3GPP TR 29.893 V0.4.0 (2018-12)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;

Study on IETF QUIC Transport for 5GC Service Based Interfaces;

(Release 16)
 [image: image1.jpg]s

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2018, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
7
4
Architectural Baseline
8
5
Transport Protocol Features Required For 3GPP 5GC SBI
8
5.1
Introduction
8
5.2
Requirements from Transport Protocol for 3GPP 5GC SBI
8
5.3
Features of QUIC
9
5.3.1
General
9
5.3.2
Framing and Multiplexing
9
5.3.3
Improved Recovery and Acknowledgement
9
5.3.4
Encrypted and Integrity Protected Transport details
9
5.3.5
Connection Setup Improvements
10
5.3.6
0-RTT Data
10
5.3.7
Connection ID
10
5.3.8
Connection Migration
11
5.3.9
Stream Prioritization
11
5.3.10
Flow Control
11
5.3.11
Protocol Versioning
11
5.3.12
QUIC Extensibility
11
5.3.13
Connection Configuration
12
5.3.14
User-Land Implementations
12
5.3.15
Pluggable Sender Side Congestion Control
12
5.3.16
Checking that the QUIC connection is alive
12
5.3.17
62 bits stream identifiers
12
5.4
Features of QUIC Applicable to 3GPP SBI
12
5.4.1
General
12
5.4.2
Framing and Multiplexing
13
5.4.3
Encrypted and Integrity Protected Transport details
13
5.4.4
Connection setup improvements
13
5.4.5
Connection ID and Connection Migration
13
5.4.6
Improved Recovery and Acknowledgement
14
5.5
Features of QUIC Not Applicable to 3GPP SBI
14
5.5.1
General
14
5.5.2
0-RTT DATA
14
5.6
Comparison of Applicable Features with R15 Transport
14
6
HTTP/2 Over QUIC
16
6.1
Introduction
16
6.2
HTTP/2 Over QUIC Proxies
16
6.2.1
General
16
6.2.2
When NF Service Consumer Side Uses QUIC
17
6.2.2.1
Case A: Invoking http API Supporting Only TCP Transport
17
6.2.2.2
Case B: Invoking http API Supporting QUIC Transport
19
6.2.2.3
Case C: Invoking https API Supporting Only TCP Transport
20
6.2.2.4
Case D: Invoking https API Supporting QUIC Transport
21
6.2.3
When NF Service Consumer Side Uses TCP
22
6.2.3.1
Invoking http API Supporting QUIC Transport
22
6.2.3.2
Invoking https API Supporting QUIC Transport
22
6.3
Considerations for HTTP/2 Over QUIC
23
6.3.1
General
23
6.3.2
Connection setup and management
23
6.3.3
Streams, framing and multiplexing
23
6.3.4
Prioritization
23
6.3.5
Server Push
24
6.3.6
Compression (HPACK vs QPACK)
24
7
Key Requirements for Supporting QUIC
24
7.1
Introduction
24
7.2
Discovery of QUIC support
24
7.3
Discovery of NRF's Support for QUIC
24
7.4
Migration to QUIC
25
8
Solutions for Key Requirements
25
8.1
Introduction
25
8.2
Solutions for Discovery of QUIC support
25
8.2.1
Using the Discovery Service of the NRF
25
8.2.2
Using Alt-Svc Header
26
8.2.x
Solution#x
26
8.3
Solutions for Discovery of NRF's Support for QUIC
26
8.3.1
Providing NRF Transport Capability from NSSF
26
8.3.2
Providing Remote PLMN NRF's Transport Capability during NF Discovery
26
8.3.3
Discovery Based On Local Configuration
27
8.4
Solutions for Migration to QUIC
27
8.4.1
Deployment Topologies to Introduce NF Services with QUIC Support
27
8.4.2
Steps to Follow When Introducing NF Services with QUIC Support
27
8.4.3
Use of QUIC by NF Service Consumers
28
8.4.4
Decommissioning TCP
28
8.y
Evaluation and Conclusion
28
9
Impacts to Service Based Architecture
28
9.1
Introduction
28
9.2
HTTP Proxy Traversal
28
9.3
< Identified Impact 2>
29
9.x
< Identified Impact x>
29
10
Evaluation and Conclusion
29
Annex <A>:
<Annex title>
29
Annex <X>:
Change history
30

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This clause is optional. If it exists, it is always the second unnumbered clause.

1
Scope

The present document analyses the IETF QUIC protocol and its potential use as a transport protocol for the 5GC Service Based Interfaces.

This technical report provides an analysis of the following aspects:

-
Features of transport protocol required for 5GC SBI;

-
Features of QUIC applicable to 5GC SBI;

-
Comparison of the applicable features of QUIC against TCP for the 5GC SBI;

-
Key requirements for 5GC SBI in order to support QUIC as a transport protocol;

-
Solutions for supporting the key requirements;

-
Impacts to 5GC Service Based Interfaces due to introduction of QUIC.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[3]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".

[4]
3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[5]
IETF draft-ietf-quic-transport-13: "QUIC: A UDP-Based Multiplexed and Secure Transport".

[6]
IETF draft-ietf-quic-tls-13: "Using Transport Layer Security (TLS) to Secure QUIC".

[7]
IETF draft-ietf-quic-http-13: "Hypertext Transfer Protocol (HTTP) over QUIC".
[8]
IETF draft-ietf-quic-recovery-13: "QUIC Loss Detection and Congestion Control".

[9]
IETF draft-ietf-quic-invariants-01: "Version-Independent Properties of QUIC"

[10]
IETF draft-ietf-quic-qpack-01: "QPACK: Header Compression for HTTP over QUIC"

[11]
IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[12]
IETF draft-ietf-tls-tls13-28: "The Transport Layer Security (TLS) Protocol Version 1.3".

[13]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".

[14]
IETF RFC 7541: "HPACK: Header Compression for HTTP/2".

[15]
IETF draft-ietf-quic-spin-exp-00: "The QUIC Latency Spin Bit".

[16]
IETF RFC 5682: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP".

[17]
IETF draft-dukkipati-tcpm-tcp-loss-probe-01: "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses".

[18]
IETF RFC 6582: "The NewReno Modification to TCP's Fast Recovery Algorithm".
[19]
3GPP TS 29.510: "Network Function Repository Services".

[20]
IETF RFC 7838: "HTTP Alternative Services".

[21]
IETF draft-pardue-httpbis-http-network-tunnelling-00: "HTTP-initiated Network Tunnelling (HiNT)".

[22]
IETF RFC 7231: " Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

[23]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[24]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[25]
GSMA NG.113: "5GS Roaming Guidelines".
3
Definitions, symbols and abbreviations
Delete from the above heading those words which are not applicable.

Clause numbering depends on applicability and should be renumbered accordingly.

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

Symbol format (EW)

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

Abbreviation format (EW)

<ACRONYM>
<Explanation>

4
Architectural Baseline
3GPP Release 15 Service Based Architecture as specified in 3GPP TS 23.501 [2] and the Technical Realization of the Service Based Architecture as specified in 3GPP TS 29.500 [4] shall be taken as the baseline for studying QUIC's use as a transport protocol for the 5GS Service Based Interfaces.

Editor's Note: The above architectural baseline requirement may need to be updated based on any change in service based architecture due to FS_eSBA study in SA2.

In particular the following architectural assumptions shall be taken into account:

-
Replacing the transport protocol from TCP to QUIC shall not lead to any change in the semantics of the NF services and shall not lead to any change in API.

Editor's Note: IETF draft-ietf-quic-http-13 [7] describes "hq" as the ALPN token used in TLS 1.3. It is not clear at the moment if the same will be also used as URI scheme for an application to convey to the HTTP client to use QUIC as the transport.

-
SEPP shall be used as the security protection and edge proxy even when the NF service consumer in VPLMN and the NF service consumer in HPLMN both use QUIC as the transport.

-
Even if both the NF service consumer and NF service producer support QUIC, the IPX providers and intermediaries on path between the two NF's first hop and the last hop shall not be mandated to support QUIC. In other words, the NF service consumer and the NF service producer shall be able to communicate when using QUIC as transport even in the presence of TCP based IPX or intermediaries on path between the first hop and the last hop.

5
Transport Protocol Features Required For 3GPP 5GC SBI
5.1
Introduction

This clause will identify the requirements from transport protocol for the 3GPP 5GC service based interfaces and then subsequently highlights the features of the QUIC protocol. Among the features of QUIC, those features that are applicable for the 3GPP 5GC service based interfaces are then explicitly identified.
5.2
Requirements from Transport Protocol for 3GPP 5GC SBI
The following are the key requirements from transport layer protocols for the 3GPP 5GC service based interfaces. The 3GPP 5GC service based interfaces use HTTP/2 as the application layer protocol. As of 3GPP Release 15, TCP is used as the transport protocol for the 5GC service based interfaces. TCP suffers from Head of Line blocking issues and any new transport protocol that is considered as a replacement to TCP for the 3GPP 5GC service based interfaces shall not have the same limitation.

REQ#1:
The transport layer protocol shall support reliable message delivery.

REQ#2:
The transport layer protocol shall support flow control and congestion control mechanisms.

REQ#3:
The transport layer protocol shall support connection semantics as required by IETF RFC 7540 [13].

REQ#4:
The failure to deliver one message shall not block subsequent messages.

REQ#5:
The transport layer protocol shall have mechanisms to allow authentication of the peer transport endpoint and shall have mechanisms for the secure transfer of application layer messages.

Editor's Note:
Other requirements, if any, from transport layer protocol are FFS.
5.3
Features of QUIC
5.3.1
General

QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose secure transport for multiple applications. The main parts of QUIC are defined in a set of documents IETF draft-ietf-quic-transport-13 [5], IETF draft-ietf-quic-recovery-13 [8], IETF draft-ietf-quic-tls-13 [6], IETF draft-ietf-quic-invariants-01 [9]. The highly integrated HTTP/2 over QUIC specification IETF draft-ietf-quic-http-13 [7] and HTTP header compression IETF draft-ietf-quic-qpack-01 [10] are developed in parallel with the core protocol. The protocol is developed by the Internet Engineering Task Force (IETF).
5.3.2
Framing and Multiplexing

QUIC endpoints communicate by exchanging QUIC packets in UDP datagrams. QUIC packets may have long or short headers, for packets sent prior or after the completion of version negotiation and establishment of 1-RTT keys respectively. A QUIC packet header contains a Connection ID. Multiple QUIC packets can be coalesced into one UDP datagram.
QUIC has a data frame definition that supports multiple parallel data streams multiplexed on a single QUIC connection. For each stream QUIC now only supports reliable and in-order delivery. However, the QUIC layer is capable of delivering to the higher layer each stream independently, thus it avoids blocking the delivery of any of the other streams when a packet loss contains only part of a stream. Note that to achieve this efficiency the implementation needs to pay attention to pack payload from one stream into a single QUIC packet.

A sender multiplexes one or more frames into a QUIC packet. A sender can wait for a short period of time to bundle multiple frames into the same QUIC packet, e.g. to minimize the computational costs of packets sending. Frames inside a QUIC packet can be of different types.
The HTTP mapping for QUIC IETF draft-ietf-quic-http-13 [7] utilizes this stream concept when realizing the different HTTP/2 (See IETF RFC 7540 [13]) streams. HTTP over QUIC also had to improve the HTTP header compression scheme HPACK (See IETF RFC 7541 [14] into QPACK (See IETF draft-ietf-quic-qpack-01 [10]). With these changes HTTP can deliver independent requests and responses in the order they are successfully delivered to endpoints, without head of line blocking between HTTP streams which would be the case for HTTP/2 over TCP.

5.3.3
Improved Recovery and Acknowledgement

The QUIC definition of its packet format and acknowledgement frame results in several improvements over TCP. The packet number is transmission-time ordered and strictly increasing. QUIC never retransmits a particular packet, only the lost data frames that need to be retransmitted. QUIC facilitates better way to calculate RTT by encoding the delay between packet reception and transmission of the acknowledgement. The QUIC acknowledgment also supports a very larger number of received and gap ranges.

Compared to TCP, QUIC will not be limited to a three blocks of selective acknowledgement (SACK) when using the timestamp option. The strict packet numbers and explicit acknowledgement removes ambiguity between which packet is lost and which is acknowledged. Avoiding any unnecessary retransmissions of data that have reached the receiver. QUIC also avoids the retransmission uncertainty if the received packet was a delayed or retransmitted. QUIC's RTT samples are more accurate than what TCP can provide due to no ambiguity about which packets are used in measurement as well as the receiver side delay can be taken into account.

The current QUIC version defines a baseline congestion controller based on NewReno (See IETF RFC 6582 [18]), however it uses the more accurate reporting. QUIC also uses some additional modern loss recovery mechanisms by default, such as F-RTO (See IETF RFC 5682 [16]), and Tail Loss Probing (See IETF draft-dukkipati-tcpm-tcp-loss-probe-01 [17]). These improvements give QUIC a better recovery mechanism.

5.3.4
Encrypted and Integrity Protected Transport details

QUIC uses TLS 1.3 (See IETF draft-ietf-quic-tls-13 [6], IETF draft-ietf-tls-tls13-28 [12]), for key establishment, while QUIC has its own encryption and integrity layer that protects the QUIC packets. Each QUIC packet has a packet header, using a short or a long format with a small number of fields that are unencrypted, but integrity protected. It is primarily the connection ID that is unencrypted and three reserved bits for experimentation in the short header. Even the packet number is encrypted using an independent mechanism from the payload.

The encryption and integrity help provide confidentiality, privacy and source authenticity for the user of QUIC. However, the protection is also intended to prevent any middlebox in the network from interfering with the protocol, nor make assumptions about what the possible values any specific bit in the UDP payload can take. Ossification of the network has prevented a lot of improvements from being applied to TCP as middleboxes would either block or remove such changes.

Compared to TCP, this level of encryption does make certain type of network performance monitoring using middlebox basically impossible. Due to this, there are ongoing discussion of intentional monitoring support bits, like the latency spin bit (See IETF draft-ietf-quic-spin-exp-00 [15]), intended to enable middlebox to measure round-trip time between the middlebox and either endpoint.

5.3.5
Connection Setup Improvements

QUIC is capable of completing establishment of a connection between a client and a server in one and half RTT. The protocol combines TLS (See IETF draft-ietf-tls-tls13-28 [12]) handshake with transport protocol level mechanisms to achieve this. A client's request to a server can be included after one RTT and be sent combined with the last step of the crypto handshake from the client to the server.

Holding state in the server for the initial connection establishment packets prior to having verified the client's return path can expose the server to a denial of service risk. Servers that like to mitigate that risk can use the Retry packet to verify the path and not hold any state for the first round-trip.
How big improvement this is depends on what one compares against. As 3GPP TS 33.310 makes support for TLS 1.3 (See IETF draft-ietf-tls-tls13-28 [12]) mandated from Rel-15 it is reasonable to compare with both TLS 1.2 (See IETF RFC 5246 [11]) and TLS 1.3. TLS 1.2 session resumption requires that the client has talked to the server recently enough, so it still has session state stored. The below table indicates number of RTTs until the first HTTP request can be sent by the client.
Table 5.3.5-1: Number of RTTs until first HTTP request
	Protocol
	New Connection
	Connection State Exists

	TCP/TLS 1.2
	3
	2

	TCP/TLS 1.3
	2
	2

	QUIC
	1
	1

QUIC can achieve faster connection establishment times until an HTTP request has been sent than existing TLS and TCP combinations. This improvement is significant when establishing a new connection, but not when clients have a long lived one to the server.

5.3.6
0-RTT Data

TLS 1.3 [9] includes support for early data or 0-RTT data, as it is also called. This is potentially usable by both HTTP/2 over TLS1.3/TCP as well as QUIC. This functionality can only be used when client and server share a Pre-Shared Key (PSK), which can be arranged out of band or exist from an earlier connection. 0-RTT data has other security properties than for data sent after the handshake completes. Data sent as 0-RTT data will be possible to replay by an attacker that has seen the client to server exchange. Therefore, the use of 0-RTT data requires that the data is safe to replay. When using HTTP requests as 0-RTT data, the request performed must be one that is idempotent. Server may refuse to accept 0-RTT data for this reason.

5.3.7
Connection ID

QUIC uses two connection IDs, one for the server and one for the client to identify a particular connection for an endpoint. This solution makes the connection not hard bound to a particular 5-tuple (Source and Destination IP, protocol, and source and destination port), instead the connection can be moved between different network interfaces on both client and server side. The protocol has a feature for migrating connections from using one 5-tuple to another, see subclause 5.3.8.

The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC.

5.3.8
Connection Migration

QUIC allows connection migration to be happened while the session progresses. This means for a client with multiple network interfaces an ongoing QUIC session can be moved to newly validated path via a newly discovered network interface, for example, in the case of a data session handover from WLAN to a 3GPP radio access technology. This is possible as QUIC sessions are identified by connection ID hence a particular QUIC session is not tightly coupled with a specific client IP address and port number. Hence, if a network interface appears with new IP addresses or an existing one disappears but the client has alternative network interfaces, the QUIC session does not need to be established again. The QUIC session can continue on a new interface with a new connection ID.

It is possible that the server also has multiple IP addresses and has some preferences on which interface it would like to serve a particular client for load balancing or other management. Currently, QUIC does not support change of server IP address in the middle of an ongoing session however, the server preferred address can be conveyed to the client during the TLS handshake as "preferred_address" transport parameter. If the new path to the preferred server address is valid then client sends all the future packets to the new server address. Here the client also uses a new connection ID for the new connection to the server's preferred address.

5.3.9
Stream Prioritization

Being a multiplexed transport protocol, QUIC supports stream prioritization for boosting the application performance. However, QUIC itself neither provides mechanism to negotiate prioritization information nor implements any strict prioritization scheme. It relies on the application to provide priority information that QUIC will follow when it comes to packet transmission or retransmission.
5.3.10
Flow Control
Flow control is a mechanism to set boundaries to the senders to avoid overwhelming receiver with data that the receiver cannot process. Like TCP, QUIC deploys connection level flow control, moreover, it applies a secondary stream level flow control to prevent a particular stream from consuming the receiver buffer for a connection.

5.3.11
Protocol Versioning

QUIC has a 32-bit version field. It can be expected that QUIC will eventually exists in a number of proprietary and standardized versions. IETF is currently working on defining version 0x00000001. There exists a mechanism for the client to ask the server to enumerate all versions it support. The client when requesting to create a connection it will indicate the version desired to use. If supported then that is what will be used, otherwise it triggers the version negotiation. Some of the non-encrypted fields are defined as not being changeable independent of version as defined by the document for invariants (See IETF draft-ietf-quic-invariants-01 [9]).

The QUIC versioning enables a very large degree of flexibility for future changes of QUIC. All aspects except for the invariants can be changed. This enables the tuning of QUIC to a specific use case or implementation of future improvements in transport protocol technology. This flexibility also indicates the need to be explicit about which QUIC version(s) that are to be supported by a specific SBI. Any analysis of benefits and downsides of QUIC must be explicit about which version is discussed.

5.3.12
QUIC Extensibility
QUIC payloads are consists of one or more frames. Each frame starts with frame types followed by type specific flags. All the streams with data are carried over the STREAM frame type. QUIC's current specification defines a number of essential frame types. However, new frame types can be created and can be even application specific.
QUIC allows extensions to the protocol within the constraints of the protocol invariants (see properties of the QUIC transport protocol that are expected to remain unchanged as new versions of the protocol are developed, in IETF draft-ietf-quic-invariants-01 [9]). Extensions can change the semantics of existing protocol components, but they need to be negotiated before being used. Permitted extensions include new frame types, new settings, error codes and uni-directional streams. This gives QUIC a unique way of to be extensible and customizable.

The usage of new frame types does not necessarily imply using a new protocol version. A peer can use transport parameters to indicate support to the peer that it can use a new frame type. However, this has the downside that the support of a certain frame type cannot be determined before establishing the transport connection; on the other hand, using a specific protocol version can be leveraged by a peer to determine this support prior to establishing the connection.
5.3.13
Connection Configuration

QUIC allows a connection to be configured in a particular way with a set of transport parameter and frames. An important difference to HTTP/2 is that in QUIC, settings are exchanged only at the beginning of the connection and cannot be changed after that. QUIC frames are used to configure how endpoints communicate. For example - the PADDING frame allow to vary the packet size, MAX_STREAM_ID frame indicates the maximum bidirectional or unidirectional stream ID permitted to open for the connection. Moreover, new transport parameters and frames can be added to extend the configuration.
5.3.14
User-Land Implementations

User space implementations of QUIC do not require elevated permissions. This allows application to include a QUIC implementation without any operating system changes. This simplifies deployment of QUIC, where only the application intending to use QUIC needs to be updated. This flexibility can also be used to fine tune the protocol behaviour to a particular application. However, there exists some risk with this, as even if an implementation is following the requirement of a certain QUIC version, the choices to optimize the implementation may result in poorer performance between two differently optimized implementations.

The implementation in user space also results in certain challenges that can affect performance. Efficiency of the API towards the UDP receive and send functions is one alternative. Other complications can be access to high performance timers and operating scheduling granularity.

5.3.15
Pluggable Sender Side Congestion Control

As QUIC implementation can reside in an application, it allows more experiment with congestion control algorithms. Now depending on the operational environment, network and service requirement very specific congestion control algorithm can be deployed in the sender as long as the information in the acknowledgement from receiver is sufficient.

5.3.16
Checking that the QUIC connection is alive
Another difference with HTTP/2 is that each QUIC endpoint declares an idle timeout during the handshake. If the connection remains idle (no packets received) for longer than the advertised idle timeout, the peer will assume that the connection has been closed.

HTTP clients are expected to use QUIC PING frames to keep connections open if necessary, to verify that their peers are still alive or to check reachability to the peer. Without using QUIC PING frames, an inactive connection will time out. The frequency of sending PING frames is controlled by applications.

5.3.17
62 bits stream identifiers
QUIC stream identifiers are coded with 62 bits, instead of 31 bits with HTTP/2.
Stream ID exhaustion becomes nearly impossible during the lifetime of a QUIC connection. This may simplify the management of connections in 5GC.
5.4
Features of QUIC Applicable to 3GPP SBI
Editor's Note: This subclause will contain the features of QUIC that are applicable to 3GPP 5GC SBI.
5.4.1
General

This sub-section reviews the features of QUIC that are applicable to 3GPP SBI and under which cases and conditions they are applicable.

5.4.2
Framing and Multiplexing

This feature allows QUIC to multiplex multiple streams in to a single connection and avoid head of line blocking. The upper layer protocols can use the QUIC transport in efficient ways to prioritize, parallelize and even cancel standing data sent or received without having to manage multiple connections. Hence, to get the most of a QUIC connection this feature is important. When it comes to SBI, there are definitely cases where one NF consumer will have number of multiple standing requests to one of the NF providers. The QUIC framing and multiplexing provides essential support to perform the task efficiently. The efficiency gain in QUIC, compared to HTTP2 over TLS/TCP, exists only when the transport connection is subject to packet loss. This is when TCP's head of line blocking will not allow releasing received data to higher layer, even if the data is completely received independent HTTP2 requests or responses.

5.4.3
Encrypted and Integrity Protected Transport details

Encryption and integrity protection are a very important aspect of the whole SBI concept. 3GPP has mandated the support of TLS 1.2 or 1.3 for 5G core. The NF provider needs to be sure about the identity of the NF consumer before serving. Even though a higher layer authentication could serve the purpose of the NF consumer authentication, protection in the transport layer can be very important for a PLMN to function properly. Moreover, the SBI opens up the possibility to run packet core in a general-purpose cloud environment where the communication between inter PLMN and intra PLMN need to be secure and integrity protected.

Having transport layer integrity and authentication mechanism the transport protocol is harden against both attacks and random corruptions that could affect the transport protocols action. For example, cryptographic integrity protection is many magnitudes better at detecting modifications of the transport protocol packet. Cryptographic integrity protection captures packet modifications of both random types, as well as hostile modifications, where checksums only have a weaker protection against random errors. This improvement prevents fouling up the transport protocol state, affecting performance and loss recovery. Data errors in IP/TCP packets that the TCP checksum fails to detect will result in the corrupt data being passed to TLS. TLS integrity verification of the TLS record will detect this corruption. Normally in this case, there are no alternative to terminating the TCP connection and restart it and re-issue the outstanding HTTP requests. QUIC's integrity verification will in this case only result in the individual packet being dropped, request retransmission, and not affect the connection state.

5.4.4
Connection setup improvements

QUIC can achieve faster connection establishment compared to TCP+TLS combination. The applicability of this features depends on the model is used for inter-NF communication. When long lived connection is used in between NFs which uses SBI for communication even if QUIC provides faster connection it will not impact the performance of the inter-NF communication significantly as only the initial request for a connection will see any improvement. However, if short lived connection models are used where NF-NF connection will be created for each request and response pair, QUIC will provide a faster experience of executing task via HTTP request/response as one or two RTT are saved. Overall the faster connection setup time will provide faster connection between NFs in start-up and/or recovery phase while lots of connection supposed to be made at once or in parallel.

5.4.5
Connection ID and Connection Migration

The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC as the QUIC connection is not bound to 5 tuples (protocols and ports). In the case of SBI, both for cloud native implementation or bare metal implementation, this connection ID will provide the ability to establish network interface agonistic connection and move the connect between the interfaces as required without terminating the QUIC connection.
Server-side migration is currently only specified to be done shortly after connection handshake using the Server Preferred Address mechanism discussed in Section 6.12 of IETF draft-ietf-quic-transport-13 [5]. This mechanism requests that the client sends the packet destined to the server to this preferred address instead of the original one. Future versions or extensions may specify mid connection server side migration.

Client-side migration may occur at any point after the handshake has completed. This can be done intentionally by the client when another network interface has become available, where it first probes the new path from this other interface to the server, and after path verification starts using non-probing packet, thus completing the migration. It can also occur implicit, due to a NAT rebinding where the server-side observable source address and port has changed due to this rebinding. Here the use of non-probing packets results in immediate path migration to the new path, and at the same time the server initiates a path validation.

5.4.6
Improved Recovery and Acknowledgement
When the transport connection is subject to packet loss, QUIC recovery and acknowledgment mechanisms allow to optimally retransmit the lost frames and to avoid unnecessary retransmissions of data that have reached the receiver.
5.5
Features of QUIC Not Applicable to 3GPP SBI
Editor's Note: This subclause will contain the features of QUIC that are not applicable to 3GPP 5GC SBI.

5.5.1
General

This sub-section reviews the features of QUIC that potentially are not applicable to 3GPP SBI and why they are not applicable.
5.5.2
0-RTT DATA

0-RTT Data has very limited applicability to 3GPP SBI for several reasons. The foremost is the security properties of 0-RTT data. As the 0-RTT data is protected using a Pre-Shared Key (PSK) and not a connection specific established state, the 0-RTT data is possible to replay by an adversary. It is also does not have full forward secrecy, i.e. if the PSK key is later compromised, then this message can be decrypted at that point.

The possibility for replay has multiple impacts. If the HTTP request in the 0-RTT data is not idempotent then the state of the NF can be changed. Secondly, when replaying the order of requests can be changed by an adversary. Thus, changing the effect of them, e.g. moving a delete after a create. If multiple replays are allowed additional attacks are possible, including timing and measurement to attempt to determine other state. Overload concerns are also present both on the server side, as well as using 0-RTT as a method for amplifying the amount of data a spoofed source address attack results in.

Due to that many 3GPP SBI requests are not idempotent the potential use of 0-RTT data is very limited. By not allowing its use at all several vulnerabilities are avoided, resulting in a safer and less complex systems as no mitigations are needed.
In any case, given that the considerations on applicability of this feature are essentially related to security, it should be up to SA3 to determine whether it is recommended or not to use this feature in 3GPP networks; also, the recommendation may be dependent on intra vs inter -PLMN scenarios.
5.6
Comparison of Applicable Features with R15 Transport
Table 5.6-1 provides a comparison of the features supported by HTTP/QUIC that are applicable to the 5GC SBI with HTTP/2 over TLS/TCP, based on the requirements from Transport Protocol for 3GPP 5GC SBI defined in subclause 5.2 and additional evaluation criteria.

Table 5.6-1: Comparison of HTTP/QUIC and HTTP/2

	Requirement/ Evaluation Criterion
	HTTP/2 over TLS/TCP

	HTTP/QUIC

	R1. Reliable message delivery

	TCP supports reliable and order-of-transmission delivery of data.
	QUIC supports reliable and order-of-transmission delivery of data per stream.

	R2. Flow control and congestion control mechanism

	Flow control is supported at connection and stream levels.

TCP provides end-to-end congestion control, but with significant throughput reduction in case of packet loss.

	Flow control is supported at connection and stream levels.

QUIC provides a congestion control mechanism based on TCP NewReno. Performance is FFS.

	R3. Support of connection semantics

	One HTTP connection maps to one TCP connection.
	How HTTP maps to a QUIC connection is FFS.

	R4. Failure to deliver one message shall not block subsequent messages

	Head-Of-Line (HOL) blocking occurs if TCP segments get lost, delaying the delivery of all subsequent HTTP requests/responses until the lost segments are retransmitted.
	QUIC avoids blocking the delivery of data for any other streams when a packet loss contains only part of a stream.

	R5. Transport protocol supports mechanisms to authenticate peer endpoint and to secure transfer of application messages

	Authentication and secure transfer of application messages are provided by TLS (unless security is provided by other means).

NF service access authorization relies on OAuth2 using TLS.

	QUIC uses TLS 1.3 for key establishment, but it has its own encryption and integrity layer that protects the QUIC packets.

NF access authorisation is FFS.

	A1. Framing and Multiplexing
	HTTP/2 supports multiplexing multiple parallel requests in separate streams in a non-blocking fashion (at HTTP level) over the same TCP connection.

See also R4 for HOL at TCP level.
	HTTP/QUIC supports multiplexing of multiple parallel requests in separate streams in a non-blocking fashion over the same QUIC connection.

	A2. Connection Setup Improvements
	
	By combining connection setup and TLS handshakes, QUIC improves connection setup latency and security allowing 0-RTT connection setup. However, the precondition of the improvement is that the NF service consumer has had an earlier connection with the NF service provider so that it can reuse the earlier learnt connection settings including the security keys for 0-RTT. When using stateless services, no earlier connection to the same service instance can be assumed. In addition, if the connection is persistent the impact of 0-RTT connection setup is minimal to the overall performance.

	A3. Failover to Alternate Path
	TCP does not support multi-homing.

Failover to alternate paths can be supported by setting up additional TCP connections.

	QUIC supports client-side migration after the handshake has completed, and server-side migration shortly after the connection handshake, giving some flexibility to move the connection between interfaces without terminating the QUIC connection.

Failover to alternate paths can also be supported by using additional QUIC connections.

	A4. Low Response Time
	Significant throughput reduction by TCP in overload and TCP head-of-line blocking are potential issues.
	QUIC based transport avoids head of-line blocking.

	A5. Scalability
	FFS
	FFS

	A6. Time of Availability of used standards
	Already available.
	Planned completion by July 2019.

	A7. Ease of troubleshooting and Monitoring
	Many tools exist to trace/monitor HTTP REST APIs.

If TLS end-to-end encryption is used, this renders centralized logging at intermediates impossible.

An HTTP response follows the same path as its request as it is sent on the same TCP connection.
	Many tools exist to trace/monitor HTTP REST APIs, but less widespread support for QUIC so far.

QUIC requires end-to-end encryption that would render centralized logging at intermediates impossible or much more complex.

An HTTP response follows the same path as its request as it is sent on the same QUIC connection.

	A8. Ease of traversal of carrier-grade ALG/NAT/firewall
	Need to configure operator-grade firewalls to pass TCP/TLS/HTTP. For bidirectional communication, configuration for two connections may be required, but security gateways can reduce the number of required connections (see 3GPP TS 33.210 [24]).
	Need to configure operator-grade firewalls to pass UDP/QUIC. For bidirectional communication, configuration for two connections may be required, but security gateways can reduce the number of required connections (see 3GPP TS 33.210 [24]).

	A9. Impacts to GSMA GRX/IPX
	Support being defined for Rel-15

(see GSMA NG 113 [25]).
	No HTTP/QUIC support so far.

	A10.
Use of proxies

	HTTP/2 supports the use of proxies in the path.
	Proxy functionality still at very early stage (see subclause 6.2).

	A.11 Idle HTTP connections
	PING frames are used to test whether a connection is still alive.
	PING frames are used to test whether a connection is still alive and to keep the connection alive.

QUIC endpoint declares an idle timeout during the handshake. If the connection remains idle (no packets received) for longer than the advertised idle timeout, the peer will assume that the connection has been closed.

	A.12 Availability of standard APIs (e.g. socket APIs)
	Many libraries to choose from for HTTP/2.
	QUIC support is not yet so widespread.

	A.13 Stream IDs
	HTTP/2 stream identifiers are coded with 31 bits. Stream IDs can exhaust during the lifetime of the HTTP/2 connection, which complexifies the management of connections.
	QUIC stream identifiers are coded with 62 bits. Stream IDs exhaustion becomes nearly impossible during the lifetime of a QUIC connection, which simplifies the management of connections.

Editor's Note: How Monitoring (A7) may be enhanced by the QUIC Latency Spin Bit (see draft-ietf-quic-spin-exp-01) is FFS.
6
HTTP/2 Over QUIC

6.1
Introduction

This clause will contain description about the mapping and usage of HTTP/2 over QUIC including some of the not so well understood/documented aspects.

6.2
HTTP/2 Over QUIC Proxies
6.2.1
General
HTTP clients can be configured to route their outgoing HTTP requests via a HTTP proxy. If the NF service consumer (i.e HTTP client) is configured to route its message via a HTTP proxy, the NF service consumer will try to setup a transport connection towards the proxy. If the NF service consumer knows that the proxy supports QUIC based on configuration or other offline means, the transport connection towards the HTTP proxy may use QUIC. Thereafter how the HTTP/2 over QUIC proxy further communicates with the NF service producer for various scenarios are explained in the subclauses below.

[image: image3.emf]NRF

HTTP

Proxy

HTTP Server – NF

Service Producer

HTTP Client – NF

Service Consumer

Discover NF Service

Producer Profile

HTTP Over QUIC

HTTP over TCP or

QUIC?

Discover HTTP

Proxy Transport

Offline

Figure 6.2.1-1 NF Service Consumer to NF Service Producer Communication with HTTP/2 Over QUIC Proxy on Path

6.2.2
When NF Service Consumer Side Uses QUIC

6.2.2.1
Case A: Invoking http API Supporting Only TCP Transport
This case is not describe in IETF draft-ietf-quic-http-13 [7].
In this scenario:

-
NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;

-
NF service consumer discovers that NF service producer supports only TCP.

-
The URI scheme of the API exposed by the NF service producer is http

In this case, the NF service consumer has the following options:

-
Option#1: The NF service consumer uses TCP transport towards the proxy as well. This implies the proxy also supports TCP transport (which is a reasonable assumption considering that during the migration from TCP to QUIC many HTTP entities will support both transports).

-
Option#2: The NF service consumer uses QUIC transport towards the HTTP proxy and the proxy uses TCP transport towards the NF service producer. The HTTP proxy discovers whether the NF service producer supports TCP or QUIC based on apriori connection setup. For example, in the case of SEPP all NFs in a PLMN connect to the SEPP and establish a HTTP/2 connection using whatever transport supported by both the SEPP and the NF service producer. IETF draft-ietf-quic-http-13 [7], clause 2.3 specifies that HTTP/QUIC clients shall indicate the target domain name during the TLS handshake of QUIC connection setup. The certificate provided at connection setup shall be valid for the target domain name.

Editor's Notes: It is unclear what domain name shall be used for the target domain name when the connection is with a proxy (proxy domain name or the origin server one).

The draft also says in clause 2.4 that a connection to a server endpoint may be reused for requests with multiple different URI authority components. The client may send any requests for which the client considers the server (the one at the existing connection endpoint) authoritative.

Editor's Notes: In our case the client knows that existing QUIC connection ends at a proxy and not at a server. So it is unclear if we can reuse an existing QUIC connection to a proxy endpoint. Also it is unclear if a client can consider a proxy as an authoritative server as proxies and servers are essentially different HTTP entities.

The draft loosely specifies in clause 2.4 how the client knows that the server at the endpoint of the reused QUIC connection (the proxy in our case) is authoritative for requests directed to other domains. It mentions that typically the client discovers that a particular server is the authoritative HTTP/QUIC endpoint based on the client having received Alt-Svc HTTP response header or the HTTP/2 ALTSVC frame (see IETF RFC 7838 [20]).

Editor's Note:
Whether other mechanisms other than use of IETF RFC 7838 [20] can be considered to discover a particular HTTP/QUIC endpoint is the authoritative endpoint for a URI authoritative component is FFS.

Finally, the clients shall check that the nominated server can present a valid certificate for the Origin Server before considering it authoritative. Therefore, the HTTP proxy has to present a certificate to the HTTP/QUIC client on behalf of the HTTP Origin Server (NF service producer) that is valid for multiple domain names and signed by the client network's own certificate authority. In roaming, the client network owner (the VPLMN) and the origin server network owner (the HPLMN) are different authorities and such a certificate is impossible to issue by a regular certification authority (e.g Verisign). The only possibility is that the HTTP client should be configured to trust the HTTP proxy as the certificate authority. Only then this option#2 will work.

-
Option#3: The NF service consumer uses QUIC transport towards the HTTP proxy. The proxy provides a certificate only valid for itself at QUIC connection setup. When the NF service consumer needs to send a request to an NF Service producer it first establishes a tunnel through the proxy by sending an HTTP CONNECT message in a new stream with an ":authority" pseudo-header field identifying the NF Service producer. The proxy then creates a TCP connection towards the NF service producer. Once the TCP connection is completed, a tunnel is created between the NF service consumer and producer. This tunnel is used by the NF service consumer to create a direct HTTP/2 connection (without an end to end TLS) with the NF service producer. HTTP/2 messages can now flow between the two entities. This is illustrated by the figure below.

[image: image4.emf]UDP

QUIC Transport Security

QUIC Stream

HTTP/QUIC

Client

HTTP/QUIC

Proxy

HTTP/TCP

Server

CONNECT nf-

producer.com

TCP

HTTP/2 Connection

HTTP/2 Stream

HTTP GET/PUT/POST/DELETE

Figure 6.2.2.1-1: http via HTTP/QUIC Proxy to NF Service Producer Supporting TCP

NOTE 1:
Option 3 is not described by IETF draft-ietf-quic-http-13 [7] which only describes the use of the CONNECT method to setup a TLS session between an HTTP client and an Origin server.Most of the existing implementation also restricts the usage of CONNECT to https URIs. This option excludes the use of current implementations available on the market. However for 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way to use HTTP CONNECT via a proxy for http URI too.

NOTE 2: IETF draft-ietf-quic-http-13 [7] doesn't explicitly say if the verifications listed in clause 2.4 of the draft that authorize the reuse of an existing QUIC connection are applicable to the CONNECT method.
6.2.2.2
Case B: Invoking http API Supporting QUIC Transport
In this scenario:

-
NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;

-
NF service consumer discovers that NF service producer also supports QUIC.

-
The URI scheme of the API exposed by the NF service producer is http

In this case the NF service consumer uses QUIC transport towards the HTTP proxy and the HTTP proxy also uses QUIC transport towards the NF service producer.
The figure below illustrates the case where the HTTP client and server are connected with two QUIC connections through an HTTP proxy.

The connection with the HTTP proxy would be reused for requests sent to multiple domains. When the proxy needs to forward a message to a new HTTP server, it establishes a new QUIC connection with it. The server provides a valid certificate for itself.

[image: image5.emf]Domaine name A

HTTP Server A1

HTTP Server A2

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

HTTP Client HTTP Proxy

QUIC connections

Figure 6.2.2.2-1: http via HTTP/QUIC Proxy to NF Service Producer Supporting QUIC

Case B is not described in IETF draft-ietf-quic-http-13 [7] and the same questions regarding the QUIC connection with the proxy rose for Case A remains open with Case B.
As per IETF draft-ietf-quic-http-13 [7], clause 2.3, a HTTP client MUST verify if the nominated HTTP server it is communicating with (i.e HTTP proxy in this case) can present a valid certificate for the origin before considering it authoritative. Hence in order to setup an end to end QUIC connection between the HTTP client and the HTTP server via a HTTP/QUIC proxy, an equivalent of HTTP CONNECT to setup a tunnel is required. Currently such an option does not exist. HTTP CONNECT is used only when the URI scheme is https.

NOTE:
The use of HTTP CONNECT by HTTP clients when accessing https URI via a proxy is not mandated in IETF RFC 7231 [22]. However many browsers by default use HTTP CONNECT when accessing https URIs via a proxy. For 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way not to use HTTP CONNECT via a proxy and trust the certificates issued by the proxy effectively allowing the proxy to act as man in the middle.

IETF draft-pardue-httpbis-http-network-tunnelling-00 [21] tries to provide a solution that permits a UDP-based HTTP/QUIC client behind an HTTP proxy to establish an HTTP/QUIC session with the origin. But at this moment this is an individual draft and is in very early stage.

6.2.2.3
Case C: Invoking https API Supporting Only TCP Transport
In this scenario:

-
NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;

-
NF service consumer discovers that NF service producer also supports only TCP.

-
The URI scheme of the API exposed by the NF service producer is https

In this case the following sequence of events happen

-
HTTP client establishes a QUIC connection with the HTTP proxy, if not setup earlier.

-
HTTP client sends a HTTP CONNECT request to the proxy with ":authority" pseudo-header set to the NF service producer FQDN or IP address.

-
HTTP proxy sets up a TCP connection with NF service producer (HTTP server).

-
HTTP proxy sends a HTTP CONNECT response to the HTTP client.

-
HTTP client does end to end TLS connection setup with the NF service producer. An encrypted tunnel between the client and the server is now setup and HTTP/2 connection can be setup on top.

NOTE 1:
The HTTP client has to do encryption twice - one for the TLS tunnel and one for the QUIC connection with proxy.

NOTE 2:
The current design of CONNECT-based tunnelling reserves an ordered byte stream (HTTP/2 and HTTP/QUIC) for the client-to-proxy hop. This is subject to head of-line (HoL) blocking. See IETF draft-pardue-httpbis-http-network-tunnelling-00 [21] subclause 3.6.

This scenario is illustrated in the figure below

[image: image6.emf]UDP

QUIC Transport Security

QUIC Stream

HTTP/QUIC

Client

HTTP/QUIC

Proxy

HTTP/TCP

Server

CONNECT nf-

producer.com

TCP

TLS

HTTP/2 Stream

HTTP GET/PUT/POST/DELETE

Figure 6.2.2.3-1: https via HTTP/QUIC Proxy to NF Service Producer Supporting TCP

According to RFC 7230 [23] clause 2.7.3, the client shall ensure that its connection to the origin server is secured through the use of strong encryption, end-to-end, prior to sending the first HTTP request when the https URI scheme is used.

When an HTTP proxy is deployed, end-to-end security is ensured by setting-up a tunnel between the client and the Origin server using the HTTP CONNECT method which is then secured with TLS.

A HTTP client implementation may decide not to enforce E2E security with TLS though the https URI scheme is used and connection to the Origin server is done via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC proxy on behalf of the HTTP/TCP server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] subclause 2.7.3.

Alternatively the NF service consumer may decide to use TCP transport towards the HTTP/proxy similar to option#1 provided in subclause 6.2.2.1. In this case, the NF service consumer avoids double ciphering.

6.2.2.4
Case D: Invoking https API Supporting QUIC Transport
In this scenario:

-
NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;

-
NF service consumer discovers that NF service producer also supports QUIC.

-
The URI scheme of the API exposed by the NF service producer is https

In this case the following sequence of events happen

-
HTTP client establishes a QUIC connection with the HTTP proxy

-
HTTP client sends a HTTP CONNECT to the proxy with URI set to the NF service producer API URI.

-
As specified in IETF draft-ietf-quic-http-13 [7] clause 3.1.2, the proxy establishes a TCP connection to the HTTP server. However it is desired to that the HTTP/QUIC proxy is instructed to use a QUIC connection to a HTTP server instead of TCP.
-
Currently there is no mechanism that exists in IETF draft-ietf-quic-http-13 [7] where a HTTP/QUIC proxy is instructed to use a QUIC connection to a HTTP server instead of TCP.
IETF draft-pardue-httpbis-http-network-tunnelling-00 [21] tries to provide a solution that permits a UDP-based HTTP/QUIC client behind an HTTP proxy to establish an HTTP/QUIC session with the origin. But at this moment this is an individual draft and is in very early stage.
According to RFC 7230 [23] clause 2.7.3, the client shall ensure that its connection to the origin server is secured through the use of strong encryption, end-to-end, prior to sending the first HTTP request when the https URI scheme is used.

A HTTP client implementation may decide not to enforce E2E security though the https URI scheme is used and connection to the Origin server is done via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC proxy on behalf of the HTTP/QUIC server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] clause 2.7.3.

6.2.3
When NF Service Consumer Side Uses TCP

6.2.3.1
Invoking http API Supporting QUIC Transport
In this scenario:

-
NF service consumer supports only TCP and has established a TCP transport connection with its next hop HTTP proxy;

-
NF service consumer discovers that NF service producer supports QUIC.

-
The URI scheme of the API exposed by the NF service producer is http

In this case the HTTP proxy has to act as a HTTP/TCP proxy on one side and as a HTTP/QUIC client on the other side. The proxy simply relays the message received on TCP connection to the QUIC connection. But in order for the proxy to setup a QUIC connection with the NF service producer, the proxy has to discover that the NF service producer supports QUIC. This can be achieved by using solution described in subclause 8.2.2. This means the NF service producer also should support TCP.

6.2.3.2
Invoking https API Supporting QUIC Transport
In this scenario:

-
NF service consumer supports only TCP and has established a TCP transport connection with its next hop HTTP proxy;

-
NF service consumer discovers that NF service producer supports QUIC.

-
The URI scheme of the API exposed by the NF service producer is https

When https scheme is used, the HTTP client first sends a HTTP CONNECT request to the HTTP proxy. However as per IETF draft-ietf-quic-http-13 [7], subclause 3.1.2 and IETF RFC 7231 [22], subclause 4.3.6, when a HTTP proxy receives a HTTP CONNECT method, it establishes a TCP based tunnel towards the NF service producer (the HTTP destination origin server) so that a TLS connection end to end from the HTTP client to the HTTP destination origin server can be setup. Since the semantics of HTTP CONNECT demands this, the HTTP proxy will not use QUIC towards the HTTP server (NF service producer) even if it supports QUIC.

A HTTP client implementation may decide not to use HTTP CONNECT to access a https URI via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC proxy on behalf of the HTTP/TCP server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] subclause 2.7.3.

6.3
Considerations for HTTP/2 Over QUIC

6.3.1
General

3GPP TS 29.500 [4] mandates HTTP2 over TCP as protocols to be use for SBI. Running HTTP2 over QUIC requires special consideration as many of the HTTP2 features can be taken care of by QUIC. HTTP2 and QUIC contains similar features like stream, framing, multiplexing. Moving from HTTP2 over TCP to HTTP2 over QUIC will require the application layer protocol behavior and implementation to be changed. Hence, it is important to identify the changes required both in HTTP2 and QUIC implementations. This section details the features and properties need special attention when HTTP2 is transported over QUIC.

6.3.2
Connection setup and management

To use HTTP over QUIC requires explicit discovery of QUIC protocol support in the client and server. The server can advertise the support for the QUIC as a transport protocol then client can use some explicit information provided by the server or prior knowledge of the previous contact to the server to select QUIC as a transport protocol. Different alternatives to do the discovery of QUIC support in the NFs are discussed in section 7.2.

QUIC connection level settings are communicated between client and server at the crypto handshake. However, the HTTP/QUIC specific settings (see IETF draft-ietf-quic-http-13 [7]) are set via SETTINGs frame sent by the client and server via the HTTP control stream after QUIC connection is established.

As QUIC allows stream multiplexing the HTTP clients can multiplex multiple HTTP2 requests on to same QUIC connection as long as the server has the authority to serve the request. This reduces the need for multiple connections and improves performance by avoiding the time it takes to establish new connections. In case of SBI, every consuming NF will originate request to a specific provider NF. Hence, there will be one to one mapping between the server and origin. However, it is also possible to install a frontend proxy to hide a number of provider NFs that is managed by one administration. In this case the NF consumer will establish single connection towards the frontend proxy and multiplex request towards different NF providers over a single QUIC connection, treating the frontend proxy as a server endpoint.
6.3.3
Streams, framing and multiplexing

The QUIC stream number space is larger than that of HTTP2. When transported over QUIC, HTTP2 does not need to use all the framing concepts, for example – it does not need to use stream number.

Another important difference is the HTTP/QUIC only guarantee ordered delivery on the stream level while HTTP2 expects absolute ordering on the frames across multiple streams. HTTP/QUIC will break any such ordering assumption.

When HTTP runs over QUIC the HTTP layer does not require to do any stream multiplexing. QUIC maps each of its streams to a HTTP transaction. The additional difference is that in the current specification, HTTP/QUIC does not use server initiated bidirectional stream. This means unidirectional streams are created from both the client and server with indication of the purpose of the stream as stream header at the beginning of the streams. All client initiated bi-directional streams are used for requests and responses.
Editor's Note:
Some aspects of connection management are still not clearly defined in the IETF drafts, such as the usage of client-initiated vs. server-initiated streams, and bi-directional vs. unidirectional streams. A more accurate description and analysis of these aspects is FFS, once the IETF drafts are further developed.
The HTTP/QUIC frame type definition follows QUIC encoding concept. QUIC uses a variable length integer encoding which allows a larger number of stream IDs compared to HTTP2 encoding. This change results in different HTTP/QUIC frame types and requires a mapping from HTTP2 to HTTP/QUIC frame types. HTTP/QUIC (see IETF draft-ietf-quic-http-13 [7]) defines this mapping of HTTP2 over HTTP/QUIC.

6.3.4
Prioritization

In case of HTTP/QUIC the clients can set stream priority as defined in IETF RFC 7540 [13], at the creation of the stream and update the priority using PRIORITY frame. However, in case of HTTP/QUIC, only the client is allowed send PRIORITY frames over control stream. The priority section on the HEADER frame is removed.

6.3.5
Server Push

HTTP/QUIC uses a different server push mechanism than what is defined in IETF RFC 7540 [13]. HTTP/QUIC uses two new frames to accomplish server push – a) a modified PUSH_PROMISE frame and b) a MAX_PUSH_ID. The modified PUSH_PROMISE frame does not refer to a stream as originally designed in IETF RFC 7540 [13], it uses as PUSH_ID that uniquely identifies a server push. HTTP/QUIC defines 3 types of PUSH_IDs for now. The server can only push, and it can initiate pushing only one it receives a MAX_PUSH_ID frame from the corresponding client. Details of the modified server push mechanism is described in IETF draft-ietf-quic-http-13 [7].
6.3.6
Compression (HPACK vs QPACK)

The Header Compression for HTTP/2, HPACK (see IETF RFC 7541 [14]), provides compression of HTTP header fields. Significantly reducing the headers, especially for sequential HTTP/2 request responses to the same server, where repeated and redundant information is efficiently compressed. The use of HPACK in HTTP/2 is one of the more significant performance improvements compared to HTTP 1.0 or 1.1. HPACK was defined based on one important assumption, namely the TCP in-order delivery of the different HTTP/2 frame types across all the streams. Thus, the encoder knows in which order the decoder will receive and process the various frames, and how the decoder state will be updated. HTTP/2 over QUIC does not provide the same deterministic and guaranteed in order delivery mechanism between different HTTP requests. HTTP2/QUIC can avoid this head of line blocking and provide improved performance by delivering to higher layers the HTTP messages in the order they are successfully delivered to the peer. However, if one would use HPACK without modifications, this could result in the decoder blocking or producing the wrong output. Therefore, header Compression for HTTP over QUIC, QPACK (see IETF draft-ietf-quic-qpack-01 [10]), is being defined.

QPACK is a redesigned version of HPACK that can support out-of-order delivery. It allows flexibility in the encoder to perform trade-offs between compression ratios and likelihood of head of line blocking due to out of order delivery. The changes in QPACK allows for much reduced head of line blocking at similar compression efficiency for a given packet loss rate. It also provides the implementation freedom to select how robust the transaction should be against packet loss. This at the cost of requiring HTTP/2 servers to implement the new QPACK mechanism, even if some reuse of the HPACK implementation is possible.
7
Key Requirements for Supporting QUIC

Editor's Note: This clause will contain the key requirements to be solved in order for QUIC to be considered for as a transport replacement for 5GC SBI, e.g migration from TCP, discovery of QUIC protocol support etc
7.1
Introduction

This clause contains the key requirements to be solved in order for QUIC to be considered as a transport replacement for 5GC SBI. For each of the key requirements listed below, solutions are described in clause 8.
7.2
Discovery of QUIC support
As Release 15 of 3GPP TS 29.500 [4] defines SBI implementation with protocol combination of HTTP over TCP, the deployment of QUIC as a replacement transport protocol for TCP will require a discovery method for the NF acting as HTTP client for both interoperability and backward compatibility. The discovery of a support of QUIC for a particular SBI must be done at the beginning of connection establishment and if QUIC is supported by the NF acting as server then QUIC should be used for all future communication towards that NF.
7.3
Discovery of NRF's Support for QUIC
One of the potential solutions for discovering the support of QUIC by an NF is to use to the NF discovery service of the NRF (see subclause 8.2.1). In order for an NF service consumer to use the NF discovery service if the NRF, the NF service consumer should know the transport protocol capability of the NRF itself. This key issue will address the following aspects:

-
How to discover the transport protocol capability of a NRF?

-
How to provide the transport protocol capability of a remote PLMN NRF to a local PLMN NRF for home routed roaming scenarios?
7.4
Migration to QUIC
Since 5GC deployments based on release 15 will happen initially, any attempt to introduce NF service instances that support QUIC as transport protocol need to be carefully thought about in order to avoid interoperability issues. This key issue will study the following aspects with respect to the migration to QUIC.

-
Steps to follow when adding NF service instances that support QUIC as transport protocol, into the network.

-
Deployment topologies where NF service instances that support QUIC as transport protocol can be introduced.

-
When the NF service consumers can use the added NF services supporting QUIC?

-
Steps to follow to decommission NF services that support TCP, when required.
8
Solutions for Key Requirements

Editor's Note: This clause will contain the solutions for the key requirements identified in clause 7.
8.1
Introduction
This clause contains the solutions for the key requirements identified in clause 7.
8.2
Solutions for Discovery of QUIC support
8.2.1
Using the Discovery Service of the NRF
Using the Discovery Service of the NF Repository Function (See 3GPP TS 29.510 [19]) is a possible solution for discovering if a NF instance's SBI supports using QUIC as transport protocol.

When a consumer is performing service discovery of NF instances for a service, it will also learn which if any of the instance support using QUIC by having IpEndPoint definitions in the NFProfile with the transport protocol set to QUIC.

This solution enables the NF consumer to know of the support even prior to attempting to establish a transport connection to the NF producer. The consumer has to use the NRF service discovery irrespectively of the determination of QUIC support.

The realization of this solution requires definition of the QUIC as TransportProtocol in the NFProfile, see subclause 6.1.6.3.5 of 3GPP TS 29.510 [19].

The solution will have to determine if this discovery should be only for a general support of QUIC independent of version or if also all the versions should be encoded in the NFProfile.

A QUIC supporting NF can potentially support several different versions of QUIC, thus efficient enumeration of versions would be desired.

However, assuming that at least one mandatory to implement version of QUIC will be defined for SBA, it might be sufficient to simply indicate that QUIC in general is supported and rely on the version negotiation mechanism built in in QUIC as that would also avoid any interoperability issues.

For consumers of NF services that specifically want to determine which instances that support QUIC, extending the set of query parameters defined for the Nnrf_NFDiscovery Service API (subclause 6.2.3.2.3.1 of 3GPP TS 29.510 [19]) will be needed.

A parameter such as transport-protocol which takes an array of protocol enumerations would solve this issue.

Here enumerating individual QUIC versions would create some extra complexity.
8.2.2
Using Alt-Svc Header
The current QUIC working group draft on HTTP over QUIC (See IETF draft-ietf-quic-http-13 [7]) defines a discovery method of QUIC support using Alt-Svc HTTP response header defined in IETF RFC 7838 [20]. In this case the NF as HTTP server can notify the NF as HTTP client about the support of QUIC protocol with a HTTP response header with any HTTP response. An example of such response will look like below:

HTTP/1.1 200 OK

Content-Type: text/html

Alt-Svc: hq=":50443";quic="1,1abadaba"

Here, the "hq" is the ALPN token identifies HTTP/QUIC and "quic" is a new parameter defined to advertise the versions supported by the NF. The syntax of Alt-Svc is defined in IETF RFC 7838 [20] and the "quic" parameter for Alt-Svc header is defined in HTTP over QUIC IETF draft (See IETF draft-ietf-quic-http-13 [7]).

In this method, the HTTP client acting as NF consumer needs to start connection using HTTP/TCP for the first contact with a HTTP server acting as NF provider. If the HTTP server response includes the Alt-Svc header then the HTTP client will re-establish HTTP connection over QUIC and save the protocol preference for further connection. After new QUIC connection established towards the HTTP server, the HTTP client must send all the requests over QUIC connection. The HTTP client then can terminate the previously established TCP connection.

As described, the downside of this method is that the HTTP client for the first contact with a HTTP server has to establish HTTP/TCP to discover the QUIC support and terminate the already establish TCP connection. However, this should be only one-time event after discovering that one HTTP server supports QUIC the client must not repeat this discovery event.

This method allows a gradual deployment of QUIC in the PLMNs and does not require extra information exchange at the NF service discovery phase.

This solution requires that the HTTP server (NF Service Producer) can be reached over TCP in addition to QUIC, so a server supporting only QUIC would need additional mechanisms to let NF Service Consumers discover such support.
8.2.x
Solution#x
8.3
Solutions for Discovery of NRF's Support for QUIC
8.3.1
Providing NRF Transport Capability from NSSF
When network slicing is used, the NSSF is queried during

-
Registration procedure; and/or

-
PDU session establishment procedure

to select a network slice instance for the UE / PDU session. The NSSF may optionally return the network slice instance information (NsiInformation) which contains the NRF URI to be used for that network slice instance. In this solution it is proposed to return the NRF's transport capability also as part of the NsiInformation so that the NF service consumer that gets the NRF information from the NSSF knows which transport protocol(s) can be used towards the NRF.

The NSSF is provided the transport capability of the NRF when OAM configures the network slice instance information into the NSSF.

8.3.2
Providing Remote PLMN NRF's Transport Capability during NF Discovery
For home routed scenarios, the NRF in VPLMN contacts the NRF in HPLMN, via the SEPP. The issue of how HTTP requests over QUIC are routed when there is a proxy in between (i.e if SEPP acts as a proxy) are specified in subclause 6.2.2. Irrespective of the kind of solutions available for this issue, it may be required for the NF service consumer in VPLMN to provide the transport capability of the HNRF to the VNRF. This solution proposes the following:

-
An NF service consumer in VPLMN discovers the NRF to use in VPLMN and the HPLMN for home routed scenarios by querying the NSSF or by local configuration. If the NSSF is queried, the NF service consumer obtains the transport capability of the VNRF and the HNRF from the NSSF as specified in subcaluse 8.3.1.

NOTE:
As specified in subclause 4.3.2.2.3.3 of 3GPP TS 23.502 [3], the discovery of VSMF/VNRF and HSMF/HNRF happen as separate procedures. The Nnssf_NSSelection_Get service is invoked twice in this case.

-
Once the transport capability of both the VNRF and the HNRF are obtained, the NF service consumer knows which transport to use towards the VNRF.

-
When the NF service consumer invokes the NF discovery service of the VNRF, it also provides as input the transport capability of the HNRF.

-
The VNRF uses this information together with the information about the transport capabilities of the SEPP, taking into consideration the scenarios specified in subclause 6.2.2, to decide which transport to use for contacting the HNRF.
8.3.3
Discovery Based On Local Configuration
In this solution, the transport capability of the NRF is discovered based on local configuration at the NF service consumer. This solution can be used when network slicing is not used or during scenarios where the NSSF is not involved (e.g AMF does network slice selection based on local configuration).
8.4
Solutions for Migration to QUIC

8.4.1
Deployment Topologies to Introduce NF Services with QUIC Support

As identified in subclause 6.2, HTTP/2 message traversal over QUIC for http scheme APIs when a HTTP proxy is involved on path is not yet clearly addressed in IETF. Similarly for https scheme APIs, the use of HTTP CONNECT from the HTTP client to the HTTP proxy, creates a TCP connection from the HTTP proxy to the NF service acting as HTTP server resulting in an end to end TLS connection from the HTTP client to the HTTP server. In this case also the presence of HTTP proxy on path implies that an NF service acting as server cannot use QUIC for https scheme APIs, until alternate mechanisms as discussed in IETF in IETF draft-pardue-httpbis-http-network-tunnelling-00 [21] reach some maturity.

Considering this the following are the deployment topologies where NF services with QUIC support can be introduced into a network without causing any issues in working towards a HTTP client.

-
Intra PLMN NF service communication without any HTTP proxy as intermediaries.
-
QUIC between HTTP client and HTTP proxy while TCP is used between HTTP proxy and the HTTP server (see Option#3, subclause 6.2.2.1 and subclause 6.2.2.3).

Editor's Note:
The benefit of using QUIC with HTTP proxy and TCP on the other side is FFS.
For inter PLMN HTTP/2 messaging, SEPP is involved and the transport connection will have to terminate at SEPP. Hence an NF service consumer at VPLMN need to only consider the transport capabilities of SEPP and not the transport capabilities of the NF service producer in HPLMN. Irrespective of whether the NF service producer in HPLMN supports TCP or QUIC, as long as the NF service consumer in the VPLMN understands the API version of the NF service producer, it uses the transport protocol that it supports towards the SEPP in VPLMN.

8.4.2
Steps to Follow When Introducing NF Services with QUIC Support

The following steps have to be followed while introducing NF Services with QUIC support in a PLMN.

-
The support for QUIC of the NF services shall be discoverable using one or any of the mechanisms mentioned in subclause 8.2.

-
Existing, NF service consumers that are already using TCP towards other NF service providers shall continue to use TCP, until they are upgraded to support QUIC.

-
NF services that support QUIC, may also support TCP in order to interwork with existing TCP based NF service consumers.

8.4.3
Use of QUIC by NF Service Consumers

An NF service consumer that supports QUIC can use QUIC towards NF service producers that support QUIC after ensuring the following:

-
The support of QUIC by the NF service producer is discoverable.

-
There are no HTTP proxies on path or the HTTP proxy on path supports QUIC and HTTP CONNECT.
8.4.4
Decommissioning TCP

When all the NF services in a PLMN are upgraded to support QUIC a PLMN may consider to decommission the use of TCP transport. The following steps need to be followed while decommissioning

-
Ensure that no NF service consumer is still using TCP towards the NF service for which TCP is to be decommissioned in that PLMN.

-
If TCP is to be decommissioned for use by a SEPP in a PLMN, then ensure that all the other SEPPs it is interacting with support QUIC and there are no IPX on path.

-
No NF service instance in the PLMN is using the solution described in subclause 8.2.2 for the discovery of QUIC support.

It is recommended that TCP is not decommissioned until it is identified that there is no need for it within a PLMN.
8.y
Evaluation and Conclusion
9
Impacts to Service Based Architecture

9.1
Introduction
This clause identifies the impacts of introducing QUIC to service based architecture for which solutions can't be provided in 3GPP scope.
9.2
HTTP Proxy Traversal
As described in subclause 6.2, IETF has not yet clearly specified how HTTP/2 over QUIC works when there are proxies on path. The current drafts only define the use of HTTP CONNECT method from the client to the proxy and TCP thereafter. Hence at least until a solution for the use of hop by hop QUIC when HTTP proxies are involved is well specified in IETF, QUIC cannot be used in deployments where HTTP proxies are acting as intermediaries between NF services.

Editor's Note: Other impacts are FFS.

Editor's Note: Whether a specific action be sent to IETF is FFS.
9.3
< Identified Impact 2>

9.x
< Identified Impact x>

10
Evaluation and Conclusion
Editor's Note: Overall evaluation and conclusion for the use of QUIC as transport
Annex <A>:
<Annex title>

Annex <X>:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2018-07
	CT4#85bis
	C4-185419
	
	
	
	Implementation of C4-185047 (TR skeleton), C4-185420, C4-185231, C4-185421, C4-185500 and C4-185499
	0.1.0

	2018-08
	CT4#86
	C4-186339
	
	
	
	Implementation of C4-186508 and C4-186155 agreed in CT4#86
	0.2.0

	2018-10
	CT4#86bis
	C4-187646
	
	
	
	Implementation of C4-187530, C4-187531, C4-187602, C4-187533, C4-187603, C4-187535 and C4-187536 agreed in CT4#86bis.
	0.3.0

	2018-12
	CT#87
	C4-188698
	
	
	
	Implementation of C4-188588 and C4-188589 agreed in CT4#87
	0.4.0

_1596028025.vsd
HTTP Client

HTTP Proxy

HTTP Server A1

HTTP Server A2

Domaine name A

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

QUIC connections

UDP
QUIC Transport Security
QUIC Stream
HTTP/QUIC Client
HTTP/QUIC Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
HTTP/2 Connection
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

NRF
HTTP Proxy
HTTP Server – NF Service Producer
HTTP Client – NF Service Consumer
Discover NF Service Producer Profile
HTTP Over QUIC
HTTP over TCP or QUIC?
Discover HTTP Proxy Transport Offline

UDP
QUIC Transport Security
QUIC Stream
HTTP/QUIC Client
HTTP/QUIC Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
TLS
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

