3GPP TR 26.973 V0.0.2 (2017-10)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Update to fixed-point basic operators;

 (Release 15)
 [image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

MCC selects keywords from stock list.

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
6
4
Extension to the SLT2009 Basic Operators
6
4.1
Analysis of the gap between current basic operators and modern DSP architectures
6
5
Alternative EVS Implementation Using the Extended Basic Operators
7
Annex A: Extended Basic Operators
8
A.1
Basic operators that use 64 bit registers/accumulators
8
A.2
Basic operators which use 32 bit precision multiply
13
A.3
Basic operators which use complex data types
20
A.4
Basic operators for control operation
28
Annex B: Weights of the STL basic operators
30
Annex C: Change history
37

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This clause is optional. If it exists, it is always the second unnumbered clause.

1
Scope

This clause shall start on a new page.

The present document …

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

It is preferred that the reference to 21.905 be the first in the list.

3
Definitions, symbols and abbreviations
Delete from the above heading those words which are not applicable.

Clause numbering depends on applicability and should be renumbered accordingly.

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

Symbol format (EW)

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

Abbreviation format (EW)

<ACRONYM>
<Explanation>

4
Extension to the SLT2009 Basic Operators
4.1
Analysis of the gap between current basic operators and modern DSP architectures
State-of-the-art processor architectures, such as the recent ones from Intel, ARM, QUALCOMM, Texas Instruments etc., support wide accumulators, SIMD and VLIW capabilities. The last major update to the ITU-T Basic Operators was in 2005, with a follow on update in 2009. It appears that these earlier versions of the Basic Operators (2009 and earlier) were influenced by older DSP architectures such as the Texas Instruments TMS320C5x and TMS320C54x processors where the accumulator was 40bits wide.

However, a survey of the state-of-the-art processor architectures shows that most of them support the following capabilities:

· Wider (64 bit) accumulators and registers

· Wider accumulators enable additional guard bits which eliminate the need for checking for saturation after every basic operation.

· SIMD (Single Instruction Multiple Data) instructions which can process vector data. For example, a single instruction can process two 32-bit data elements or four 16-bit elements in parallel

· VLIW (Very Long Instruction Word) enables several operations to be executed in parallel in a single cycle.

Basic operators that are friendlier to compilers, and enable SIMD and VLIW features to be leveraged, can significantly reduce implementation time. Improved compiler technology and software development tools interpret data types and associated basic operators to map them to a processor architecture for better Out-of-box (OOB) performance. Without this computer assisted optimization, an engineer would have to hand-optimize the code which would result in increased engineering effort and longer time to market.
Many recent audio/hybrid codecs make extensive use of 16bit x 32bit MAC (multiply and accumulate) and 32bit x 32bit MAC operations which are realized quite differently between VLIW and SIMD architectures and the current Basic Operators:

· Current STL2009 Basic operators require saturation and truncation after every multiply-accumulate (MAC) operation to maintain bit-exactness

· The current Basic operator saturation checks prevent use of SIMD parallelism

· To maintain bit-exactness, cycles are wasted resulting in higher MCPS and power on VLIW and SIMD capable devices.

· Higher precision variables, such as 64bit operands, are partitioned into smaller width operands, processed and then put back to the original width. This results in an overhead and processor cycles are wasted.

Considering the capabilities of modern processor architectures, as well as the characteristics of the latest speech and audio codecs, there is a need for extending STL2009 with additional basic operators & data types to better leverage the capabilities of state-of-the-art processor architectures and characteristics of DSP algorithms.

5
Alternative EVS Implementation Using the Extended Basic Operators

Annex A:
Extended Basic Operators
[Name: enh64.c, enh32.c, complex_basop.c
Associated header file: enh64.h, enh32.h complex_basop.h

Variable definitions:
C_var1, C_var2: 16 bit complex variables
CL_var1, CL_var2: 32 bit complex variables
W_var1, W_var2 : 64 bit variables
L_var1, L_var2 : 32 bit variables

var1, var2 : 16 bit variables

Functions included:
A.1
Basic operators that use 64 bit registers/accumulators
	W_add_nosat(W_var1, W_var2)

	Adds the two 64-bit variables W_var1 and W_var2 without saturation control on 64 bits.

	W_sub_nosat (W_var1, W_var2)

	Subtracts the two 64-bit variables W_var1 and W_var2 without saturation control on 64 bits.

	
	

	W_shl (W_var1, var2)

	Arithmetically shifts left the 64-bit variable W_var1 by var2 positions:

if var2 is negative, W_var1 is shifted to the least significant bits by (–var2) positions with extension of the sign bit.

if var2 is positive, W_var1 is shifted to the most significant bits by (var2) positions with saturation control on 64 bits.

	W_shr (W_var1, var2)

	Arithmetically shifts right the 64-bit variable W_var1 by var2 positions:

if var2 is negative, W_var1 is shifted to the most significant bits by (–var2) positions with saturation control on 64 bits .
if var2 is positive, W_var1 is shifted to the least significant bits by (var2) positions with extension of the sign bit.

	W_shl_nosat (W_var1, var2)

	Arithmetically shifts left the 64-bit variable W_var1 by var2 positions:

if var2 is negative, W_var1 is shifted to the least significant bits by (–var2) positions with extension of the sign bit.

if var2 is positive, W_var1 is shifted to the most significant bits by (var2) positions without saturation control on 64 bits.

	W_shr_nosat (W_var1, var2)

	Arithmetically shifts right the 64-bit variable W_var1 by var2 positions:

if var2 is negative, W_var1 is shifted to the most significant bits by (–var2) positions without saturation control on 64 bits .
if var2 is positive, W_var1 is shifted to the least significant bits by (var2) positions with extension of the sign bit.

	W_mult_32_16 (L_var1, var2)

	Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 and sign extend to 64-bits without saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the result is produced in 17Q47 format.

	W_mac_32_16 (W_acc, L_var1, var2)

	Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 and sign extend to 64-bits without saturation control;
add this 64 bit value to the 64 bit W_acc without saturation control, and return a 64 bit result

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then added to W_acc (in 17Q47) format. The final result is in 17Q47 format.

	W_msu_32_16 (W_acc, L_var1, var2)

	Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 and sign extend to 64-bits without saturation control; subtract this 64 bit value from the 64 bit W_acc without saturation control, and return a 64 bit result.

The operation is performed in fractional mode.
For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then subtracted from W_acc (in 17Q47) format. The final result is in 17Q47 format.

	W_mult0_16_16 (var1, var2)

	Multiply 16 bit var1 by 16 bit var2, sign extend to 64 bits and return the 64 bit result.

	W_mac0_16_16 (W_acc, var1, var2)

	Multiply 16 bit var1 by 16 bit var2, sign extend to 64 bits; add this 64 bit value to the 64 bit W_acc without saturation control, and return a 64 bit result

	W_msu0_16_16 (W_acc, var1, var2)

	Multiply 16 bit var1 by 16 bit var2, sign extend to 64 bits; subtract this 64 bit value from the 64 bit W_acc without saturation control, and return a 64 bit result.

	W_mult_16_16 (W_acc, var1, var2)

	Multiply a signed 16 bit var1 by signed 16 bit var2, shift the product left by 1 and sign extend to 64-bits without saturation control and return a 64 bit result
The operation is performed in fractional mode.

For example, if var1 is in 1Q15 format and var2 is in 1Q15 format, then the result is produced in 33Q31 format.

	W_mac_16_16 (W_acc, var1, var2)

	Multiply a signed 16 bit var1 by signed 16 bit var2, shift the result left by 1 and sign extend to 64-bits;
add this 64 bit value to the 64 bit W_acc without saturation control, and return a 64 bit result

The operation is performed in fractional mode.

For example, if var1 is in 1Q15 format and var2 is in 1Q15 format, then the product is in 33Q31 format which is then added to W_acc (in 33Q31 format) to provide a final result in 33Q31 format.

	W_msu_16_16 (W_acc, var1, var2)

	Multiply a signed 16 bit var1 by signed 16 bit var2, shift the result left by 1 and sign extend to 64-bits;
subtract this 64 bit value from the 64 bit W_acc without saturation control, and return a 64 bit result
The operation is performed in fractional mode.

For example, if var1 is in 1Q15 format and var2 is in 1Q15 format, then the product is in 33Q31 format which is then subtracted from W_acc (in 33Q31 format) to provide a final result in 33Q31 format.

	W_deposit32_l (L_var1)

	Deposit the 32 bit L_var1 into the 32 LS bits of the 64 bit output. The 32 MS bits of the output are sign extended

	W_deposit32_h (L_var1)

	Deposit the 32 bit L_var1 into the 32 MS bits of the 64 bit output. The 32 LS bits of the output are zeroed.

	W_sat_l (W_var)

	Saturate the 64 bit variable W_var to 32 bit value and return the lower 32 bits.

For example, a 64b wide accumulator is helpful in accumulating 16*16 multiplies without checking for saturation. However, at the end of the multiply-and-accumulate loop, we need to return only the 32b value after checking for saturation.

If W_var is in 33Q31 format, then the result returned will be saturated to 1Q31 format.

	W_sat_m (W_var)

	Arithmetic right shift the 64 bit variable W_var by 16 bits; saturate the 64 bit value to 32 bit value and return the lower 32 bits.

For example, a 64 bit wide accumulator is helpful in accumulating 32*16 multiplies without checking for saturation. A 32*16 multiply gives a 48 bit product; at the end of the multiply-and-accumulate loop, the result is in the lower 48 bits of the 64 bit accumulator. Now an arithmetic right shift by 16 bits will drop the LSB 16 bits. Now we should check for saturation and return the lower 32 bits.

If W_var is in 17Q47 format, then the result returned will be saturated to 1Q31 format.

	W_shl_sat_l (W_var, var1)

	Arithmetic left shift the 64 bit W_var by var1 positions with lower 32 bit saturation and return the 32 LSB of 64 bit result.

If var1 is negative, the result is shifted to right by (-var1) positions and sign extended. After shift operation, returns the 32 MSB of 64 bit result.

	W_extract_l (W_var1)

	Return the 32 LSB of a 64 bit variable W_var1.

	W_extract_h (W_var1)

	Return the 32 MSB of a 64 bit variable W_var1.

	W_round48_L (W_var1)
	Rounds the lower 16 bits of the 64-bit input number W_var1 into the most significant 32 bits with saturation. Shifts the resulting bits right by 16 and returns the 32-bit number:

If W_var1 is in 17Q47 format, then the result returned will be rounded and saturated to 1Q31 format.

	W_round32_s (W_var1)

	Rounds the lower 32 bits of the 64-bit input number W_var1 into the most significant 16 bits with saturation. Shifts the resulting bits right by 32 and returns the 16-bit number:

If W_var1 is in 17Q47 format, then the result returned will be rounded and saturated to 1Q15 format.

	W_norm (W_var1)

	Produces the number of left shifts needed to normalize the 64-bit variable W_var1. If W_var1 contains 0, return 0

	W_add (W_var1, W_var2)
	Adds the two 64-bit variables W_var1 and W_var2 with 64-bit saturation control. Sets overflow flag. Returns 64-bit result.

	W_sub (W_var1, W_var2)
	Subtracts 64-bit variable W_var2 from W_var1 with 64-bit saturation control. Sets overflow flag. Returns 64-bit result.

	W_neg (W_var1)
	Negates a 64-bit variables W_var1 with 64-bit saturation control. Set overflow flag. Returns 64-bit result.

	W_abs (W_var1)
	Returns a 64-bit absolute value of a 64-bit variable W_var1 with saturation control.

	W_mult_32_32 (L_var1, L_var2)
	Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Shift the product left by 1 with saturation control. Returns the 64-bit result.

The operation is performed in fractional mode.
For example, if L_var1 & L_var2 are in 1Q31 format then the result is produced in 1Q63 format.
Note that W_mult_32_32(-2147483648, -2147483648) = 9223372036854775807.

	W_mult0_32_32 (L_var1, L_var2)
	Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Returns the 64-bit result.

For example, if L_var1 & L_var2 are in 1Q31 format then the result is produced in 2Q62 format.

	W_lshl (W_var1, var2)
	Logically shift the 64-bit input W_var1 left by var2 positions
- If var2 is negative, logically shift right W_var1 by (-var2)

	W_lshr (W_var1, var2)
	Logically shift the 64-bit input W_var1 right by var2 positions
- If var2 is negative, logically shift left W_var1 by (-var2)

	W_round64_L (W_var1)
	Rounds the lower 32 bits of the 64-bit input number W_var1 into the most significant 32 bits with saturation. Shifts the resulting bits right by 32 and returns the 32-bit number:
If W_var1 is in 1Q63 format, then the result returned will be rounded and saturated to 1Q31 format.

A.2
Basic operators which use 32 bit precision multiply
Basic operators in this section are useful for FFT and scaling functions where the result of a 32*16 or 32*32 arithmetic operation is rounded, and saturated to 32 bit value. There is no accumulation of products in these functions. In functions that accumulate products, you should use base operators in a.1 section.

	Mpy_32_16_1(L_var1, var2)

	Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 with 48 bit saturation control; Return the 32 MSB of the 48 bit result after truncation of lower 16 bits
The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then saturated, truncated and returned in 1Q31 format.

Following code snippet describe the operations performed

W_var1 = W_mult_32_16 (L_var1, var2);

L_var_out = W_sat_m(W_var1);

	Mpy_32_16_r(L_var1, var2)
	Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 with 48 bit saturation control; Return the 32 MSB of the 48 bit result after rounding of the lower 16 bits
The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then rounded, saturated, and returned in 1Q31 format.

Following code snippet describe the operations performed

W_var1 = W_mult_32_16 (L_var1, var2);

L_var_out = W_round48_L (W_var1);

	Mpy_32_32(L_var1, L_var2)
	Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Shift the product left by 1 with 64 bit saturation control; Return the 32 MSB of the 64 bit result after truncating of the lower 32 bits
The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q31 format, then the product is produced in 1Q63 format which is then truncated, saturated, and returned in 1Q31 format.

Following code snippet describe the operations performed

W_var1 = ((Word64)L_var1 * L_var2);

L_var_out = W_extract_h(W_shl(W_var1, 1));

	Mpy_32_32_r(L_var1, L_var2)

	Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Add rounding offset to lower 31 bits of the product. Shift the result left by 1 with 64 bit saturation control; return the 32 MSB of the 64 bit result with saturation control.
The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and L_var2 is in 1Q31 format, then the result is produced in 1Q63 format which is then rounded, saturated, and returned in 1Q31 format.

Following code snippet describe the operations performed

W_var1 = ((Word64)L_var1 * L_var2);

W_var1 = W_var1 + 0x40000000LL;

W_var1 = W_shl (W_var1, 1);

L_var_out = W_extract_h(W_var1);

	Madd_32_16(L_var3, L_var1, var2)
Madd_32_16_r(L_var3, L_var1, var2)

	Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 with 48 bit saturation control; Add the 32 bit MSB of the 48 bit result with 32 bit L_var3 with 32 bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then saturated, truncated to 1Q31 format and added to L_var3 in 1Q31 format.

Following code snippet describe the operations performed

L_var_out = Mpy_32_16_1(L_var1, var2);

L_var_out = L_add(L_var3, L_var_out);
Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 with 48-bit saturation control; Get the 32-bit MSB from 48-bit result after rounding of the lower 16 bits and add this with 32-bit L_var3 with 32-bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then saturated, rounded to 1Q31 format and added to L_var3 in 1Q31 format.

Following code snippet describe the operations performed

L_var_out = Mpy_32_16_r(L_var1, var2);

L_var_out = L_add(L_var3, L_var_out);

	Msub_32_16(L_var3, L_var1, var2)
Msub_32_16_r(L_var3, L_var1, var2)

	Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 with 48 bit saturation control; Subtract the 32 bit MSB of the 48 bit result from 32 bit L_var3 with 32 bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then saturated, truncated to 1Q31 format and subtracted from L_var3 in 1Q31 format.

Following code snippet describe the operations performed

L_var_out = Mpy_32_16_1(L_var1, var2);

L_var_out = L_sub(L_var3, L_var_out);
Multiplies the signed 32-bit variable L_var1 with signed 16-bit variable var2. Shift the product left by 1 with 48-bit saturation control; Get the 32-bit MSB from 48-bit result after rounding of the lower 16 bits and subtract this from 32-bit L_var3 with 32-bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and var2 is in 1Q15 format, then the product is produced in 17Q47 format which is then saturated, rounded to 1Q31 format and subtracted from L_var3 in 1Q31 format.

Following code snippet describe the operations performed

L_var_out = Mpy_32_16_r(L_var1, var2);

L_var_out = L_sub(L_var3, L_var_out);

	Madd_32_32(L_var3, L_var1, L_var2)

Madd_32_32_r(L_var3, L_var1, L_var2)

	Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Shift the product left by 1 with 64 bit saturation control; Add the 32 MSB of the 64 bit result to 32 bit signed variable L_var3 with 32 bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and L_var2 is in 1Q31 format, then the product is saturated and truncated in 1Q31 format which is then added to L_var3 (in 1Q31 format), to provide result in 1Q31 format.

Following code snippet describe the operations performed

L_var_out = Mpy_32_32(L_var1, L_var2);

L_var_out = L_add(L_var3, L_var_out);
Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Add rounding offset to lower 31 bits of the product. Shift the result left by 1 with 64-bit saturation control; get the 32 MSB of the 64-bit result with saturation and add this with 32-bit signed variable L_var3 with 32-bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and L_var2 is in 1Q31 format, then the product is saturated and rounded in 1Q31 format which is then added to L_var3 (in 1Q31 format), to provide result in 1Q31 format.

Following code snippet describe the operations performed

L_var_out = Mpy_32_32_r(L_var1, L_var2);

L_var_out = L_add(L_var3, L_var_out);

	Msub_32_32(L_var3, L_var1, L_var2)
Msub_32_32_r(L_var3, L_var1, L_var2)
	Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Shift the product left by 1 with 64 bit saturation control; Subtract the 32 MSB of the 64 bit result from 32 bit signed variable L_var3 with 32 bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and L_var2 is in 1Q31 format, then the product is saturated and truncated in 1Q31 format which is then subtracted from L_var3 (in 1Q31 format), to provide result in 1Q31 format.

Following code snippet describe the operations performed

 L_var_out = Mpy_32_32(L_var1, L_var2);

 L_var_out = L_sub(L_var3, L_var_out);
Multiplies the signed 32-bit variable L_var1 with signed 32-bit variable L_var2. Add rounding offset to lower 31 bits of the product. Shift the result left by 1 with 64-bit saturation control; get the 32 MSB of the 64-bit result with saturation and Subtract this from 32-bit signed variable L_var3 with 32-bit saturation control.

The operation is performed in fractional mode.

For example, if L_var1 is in 1Q31 format and L_var2 is in 1Q31 format, then the product is saturated and rounded in 1Q31 format which is then subtracted from L_var3 (in 1Q31 format), to provide result in 1Q31 format.

Following code snippet describe the operations performed

 L_var_out = Mpy_32_32_r(L_var1, L_var2);

 L_var_out = L_sub(L_var3, L_var_out);

A.3
Basic operators which use complex data types
	CL_shr (CL_var1, var2)

	Arithmetically shifts right the real and imaginary parts of the 32 bit complex number CL_var1 by var2 positions

If var2 is negative, real and imaginary parts of CL_var1 are shifted to the most significant bits by (-var2) positions with 32-bit saturation control.

If var2 is positive, real and imaginary parts of CL_var1 are shifted to the least significant bits by (var2) positions with sign extension

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_shr(CL_var1.re, L_shift_val);

CL_result.im = L_shr(CL_var1.im, L_shift_val);

	CL_shl (CL_var1, var2)

	Arithmetically shift left the real and imaginary parts of the 32 bit complex number CL_var1 by L_shift_val positions

If var2 is negative, real and imaginary parts of CL_var1 are shifted to the least significant bits by (-var2) positions with sign extension

If var2 is positive, real and imaginary parts of CL_var1 are shifted to the most significant bits by (var2) positions with 32-bit saturation control
Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_shl(CL_var1.re, L_shift_val);

CL_result.im = L_shl(CL_var1.im, L_shift_val);

	CL_add (CL_var1, CL_var2)

	Adds the two 32 bit complex numbers CL_var1 and CL_var2 with 32-bit saturation control.

Real part of the 32 bit complex number CL_var1 is added to Real part of the 32 bit complex number CL_var2 with 32 bit saturation control. The result forms the real part of the result variable.

Imaginary part of the 32 bit complex number CL_var1 is added to Imaginary part of the 32 bit complex number CL_var2 with 32 bit saturation control. The result forms the imaginary part of the result variable.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_add(CL_var1.re, CL_var2.re);

CL_result.im = L_add(CL_var1.im, CL_var2.im);

	CL_sub (CL_var1, CL_var2)

	Subtract the two 32 bit complex numbers CL_var1 and CL_var2 with 32-bit saturation control

Real part of the 32 bit complex number CL_var2 is subtracted from Real part of the 32 bit complex number CL_var1 with 32 bit saturation control. The result forms the real part of the result variable.

Imaginary part of the 32 bit complex number CL_var2 is subtracted from Imaginary part of the 32 bit complex number CL_var1 with 32 bit saturation control. The result forms the imaginary part of the result variable.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_sub(CL_var1.re, CL_var2.re);

CL_result.im = L_sub(CL_var1.im, CL_var2.im);

	CL_scale (CL_var, var1)

	Multiply the real and imaginary parts of a 32 bit complex number CL_var by a 16-bit var1. The resulting 48 bit product for each part is rounded, saturated and 32 bit MSB of 48 bit result are returned.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = Mpy_32_16_r(CL_var.re, var1);

CL_result.im = Mpy_32_16_r(CL_var.im, var1);

	CL_dscale (CL_var, var1, var2)

	Multiply the real parts of a 32 bit complex number CL_var by a 16-bit var1 and imaginary parts of a 32 bit complex number CL_var by a 16-bit var2. The resulting 48 bit product for each part is rounded, saturated and 32 bit MSB of 48 bit result are returned.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = Mpy_32_16_r(CL_var.re, var1);

CL_result.im = Mpy_32_16_r(CL_var.im, var2);

	CL_msu_j (CL_var1, CL_var2)

	Multiply the 32 bit complex number CL_var2 with j and subtract the result from the 32 bit complex number CL_var1 with saturation control.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_add(CL_var1.re, CL_var2.im);

CL_result.im = L_sub(CL_var1.im, CL_var2.re);

	CL_mac_j (CL_var1, CL_var2)

	Multiply the 32 bit complex number CL_var2 with j and add the result to the 32 bit complex number CL_var1 with saturation control.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_sub(CL_var1.re, CL_var2.im);

CL_result.im = L_add(CL_var1.im, CL_var2.re);

	CL_move (CL_var)

	Copy the 32 bit complex number CL_var to destination 32 bit
 complex number

	CL_Extract_real (CL_var)

	Return the real part of a 32 bit complex number CL_var

	CL_Extract_imag (CL_var)

	Return the imaginary part of a 32 bit complex number CL_var

	CL_form (L_re, L_im)

	Combine the two 32 bit variable L_re and L_im and return a 32 bit complex number.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_re;

CL_result.im = L_im;

	CL_multr_32x16(CL_var, C_coeff)

	Multiplication of 32 bit complex number CL_var with a 16 bit complex number C_coeff.

The formula for multiplying two complex numbers, (x+iy) and (u+iv) is

(x+iy)*(u+iv) = (xu – yv) + i(xv + yu);

Following code snippet describe the operations performed on real & imaginary part of a complex number.

W_tmp1 = W_mult_32_16(CL_var.re, C_coeff.re);

W_tmp2 = W_mult_32_16(CL_var.im, C_coeff.im);

W_tmp3 = W_mult_32_16(CL_var.re, C_coeff.im);

W_tmp4 = W_mult_32_16(CL_var.im, C_coeff.re);

CL_res.re = W_round48_L(W_sub_nosat (W_tmp1 , W_tmp2));

CL_res.im = W_round48_L(W_add_nosat (W_tmp3, W_tmp4));

For example, if the real and imaginary part of complex variable CL_var are in 1Q31 format, and C_coeff in 1Q15 format, then the intermediate products would be in 17Q47 format. The round operation will convert the result of addition/subtraction from 17Q47 format to 1Q31 format.

	CL_negate (CL_var)

	Negate the 32 bit complex number, saturate and return.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = L_negate(CL_var.re);

CL_result.im = L_negate(CL_var.im);

	CL_conjugate(CL_var)

	Negate only the imaginary part of complex number CL_var with saturation. No change in the real part.

Following code snippet describe the operations

CL_result.re = CL_var.re;

 CL_result.im = L_negate(CL_var.im);

	CL_mul_j (CL_var)

	Multiplication of a 32 bit complex number CL_var with j and return a 32 bit complex number.

	CL_swap_real_imag (CL_var)

	Swap real and imaginary parts of a 32 bit complex number CL_var and return a 32 bit complex number.

	C_add (C_var1, C_var2)

	Adds the two 16 bit complex numbers C_var1 and C_var2 with 16-bit saturation control.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

C_result.re = add(C_var1.re, C_var2.re);

C_result.im = add(C_var1.im, C_var2.im);

	C_sub (C_var1, C_var2)

	Subtract the two 16 bit complex numbers C_var1 and C_var2 with 16-bit saturation control

Following code snippet describe the operations performed on real & imaginary part of a complex number.

C_result.re = sub(C_var1.re, C_var2.re);

C_result.im = sub(C_var1.im, C_var2.im);

	C_mul_j (C_var)

	Multiplication of a 16 bit complex number with j and return a 16 bit complex number

	C_multr (C_var1, C_var2)

	Multiplication of 16 bit complex number C_var1 with 16 bit complex number C_var2 which results in a 16 bit complex number.

The formula for multiplying two complex numbers, (x+iy) and (u+iv) is

(x+iy)*(u+iv) = (xu – yv) + i(xv + yu);

Following code snippet describe the operations performed on real & imaginary part of a complex number.

W_tmp1 = W_mult_16_16(C_var1.re , C_var2.re);

W_tmp2 = W_mult_16_16(C_var1.im , C_var2.im);

W_tmp3 = W_mult_16_16(C_var1.re , C_var2.im);

W_tmp4 = W_mult_16_16(C_var1.im , C_var2.re);

C_result.re = round_fx(W_sat_l (W_sub_nosat (W_tmp1, W_tmp2)));

C_result.im = round_fx(W_sat_l (W_add_nosat (W_tmp3, W_tmp4)));

	C_form (re, im)

	Combine the two 16 bit variable re and im and return a 16 bit complex number

	CL_scale_32(CL_var1, L_var2)
	Multiply the real and imaginary parts of a 32-bit complex number CL_var1 by a 32-bit L_var2.
The resulting 64-bit product for each part is rounded, saturated and 32 bit MSB of 64-bit result are returned.
Following code snippet describe the operations performed on real & imaginary part of a complex number.
CL_result.re = Mpy_32_32_r(CL_var1.re, L_var2);
CL_result.im = Mpy_32_32_r(CL_var1.im, L_var2);

	CL_dscale_32(CL_var1, L_var2, L_var3)
	Multiply the real parts of a 32-bit complex number CL_var1 by a 32-bit L_var2 and imaginary parts of a 32-bit complex number CL_var1 by a 32-bit L_var3. The resulting 64-bit product for each part is rounded, saturated and 32 bit MSB of 64-bit result are returned.

Following code snippet describe the operations performed on real & imaginary part of a complex number.

CL_result.re = Mpy_32_32_r(CL_var1.re, L_var2);

CL_result.im = Mpy_32_32_r(CL_var1.im, L_var3);

	CL_multr_32x32(CL_var1, CL_var2)
	complex multiplication of CL_var1 and CL_var2. Multiplication is in fractional mode. Both input and outputs are in 1Q31 format.
W_tmp1 = W_mult_32_32(CL_var1.re, CL_var2.re);
W_tmp2 = W_mult_32_32(CL_var1.im, CL_var2.im);
W_tmp3 = W_mult_32_32(CL_var1.re, CL_var2.im);
W_tmp4 = W_mult_32_32(CL_var1.im, CL_var2.re);

CL_res.re = W_round64_L(W_sub (W_tmp1 , W_tmp2));
CL_res.im = W_round64_L(W_add (W_tmp3, W_tmp4));

	C_mac_r(CL_var1, C_var2, var3)
	Multiplies real and imaginary part of C_var2 by var3 and shifts the result left by 1. Adds the 32-bit result to CL_var1 with saturation. Rounds the 16 least significant bits of the result into the 16 most significant bits with saturation and shifts the result right by 16. Returns a 16-bit complex result.
 C_result = CL_round32_16(CL_add(Cl_var1,
 C_scale(C_var2, var3)));

	C_msu_r(CL_var1, C_var2, var3)
	Multiplies real and imaginary part of C_var2 by var3 and shifts the result left by 1. Subtract the 32-bit result from CL_var1 with saturation. Rounds the 16 least significant bits of the result into the 16 most significant bits with saturation and shifts the result right by 16. Returns a 16-bit complex result.
C_result = CL_round32_16(CL_sub(Cl_var1,

 C_scale(C_var2, var3)));

	CL_round32_16(CL_var1)
	Rounds the lower 16 bits of the 32-bit complex number CL_var1 into the most significant 16 bits with saturation. Shifts the resulting bits right by 16 and returns the 16-bit complex number.
If real and imaginary of CL_var1 is in 1Q31 format, then the result returned will be rounded and saturated to 1Q15 format.

	C_Extract_real(C_var1)

	Return the real part of a 16-bit complex number C_var

	C_Extract_imag (C_var1)

	Return the imaginary part of a 16-bit complex number C_var

	C_scale(C_var1,var2)
	Multiply the real and imaginary parts of a 16-bit complex number C_var by a 16-bit var1. Returns 32-bit complex number

	C_negate(C_var1)
	Negate the 16-bit complex number, saturate and return a 16 bit complex number.

	C_conjugate(C_var1)
	Negate only the imaginary part of a 16 bit complex number C_var1 with saturation. No change in the real part.

	C_shr(C_var1, var2)
	Arithmetically shifts right the real and imaginary parts of the 16-bit complex number C_var1 by var2 positions.

If var2 is negative, real and imaginary parts of C_var1 are shifted to the most significant bits by (-var2) positions with 16-bit saturation control.

If var2 is positive, real and imaginary parts of C_var1 are shifted to the least significant bits by (var2) positions with sign extension

	C_shl(C_var1,var2)
	Arithmetically shift left the real and imaginary parts of the 16-bit complex number C_var1 by var2 positions

If var2 is negative, real and imaginary parts of C_var1 are shifted to the least significant bits by (-var2) positions with sign extension

If var2 is positive, real and imaginary parts of C_var1 are shifted to the most significant bits by (var2) positions with 16-bit saturation control

A.4
Basic operators for control operation
.
The following basic operators should be used in the control processing part of the reference code. They are expected to help compilers generate more efficient code for control sections of the reference C code. In addition, they also help in computing a more accurate representation of control code operations in the total WMOPs (weighted millions of operations) of the reference code.

	LT_16(var1, var2)

	Return 1 if 16 bit variable var1 is less than 16 bit variable var2, else return 0

	GT_16(var1, var2)

	Return 1 if 16 bit variable var1 is greater than 16 bit variable var2, else return 0

	LE_16(var1, var2)

	Return 1 if 16 bit variable var1 is less than or equal to 16 bit variable var2, else return 0.

	GE_16(var1, var2)

	Return 1 if 16 bit variable var1 is greater than or equal to 16 bit variable var2, else return 0

	EQ_16(var1, var2)

	Return 1 if 16 bit variable var1 is equal to 16 bit variable var2, else return 0

	NE_16(var1, var2)

	Return 1 if 16 bit variable var1 is not equal to 16 bit variable var2, else return 0

	LT_32(L_var1, L_var2)

	Return 1 if 32 bit variable L_var1 is less than 32 bit variable L_var2, else return 0

	GT_32(L_var1, L_var2)
	Return 1 if 32 bit variable L_var1 is greater than 32 bit variable L_var2, else return 0

	LE_32(L_var1, L_var2)

	Return 1 if 32 bit variable L_var1 is less than or equal to 32 bit variable L_var2, else return 0

	GE_32(L_var1, L_var2)

	Return 1 if 32 bit variable L_var1 is greater than or equal to 32 bit variable L_var2, else return 0.

	EQ_32(L_var1, L_var2)

	Return 1 if 32 bit variable L_var1 is equal to 32 bit variable L_var2, else return 0

	NE_32(L_var1, L_var2)

	Return 1 if 32 bit variable L_var1 is not equal to 32 bit variable L_var2, else return 0

	LT_64(W_var1, W_var2)

	Return 1 if 64 bit variable W_var1 is less than 64 bit variable W_var2, else return 0

	GT_64(W_var1, W_var2)

	Return 1 if 64 bit variable W_var1 is greater than 64 bit variable W_var2, else return 0

	LE_64(W_var1, W_var2)
	Return 1 if 64 bit variable W_var1 is less than or equal to 64 bit variable W_var2, else return 0

	GE_64(W_var1, W_var2)

	Return 1 if 64 bit variable W_var1 is greater than or equal to 64 bit variable W_var2, else return 0.

	NE_64(W_var1, W_var2)

	Return 1 if 64 bit variable W_var1 is not equal to 64 bit variable W_var2, else return 0

	EQ_64(W_var1, W_var2)
	Return 1 if 64 bit variable W_var1 is equal to 64 bit variable W_var2, else return 0

]

Annex B:
Weights of the STL basic operators
[This annex contains a list of the existing STL2009 and new extensions referred to as STL2017 basic operators and their weights for the modern DSP architectures.
	Legends

	
	STL-2009 basic operators

	
	STL-2017 Complex basic operators

	
	STL-2017 64-bit basic operators

	
	STL-2017 Enhanced 32-bit basic operators

	
	STL-2017 Control code basic operators

	BASOPS
	Complexity Weights
	Comments

	
	 Existing STL2009 as is
	Updated
	

	add
	1
	1
	

	sub
	1
	1
	

	abs_s
	1
	1
	

	shl
	1
	1
	

	shr
	1
	1
	

	extract_h
	1
	1
	

	extract_l
	1
	1
	

	mult
	1
	1
	

	L_mult
	1
	1
	

	negate
	1
	1
	

	round
	1
	1
	

	L_mac
	1
	1
	

	L_msu
	1
	1
	

	L_macNs
	1
	1
	

	L_msuNs
	1
	1
	

	L_add
	1
	1
	

	L_sub
	1
	1
	

	L_add_c
	2
	2
	

	L_sub_c
	2
	2
	

	L_negate
	1
	1
	

	L_shl
	1
	1
	

	L_shr
	1
	1
	

	mult_r
	1
	1
	

	shr_r
	3
	2
	Reduced to reflect modern processor architecture

	mac_r
	1
	1
	

	msu_r
	1
	1
	

	L_deposit_h
	1
	1
	

	L_deposit_l
	1
	1
	

	L_shr_r
	3
	2
	Reduced to reflect modern processor architecture

	L_abs
	1
	1
	

	L_sat
	4
	1
	Reduced to reflect modern processor architecture

	norm_s
	1
	1
	

	div_s
	18
	18
	

	norm_l
	1
	1
	

	move16
	1
	1
	

	move32
	2
	1
	Reduced to reflect modern processor architecture

	Logic16
	1
	1
	

	Logic32
	2
	1
	Reduced to reflect modern processor architecture

	Test
	2
	1
	Reduced to reflect modern processor architecture

	s_max
	1
	1
	

	s_min
	1
	1
	

	L_max
	1
	1
	

	L_min
	1
	1
	

	L40_max
	1
	1
	

	L40_min
	1
	1
	

	shl_r
	3
	2
	Reduced to reflect modern processor architecture

	L_shl_r
	3
	2
	Reduced to reflect modern processor architecture

	L40_shr_r
	3
	2
	Reduced to reflect modern processor architecture

	L40_shl_r
	3
	2
	Reduced to reflect modern processor architecture

	norm_L40
	1
	1
	

	L40_shl
	1
	1
	

	L40_shr
	1
	1
	

	L40_negate
	1
	1
	

	L40_add
	1
	1
	

	L40_sub
	1
	1
	

	L40_abs
	1
	1
	

	L40_mult
	1
	1
	

	L40_mac
	1
	1
	

	mac_r40
	2
	2
	

	L40_msu
	1
	1
	

	msu_r40
	2
	2
	

	Mpy_32_16_ss
	2
	1
	Reduced to reflect modern processor architecture

	Mpy_32_32_ss
	4
	1
	Reduced to reflect modern processor architecture

	L_mult0
	1
	1
	

	L_mac0
	1
	1
	

	L_msu0
	1
	1
	

	lshl
	1
	1
	

	lshr
	1
	1
	

	L_lshl
	1
	1
	

	L_lshr
	1
	1
	

	L40_lshl
	1
	1
	

	L40_lshr
	1
	1
	

	s_and
	1
	1
	

	s_or
	1
	1
	

	s_xor
	1
	1
	

	L_and
	1
	1
	

	L_or
	1
	1
	

	L_xor
	1
	1
	

	rotl
	3
	3
	

	rotr
	3
	3
	

	L_rotl
	3
	3
	

	L_rotr
	3
	3
	

	L40_set
	3
	1
	Reduced to reflect modern processor architecture

	L40_deposit_h
	1
	1
	

	L40_deposit_l
	1
	1
	

	L40_deposit32
	1
	1
	

	Extract40_H
	1
	1
	

	Extract40_L
	1
	1
	

	L_Extract40
	1
	1
	

	L40_round
	1
	1
	

	L_saturate40
	1
	1
	

	round40
	1
	1
	

	IF
	4
	4
	

	GOTO
	4
	4
	

	BREAK
	4
	4
	

	SWITCH
	8
	8
	

	FOR
	3
	3
	

	WHILE
	4
	4
	

	CONTINUE
	4
	4
	

	L_mls
	5
	1
	Reduced to reflect modern processor architecture

	div_l
	32
	32
	

	i_mult
	3
	1
	Reduced to reflect modern processor architecture

	CL_shr
	
	1
	

	CL_shl
	
	1
	

	CL_add
	
	1
	

	CL_sub
	
	1
	

	CL_scale
	
	1
	

	CL_dscale
	
	1
	

	CL_msu_j
	
	1
	

	CL_mac_j
	
	1
	

	CL_move
	
	1
	

	CL_Extract_real
	
	1
	

	CL_Extract_imag
	
	1
	

	CL_form
	
	1
	

	CL_multr_32x16
	
	2
	

	CL_negate
	
	1
	

	CL_conjugate
	
	1
	

	CL_mul_j
	
	1
	

	CL_swap_real_imag
	
	1
	

	C_add
	
	1
	

	C_sub
	
	1
	

	C_mul_j
	
	1
	

	C_multr
	
	2
	

	C_form
	
	1
	

	CL_scale_32
	
	1
	

	CL_dscale_32
	
	1
	

	CL_multr_32x32
	
	2
	

	C_mac_r
	
	2
	

	C_msu_r
	
	2
	

	CL_round32_16
	
	1
	

	C_Extract_real
	
	1
	

	C_Extract_imag
	
	1
	

	C_scale
	
	1
	

	C_negate
	
	1
	

	C_conjugate
	
	1
	

	C_shr
	
	1
	

	C_shl
	
	1
	

	move64
	
	1
	

	W_add_nosat
	
	1
	

	W_sub_nosat
	
	1
	

	W_shl
	
	1
	

	W_shr
	
	1
	

	W_shl_nosat
	
	1
	

	W_shr_nosat
	
	1
	

	W_mac_32_16
	
	1
	SIMD and VLIW friendly basops

	W_msu_32_16
	
	1
	SIMD and VLIW friendly basops

	W_mult_32_16
	
	1
	SIMD and VLIW friendly basops

	W_mult0_16_16
	
	1
	SIMD and VLIW friendly basops

	W_mac0_16_16
	
	1
	SIMD and VLIW friendly basops

	W_msu0_16_16
	
	1
	SIMD and VLIW friendly basops

	W_mult_16_16
	
	1
	SIMD and VLIW friendly basops

	W_mac_16_16
	
	1
	SIMD and VLIW friendly basops

	W_msu_16_16
	
	1
	SIMD and VLIW friendly basops

	W_shl_sat_l
	
	1
	

	W_sat_l
	
	1
	

	W_sat_m
	
	1
	

	W_deposit32_l
	
	1
	

	W_deposit32_h
	
	1
	

	W_extract_l
	
	1
	

	W_extract_h
	
	1
	

	W_round48_L
	
	1
	

	W_round32_s
	
	1
	

	W_norm
	
	1
	

	W_add
	
	1
	

	W_sub
	
	1
	

	W_neg
	
	1
	

	W_abs
	
	1
	

	W_mult_32_32
	
	1
	

	W_mult0_32_32
	
	1
	

	W_lshl
	
	1
	

	W_lshr
	
	1
	

	W_round64_L
	
	1
	

	Mpy_32_16_1
	
	1
	

	Mpy_32_16_r
	
	1
	

	Mpy_32_32
	
	1
	

	Mpy_32_32_r
	
	1
	

	Madd_32_16
	
	1
	

	Madd_32_16_r
	
	1
	

	Msub_32_16
	
	1
	

	Msub_32_16_r
	
	1
	

	Madd_32_32
	
	1
	

	Madd_32_32_r
	
	1
	

	Msub_32_32
	
	1
	

	Msub_32_32_r
	
	1
	

	LT_16
	
	1
	

	GT_16
	
	1
	

	LE_16
	
	1
	

	GE_16
	
	1
	

	EQ_16
	
	1
	

	NE_16
	
	1
	

	LT_32
	
	1
	

	GT_32
	
	1
	

	LE_32
	
	1
	

	GE_32
	
	1
	

	EQ_32
	
	1
	

	NE_32
	
	1
	

	LT_64
	
	1
	

	GT_64
	
	1
	

	LE_64
	
	1
	

	GE_64
	
	1
	

	EQ_64
	
	1
	

	NE_64
	
	1
	

]
Annex C:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2017-10
	SA4#95
	S4-170882
	
	
	
	
	0.0.0

	2017-10
	SA4#95
	S4-170882
	
	
	
	
	0.0.1

	2017-10
	SA4#95
	S4-170882
	
	
	
	
	0.0.2

�Atti: not including operators that can be simply done with the STL 2009 operators, like this one, negate, …

Jon: supporting the complex functions to have more homogenous programming

