3GPP TR 26.850 V0.0.2 (2017-06)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

MBMS for IoT;

 (Release 14)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
6
3.3
Abbreviations
6
4
Use cases
6
5
IoT device analysis
6
6
MBMS profiles for NB-IoT device categories
6
7
Solutions
6
8
Conclusions
6
Annex <A>: <Annex title>
6
A.1
Heading levels in an annex
7
Annex <X>: Change history
8

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

1
Scope

The present document studies and evaluates the enhancements on service layer to support massive file delivery for IoT devices. An IoT device could be for instance aNB-IoT device or an eMTC device.
Editor note: Other types of device may be added.
The study will consider the enhancements/simplifications in the following areas:

· Define the requirements and constraints for different IoT device categories

· Review the existing multicast/broadcast service architecture to support MBMS delivery for IoT devices
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".

[3]
IETF RFC 3926 (October 2004): "FLUTE - File Delivery over Unidirectional Transport", T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh

[4]
3GPP TS 36.101: "User Equipment (UE) radio transmission and reception".

[5]
3GPP TS 36.306: "User Equipment (UE) radio access capabilities".

[6]
3GPP TR 22.861: “FS_SMARTER - massive Internet of Things”.

[7]
IETF RFC 7252 (June 2014): “The Constrained Application Protocol (CoAP)”, Z. Shelby, K. Hartke, C. Bormann.

[8]
IETF RFC 6347 (January 2012): “Datagram Transport Layer Security Version 1.2”, E. Rescorla, N. Modadugu.
…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

It is preferred that the reference to 21.905 be the first in the list.

3
Definitions, symbols and abbreviations
Delete from the above heading those words which are not applicable.

Clause numbering depends on applicability and should be renumbered accordingly.

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

eMBMS
Evolved Multimedia Broadcast Multicast Services

FLUTE
File deLivery over Unidirectional Transport
IoT
Internet of Things

RTOS
Real-Time Operating System
XML
Extensible Markup Language
NB-IoT
NarrowBand IoT
eMTC
enhanced Machine Type Communication, often referred to as LTE-M
4
Use cases

3GPP TR 22.861 [6] identifies the use case families, traffic scenarios and potential requirements for massive IoT. However, the use case families in TR 22.861 do not address the data delivery from the network to a large amount of UEs. The following use cases present the data delivery using MBMS User Services with additional requirements compared to TR 22.861
4.1 Use case 1 - Periodic and/or planned data delivery
4.1.1 Description

This use case represents a periodic and/or planned file delivery to a large number of devices. Smart water-metering devices are installed in deep indoor and wake up once or twice a day to send the consumption reports to the water-metering network that is regularly extended. Based on growing amount of data, the system configuration is adjusted, requiring the delivery of small configuration updates to all metering devices. Moreover, the water-metering manufacturer regularly provides non-critical software updates. These devices require a lifetime of approximate 15 years and are significantly resource-constrained (processing and storage).
4.1.2 Candidate Requirements

The following requirements are considered:

- The 3GPP system support the reliable delivery and associated procedures to ensure data integrity.

- The 3GPP system support the report on successful delivery.

- The 3GPP system support eMBMS delivery mechanisms and procedures for devices with very limited capabilities (e.g. limited battery life of 15 years, limited processing and limited storage).

- The 3GPP system support a mechanism to inform the scheduled delivery session to the devices that ensure to wake up to receive file delivery at the planned schedule.

5
IoT device analysis

6
MBMS profiles for NB-IoT device categories
7
Solutions
7.1 Overview of CoAP
This section provides an overview of CoAP, whose design was motivated for IoT-related communications. As described in RFC 7252 [7], it is a specialized content transfer protocol for the Internet for use with constrained endpoints and constrained networks (e.g. low-power Tx/Rx and bandwidth). CoAP supports a request/response interaction model between application endpoints and includes key Web concepts in HTTP such as RESTful client-server architecture, use of URIs for resource identification and location, and Internet media types. In fact, CoAP is designed to interface easily with HTTP for Web integration while meeting specific requirements such as very low overhead, simplicity for constrained application, device and network environments (such as in IoT communications). It also contains built-in support for service and resource discovery, as well as multicast distribution (since it runs over UDP, it also supports the use of multicast IP destination addressing). The key characteristics and features of CoAP can be summarized as follows:
· Web protocol which fulfils IoT/M2M requirements in constrained environments;

· Binding to UDP transport with optional reliable delivery;

· Support for both unicast and multicast requests;

· Asynchronous message exchanges;

· Small, simple header < 10 bytes;

· URI-based resource location/addressing and content type support;

· Simple proxy and caching capabilities;

· Stateless HTTP mapping, enabling both the use of proxies to provide access to CoAP resources using HTTP in a uniform way, and simple HTTP interfaces to be alternatively implemented over CoAP;

· Security binding to DTLS (Datagram Transport Layer Security;

· Optional observation, block transfer and discovery

The relationship between the use of and interworking between HTTP and CoAP as Web transfer protocols in the REST-based architecture environment is shown in Figure 1 below:

[image: image3.emf]InternetConstrainedenvironment

Figure 1 – Logical Layered Model of CoAP

7.1.1 Comparison to HTTP
Like HTTP, CoAP was designed with the REST architecture popular in the Web in mind in support of the ubiquitous use on the Internet of Web services/Web APIs by applications. As opposed to simply employing compression of HTTP, the design of CoAP intended to realize a subset of REST common with HTTP but optimized for IoT or M2M applications. The interaction model of CoAP is similar to the client/server model in HTTP. A CoAP request, as in HTTP, is sent by a client to a server to request an action, via a Method Code on the server-resident resource. Subsequently, the server returns a response (with associated Response Code) which may include a payload containing a representation of the requested resource. However, unlike HTTP, such interactions operate asynchronously in CoAP, over the datagram-based transport offered by UDP. Other similarities in features to HTTP as offered in CoAP include:
a) signaling of additional metadata in both request or responses in the form of Options carried in the CoAP message header, similar to the use of Header fields in HTTP;

b) support for proxying and caching as in HTTP;

c) enables securing the message exchange between CoAP endpoints by use of DTLS, which functions like TLS in HTTPS.

7.1.2 Logical Architecture Model

CoAP can be considered logically as a two-layer operational model comprising: i) request/response interaction layer using Method and Response codes, and whose contents are carried by messages and ii) a message layer that addresses the underlying UDP transport and the asynchronous nature of the client-server interactions. This model is shown below in Figure 2.

[image: image4.emf]Confidential and Proprietary –Qualcomm Technologies, Inc. |MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION |80-xxxxx-x Rev. A9ApplicationRequests/ResponsesMessagesDTLSCoAPUDP

Figure 2 – Logical Layered Model of CoAP

7.1.2.1 CoAP Messaging Model
CoAP messages uses a short fixed-length binary header (4 bytes) that may be followed by compact binary options and a payload. This message format is shared by requests and responses. Each CoAP message contains a Message ID for duplicate-detection and support of optional reliability. CoAP defines four types of messages:
· Confirmable (CON),

· Non-confirmable (NON),

· Acknowledgement (ACK), and

· Reset (RST).

Requests can be carried in either Confirmable or Non-confirmable messages, and responses can be carried in these or could be piggybacked in Acknowledgement messages. The use of Confirmable messages adds reliability to UDP transport, since messages marked as such (CON) will be retransmitted (using a default time-out and exponential back-off between retransmissions) until the recipient returns an ACK message with the same Message ID. An example of reliable CoAP messaging is shown in Figure 3.

[image: image5.emf]Confidential and Proprietary –Qualcomm Technologies, Inc. |MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION |80-xxxxx-x Rev. A13

CoAP ClientCoAP Server

CON [0xfc17]

ACK [0xfc17]

The Constrained Application Protocol (CoAP)

Figure 3 – Reliable Message Transmission in CoAP
The response to a CON message could be sent initially as an empty ACK message (as shown by the second step of the call flow in the right-hand side diagram in Figure 4), and later, when the resource becomes available, it can be carried as the payload of a second response via a separate CON message (as shown by the third step of the call flow in the right-hand side diagram in Figure 4). This is referred to as a “separate response”. The latter response can be linked to the original request using a Token in both the request and response messages to identify their correlation independently from the underlying message exchanges. An example of piggybacked and separated responses (separated delivery of ACK from payload) is show in Figure 4.

[image: image6.emf]Confidential and Proprietary –Qualcomm Technologies, Inc. |MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION |80-xxxxx-x Rev. A10

CoAP ClientCoAP Server

CON [0xbc90]

GET/Temperature

(Token 0x71)

ACK [0xbc90]

…

CON [0x12bb]

2.05 Content

(Token 0x71)

“18.4 C”

ACK [0x12bb]

Request

Response

(w/ payload)

Response

(w/o payload)

CoAP ClientCoAP Server

CON [0xbc90]

Get/Temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

“20.5 C”

Request

Response

The Constrained Application Protocol (CoAP)Piggybacked responseSeparated response

Figure 4 – Piggybacked vs. Separated Response for Reliable Messaging in CoAP

Should a recipient be unable to process a CON message, it will reply with a Reset message (RST) instead of an ACK. Messages not requiring reliable delivery can be sent as Non-Confirmable (NON) messages. Such message will not be acknowledged, but will contain a Message ID for duplicate detection. If a request is sent in a NON message, its response may be returned in a new NON message, an example of which is shown in Figure 5, or a CON message can be returned (requiring the peer to return an ACK). A recipient that is unable to process a NON message may reply with a RST message.

[image: image7.emf]Confidential and Proprietary –Qualcomm Technologies, Inc. |MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION |80-xxxxx-x Rev. A11

CoAP ClientCoAP Server

NON [0xab88]

GET/Temperature

(Token 0x71)

NON [0x17d2]

2.05 Content

(Token 0x71)

“23.8 C”

The Constrained Application Protocol (CoAP)

Figure 5 – Request and Response via Separate Non-Confirmable Messages

7.1.2.2 Methods and Response Codes
CoAP makes use of GET, PUT, POST, and DELETE methods in a manner similar to HTTP, with the semantics described below.
· GET: retrieves a representation for the information that currently corresponds to the resource identified by the request URI.
· PUT: requests that the resource identified by the request URI be updated or created with the attached representation.
· POST: requests processing of the enclosed representation in the request.
· DELETE: requests that the resource identified by the request URI be deleted.
Methods beyond the basic four types can be added to CoAP in separate IETF specifications. URI support in a server is simplified as the client already parses the URI and splits it into host, port, path, and query components, making use of default values for efficiency. Response Codes relate to a small subset of HTTP status codes along with a few CoAP-specific codes, with some examples as shown in Sec. 2.3.
After receiving and interpreting a request, a server responds with a CoAP response that is matched to the request by the client-generated token whose purpose is different from the Message ID (the latter is used to match a Confirmable message to its Acknowledgement). A response is identified by the Code field in the CoAP header as defined in Sec. 2.3. Like the HTTP Status Code, the CoAP Response Code indicates the result of the target endpoint’s attempt to understand and satisfy the request.
7.1.3 Message Format
CoAP features the delivery of compact message delivery over UDP. CoAP messages are encoded in a simple binary format. The message format starts with a fixed-size 4-byte header. This is followed by a variable-length Token value, which can be between 0 and 8 bytes long. After the Token is a sequence of zero or more CoAP Options in Type-Length-Value (TLV) format, optionally followed by a payload that occupies the data section of the datagram. The CoAP message format is shown below in Figure 6.

[image: image8.emf]Confidential and Proprietary –Qualcomm Technologies, Inc. |MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION |80-xxxxx-x Rev. A12

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 Ver T TKL Code Message ID

Token (if any, TKL bytes) ...

 Options (if any) ...

1 1 1 1 1 1 1 1 Payload (if any) ...

LWM2M Client

(CoAP)

LWM2M

Bootstrap Server

(CoAP)

CON [0xbc90]

(Token 0x71)

{Bootstrap Request}

ACK [0xbc90]

(Token 0x71)

{Bootstrap Response}

Bootstrap

•CoAPincludes two features (integrated layers)•Requests/Responses•Messages•CoAPmessage format –integrated layers•Version (Ver)•Ver=1 in RFC 7252•Type (T)•CON (0), NON (1), ACK (2), RST (3)•Supported message reliability –resend CON message after a timeout if no ACK/RST received•Token Length (TKL) and Token •Correlates a response with a corresponding request•Message ID •Supports message correlation –ACK/RST matched to CON/NON messages •ACK/RST message echo message ID on CON/NON request•Supports duplicate detection •ACK/RST resent on duplicateCON message ID•Silently ignores duplicate NON messages•Message ID must not be reused in EXCHANGE_LIFETIME The Constrained Application Protocol (CoAP)•Piggybacked response•Message format

Figure 6 – CoAP Message Header

· Ver (V): message Version number
· Type (T): message Type – CON (00), NON (01), ACK (10), RST (11)

· Token Length (TKL): length of (variable-length) Token field whose value is a sequence of 0 to 8 bytes. The Token value, acting effectively as a “request ID” is used to correlate requests and responses, as every request will contain a client-generated Token that the server must echo (without modification) in any resulting response.

· Code: A 3-digit code in the form c.dd, where ‘c’ is 3-bit ‘class’ representing a single decimal digit from 0-7, and ‘dd’ is a 5-bit ‘detail’ representing two decimal digits from 00 to 31. The class can indicate a Request (0), a Success response (2), a Client Error response (4), or a Server Error response (5). As example values of the ‘Code’ field, the following Success and Client Error codes are defined:

Success codes (2.xx):
· 2.01 Created: similar to HTTP 201 "Created", but only used in response to POST and PUT requests. The payload returned with the response, if any, is a representation of the action result.

· 2.02 Deleted: similar to HTTP 204 "No Content" but only used in response to a request that causes the resource to be no longer available, such as DELETE and, in certain circumstances, POST requests.

· 2.03 Valid: similar to HTTP 304 "Not Modified", but is only used to indicate that the response identified by the entity-tag identified by the included ETag Option is valid.

· 2.04 Changed: similar to HTTP 204 "No Content" but only used in response to POST and PUT requests.

· 2.05 Content: similar to HTTP 200 "OK" but only used in response to GET requests.

Client Error codes (4.xx):
· 4.00 Bad Request: Equivalent meaning to HTTP 400 “Bad Request”.

· 4.01 Unauthorized: the client is not authorized to perform the requested action.

· 4.02 Bad Option: the request could not be understood by the server due to one or more unrecognized or malformed options.

· Each of the following error codes 4.03 Forbidden, 4.04 Not Found, 4.05 Method Not Allowed, 4.06 Not Acceptable, 4.12 Precondition Failed, 4.13 Request Entity Too Large, and 4.15 Unsupported Content-Format has similar semantics to its HTTP 4.xx error code counterpart with the same ‘xx’ value.

· Message ID: use for matching response type ACK/RST to request type CON/NON, as well as for message duplicate detection.

While the CoAP specification [7] itself only defines an upper bound to the message size. Messages larger than an IP packet would result in undesirable packet fragmentation. Therefore, [7] recommends that when appropriately encapsulated, a CoAP message should fit within a single IP packet and which fits into
one UDP packet payload, i.e. within a single IP datagram.
7.1.4 Options

Either a request or response message may contain one or more options, a common set of which is defined in CoAP for both message types:
· Content-Format

· ETag

· Location-Path

· Location-Query

· Max-Age

· Proxy-Uri

· Proxy-Scheme

· Uri-Host

· Uri-Path

· Uri-Port

· Uri-Query

· Accept

· If-Match

· If-None-Match

· Size1

As can be seen, many of these options have the same name and similar semantics as header fields defined in HTTP. Options belong to one of two classes: “critical” or “elective”. The difference is how an unrecognizable option is handled by the message recipient, namely according to the following rules:
· Unrecognized options of class "elective" MUST be silently ignored;

· Unrecognized options of class "critical" that occur in a CON request must cause the return of a 4.02 (Bad Option) response;

· Unrecognized options of class "critical" that occur in a CON response, or piggybacked in an ACK response, must cause the response to be rejected;

· Unrecognized options of class "critical" that occur in a NON message MUST cause the message to be rejected.

Additionally, options are also classified based on how a proxy is to deal with an option it does not recognize it. For this purpose, an option can either be considered ‘Unsafe-to-Forward’ (UnSafe is set to 1) or ‘Safe-to-Forward’ (UnSafe is set to 0).
7.1.5 Caching
CoAP endpoints may be able to cache responses to reduce the response time and network bandwidth consumption on future, equivalent requests. Unlike HTTP, the cacheability of a CoAP response does not depend on the request method, but instead on the Response Code. A "freshness" mechanism is used for this purpose by making of the ‘Max-Age’ Option code, which indicates the cache lifetime. The ‘ETag’ Option allows for validity checking whereby the payload of a prior response can be reused to satisfy a new request. RFC 7252 [7] indicates that Response Codes used to indicate success but are unrecognized by an endpoint must not be cached.
7.1.6 Proxying
As possible in HTTP, CoAP supports the use of proxies which are CoAP devices typically used by clients to perform requests on their behalf. Both forward-proxy and reverse-proxy functionality are possible. In the former, the proxy can be explicitly selected by the client in serving the client’s request, whereas in the latter, the proxy serves as stand-in for an origin server. A proxy can map an incoming CoAP request to an outgoing CoAP request (CoAP-to-CoAP proxy), or translate from/to a different protocol (“cross-proxy”), for example, between CoAP and HTTP. An instance of such CoAP-to-HTTP cross proxy is shown in Figure 1.
7.1.7 Security and DTLS
The delivery of CoAP messages can be secured by using DTLS (Datagram Transport Layer Security) as defined in RFC 6347 [8], in a similar fashion to securing HTTP over TCP by using TLS. The CoAP protocol stack model with the (optional) inclusion of DTLS was shown in Figure 2.
8
Conclusions
Annex <A>:
<Annex title>

Annexes are only to be used where appropriate:

Annexes are labelled A, B, C, etc. and are "informative" (3GPP TRs are informative documents by nature).

A.1
Heading levels in an annex

Heading levels within an annex are used as in the main document, but for Heading level selection, the "A.", "B.", etc. are ignored. e.g. A.1.2 is formatted using Heading 2 style.

Annex <X>:
Change history

This is the last annex for TRs which details the change history using the following table.
This table can be used for recording progress during the WG drafting process till TSG approval of this TR.
For TRs under change control, use one line per approved Change Request

Date: use format YYYY-MM

TSG # : use format RAN#55

CR: four digits, leading zeros as necessary

Rev: blank, or number (max two digits)

Cat: use one of the letters A, B, C, D, F

Subject/Comment: for TRs under change control, include full text of the subject field of the Change Request cover

New vers: use format n[n].n[n].n[n]

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	
	
	
	
	
	
	
	

Application

Requests/Responses

Messages

DTLS

CoAP

UDP

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

The Constrained Application Protocol (CoAP)

Piggybacked response

Separated response

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP ClientCoAP Server

CON [0xbc90]

GET/Temperature

(Token 0x71)

ACK [0xbc90]

…

CON [0x12bb]

2.05 Content

(Token 0x71)

“18.4 C”

ACK [0x12bb]

Request

Response

(w/ payload)

Response

(w/o payload)

image2.emf

CoAP ClientCoAP Server

CON [0xbc90]

Get/Temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

“20.5 C”

Request

Response

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

CoAP Client

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

oleObject2.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

The Constrained Application Protocol (CoAP)

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP ClientCoAP Server

NON [0xab88]

GET/Temperature

(Token 0x71)

NON [0x17d2]

2.05 Content

(Token 0x71)

“23.8 C”

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

CoAP includes two features (integrated layers)

Requests/Responses

Messages

CoAP message format – integrated layers

Version (Ver)

Ver=1 in RFC 7252

Type (T)

CON (0), NON (1), ACK (2), RST (3)

Supported message reliability – resend CON message after a timeout if no ACK/RST received

Token Length (TKL) and Token

Correlates a response with a corresponding request

Message ID

Supports message correlation – ACK/RST matched to CON/NON messages

ACK/RST message echo message ID 		 on CON/NON request

Supports duplicate detection

ACK/RST resent on duplicate			CON message ID

Silently ignores duplicate NON messages

Message ID must not be reused in EXCHANGE_LIFETIME

The Constrained Application Protocol (CoAP)

Piggybacked response

Message format

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

Ver T TKL Code Message ID

Token (if any, TKL bytes) ...

Options (if any) ...

1 1 1 1 1 1 1 1 Payload (if any) ...

image2.emf

LWM2M Client

(CoAP)

LWM2M

Bootstrap Server

(CoAP)

CON [0xbc90]

(Token 0x71)

{Bootstrap Request}

ACK [0xbc90]

(Token 0x71)

{Bootstrap Response}

Bootstrap

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

oleObject2.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

LWM2M Client
(CoAP)

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

The Constrained Application Protocol (CoAP)

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

image1.emf

CoAP ClientCoAP Server

CON [0xfc17]

ACK [0xfc17]

oleObject1.bin

Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

�

�

�

Data

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

text

�

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Bootstrap Finish

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

BootstrapInfo in SDCard

CoAP Client

LWM2M Client
(CoAP)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch; // New field
 uint48 sequence_number; // New field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

ServerHello (seq=1)

LWM2M Client
(CoAP/DTLS)

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 ...
 };
 } ClientHello;

LWM2M Client
(CoAP)

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

Bootstrap Request

Endpoint Client Name, Object(s)

Client Registration

MO Object(s)/Resource(s)

Objects/Resources

Bootstrap Managed Object(s)

Bootstrap*

* Optional interface. Bootstrap information can be pre-provisioned in SmartCard or Flash. Also, Bootstrap Object can be pushed by the Server, when the client is discovered thru other mechanism

MO Object(s)/Resource(s) Value

MO Object(s)/Resource(s) Value

Device Management & Service Enablement

Resource Value

Information Reporting

De-register

Client Registration

LWM2M Client

LWM2M Server

LWM2M Bootstrap Server

POST /bs?ep=node34141

POST /bs

Bootstrap

Request
Bootstrap

BootstrapInfo in SDCard

Internet

Constrained

environment

image1.png

image2.png

