental functions, these three recommended protocols have same abilities and only are differenced in implementation mechanism. Then the different mechanism defines different complexity and performance as two key factors in real deployment and runtime environments.

Thus, this clause mainly analyses these protocols from complexity and performance perspectives. To estimate these protocols accurately, quantitative analysis and qualitative analysis are adopted in the following subclauses. Finally, the result of qualitative analysis is listed based on a number of results of quantitative analysis.

The estimated indicators which are used in quantitative analysis are as followings:
Table 1

	a) Scope
	a) Indicator
	a) Definition

	Complexity
	Learning cost
	To evaluate the time cost of understanding each protocol.

	
	Workload(man-hour)
	To evaluate the time complexity of a protocol. It represents the time cost of deployment and maintains of each protocol above.

	
	Complexity of building connection(step/connection)
	To evaluate the number of steps for building a connection. It represents the complexity of the operation and maintains.

	Performance
	Parse efficiency(s/MB)
	To evaluate the parsing efficiency of information processed by each protocol. Assume that a given size of original data is encapsulated according to a selected protocol and is prepared for parsing by a receiver; the indicator is used to measure the parsing efficiency in the same runtime environment (including hardware, operation system, and development platform).

	
	Latency(ms)
	To evaluate the processing latency of a protocol. Assume that a given size of original data is prepared for entering into Itf-N; the latency is the time cost that the data from inputting into Itf-N to sending out from Itf-N.

6.2.2
Complexity

Follow the perspectives of clause 6.2.1, one operator contributed a cluster of data which covered all of the indicators related the complexity.

In a real network, the process of deployment of a protocol includes these phases: installation, configuration, inter-operability test, and debug. Meanwhile, different engineers in different OAM centre bring the different time cost. Thus, in this clause, firstly a cluster of data was collected from all of OAM centres of an operator. And second, these data are calculated by arithmetic average. At last, indicator values are the result of arithmetic average of these data.

These results are followings:
Table 2

	Indicator
	Protocol
	Values

	Learning cost(days/person)
	CORBA
	30 days/person

	
	Socket
	10 days/person

	
	SOAP
	N/A

	Workload(man-hour)
	CORBA
	56 man-hour

	
	Socket
	24 man -hour

	
	SOAP
	N/A

	Complexity of building connection(step/connection)
	CORBA
	6

	
	Socket
	3

	
	SOAP
	N/A

According to the above tables, compared with CORBA and Socket, SOAP is not deployed in real operator's network. Thus, it makes sense that SOAP is not adopted in network commercially. Besides these, in terms of real data of three dimensions of complexity, CORBA takes more time than Socket in learning cost, workload and connection respectively. Hence, in complexity, Socket is recommended.
6.2.3
Performance

In this clause, same statistical method is adopted as clause 6.2.2. Thus, this table lists real data from an operator network in performance of each protocol.
Table 3

	a) Performance Analysis

	Scope
	Indicator
	Protocol
	Values

	Performance
	Parse efficiency
	CORBA
	10 ms/notification

	
	
	Socket
	1 ms/notification

	
	
	SOAP
	N/A

	
	Latency(ms)
	CORBA
	10000 ms/notification

	
	
	Socket
	5000 ms/notification

	
	
	SOAP
	N/A

As sane as the analysis of complexity, SOAP is not used in real networks yet. And also, the performance of Socket is better than CORBA in efficiency and latency.
6.3
Business consequence
Based on the above analysis in complexity and performance, a general conclusion is that SOAP is not a commercial protocol in communication network at least. Thus, the recommended candidates are CORBA and Socket.

Considering that Socket reveals its strengths in efficiency and time cost. Hence, Socket is the recommended protocol.
7
Recommendation for IRP solution sets for Itf-N
The recommended protocol is Socket which provides a simple mechanism for information exchange. The maintenance and management of Socket can be implemented in any operating system. Any information can be transferred by Socket directly regardless of how socket is implemented. Thus, a solution set for Itf-N based on Socket is proposed in this study. A format should be defined for parameters transferred between EM and NM. JSON (JavaScript Object Notation), due to its convenience for humans' reading & writing and machines' parsing & generating, is here proposed for the data format. The following figure depicts a protocol stack for the solution set proposed in this study.

[image: image3.emf]TCP

Socket

Parameter Format based on JSON

FTP Lightweight Itf-N Protocol

IP

DL

PHY

Figure 1: Protocol Stack for Solution Set of Itf-N

On the left top of Figure 1, Lightweight Itf-N Protocol based on Socket is proposed for partitioning of Itf-N. For each IRP, a separate solution set is proposed as follows:

-
Fault management IRP: A Lightweight Itf-N Protocol based on Socket is implemented to support FM IRP operations (such as getAlarmLists, notifyNewAlarm, and notifyClearedAlarm), and JSON is used to develop the data format of the parameters involved (such as new alarm, cleared alarm, alarmlist request message and response message and etc.).
-
Configuration Management IRP: A Lightweight Itf-N Protocol based on Socket is implemented to support CM IRP operations (such as notifyFileReady and notifyFilePreparationError), and JSON is used to develop the data format of the parameters involved; Meanwhile, FTP is used to transfer CM files which contain collected configuration data.

-
Performance Management IRP: A Lightweight Itf-N Protocol based on Socket is implemented to support PM IRP operations (such as notifyFileReady and notifyFilePreparationError), and JSON is used to develop the data format of the parameters involved; Meanwhile, FTP is used to transfer PM files which contain collected performance measurement data.
8
Conclusions

The present document analyses essential IRP functions that can be used on Itf-N for configuration management, performance management and fault management. These functions consist of real-time management information retrieval, historical management information retrieval and notifications respectively.

Based on the subset of IRP requirements identified in TR 32.861 [2], this study concentrates on the introduction and analysis of present solution sets for Itf-N. To the comparison between these solution sets, a set of evaluation indicators was used. Then a business consequence for different solution sets was introduced.

Based on this study, a "Lightweight Itf-N" protocol is proposed. However, different solution sets depend on different operators' requirements. The proposal suggested in this study just provides an option for implementation of Itf-N. Efficiency of network operation and maintenance could be improved by using the Lightweight Itf-N protocol.

Annex <A>:
Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2016-04
	SA5#106
	
	
	
	
	Initial Draft Skeleton, and adding text for Background, according to S5-162243.
	0.1.0

	2016-05
	SA5#107
	
	
	
	
	Update following S5-163301, adding text for clause 5.
	0.2.0

	2016-07
	SA5#108
	
	
	
	
	Update following S5-164250, adding text for clause 6.1.
	0.3.0

	2016-09
	SA5#109
	
	
	
	
	Update following S5-165314, adding text for clause 6.1.3.
	0.4.0

	2016-11
	SA5#110
	
	
	
	
	Update following S5-166104, adding text for clause 6.2
	0.5.0

	2017-05
	SA5#113
	
	
	
	
	Update following S5-173482, adding text for clause 6.2.2, 6.2.3, 6.3
	0.6.0

	2017-09
	SA5#114
	
	
	
	
	Update following S5-174487, adding text for clause 7
	0.7.0

	2017-10
	SA5#115
	
	
	
	
	Update following S5-175431, adding text for clause 8
	0.8.0

	2017-11
	
	
	
	
	
	EditHelp editorial fixes
	0.8.1

_1565790910.vsd
TCP

Socket

Parameter Format based on JSON

FTP

Lightweight Itf-N Protocol

IP

DL

PHY

