3GPP TS 26.347 V16.2.0 (2020-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Multimedia Broadcast/Multicast Service (MBMS);

Application Programming Interface and URL
(Release 16)

[image: image1.jpg]s

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<API, URL>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2020, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

10Foreword

Introduction
10
1
Scope
11
2
References
11
3
Definitions and abbreviations
12
3.1
Definitions
12
3.2
Abbreviations
12
4
Overview
12
4.1
Introduction
12
4.2
Network Architecture and MBMS User Services (Informative)
13
4.3
MBMS Application User Services
13
4.3.1
Introduction
13
4.3.2
File Delivery Application User Service
14
4.3.3
DASH Application User Service
14
4.3.4
MBMS RTP Streaming User Service
14
4.3.5
MBMS Transparent User Service
14
4.4
Specification Outline
14
5
Reference Client Architecture
15
6
MBMS Application Programming Interfaces
17
6.1
Overview
17
6.1.1
Background
17
6.1.2
Parameter description notation
19
6.1.3
MBMS Client State Model
19
6.2
File Delivery Application Service API
19
6.2.1
Introduction
19
6.2.2
MBMS Client State Model
19
6.2.2.1
Overview
19
6.2.2.2
MBMS Client Internal parameters
21
6.2.2.3
MBMS Client Operation in IDLE state
22
6.2.2.4
MBMS Client Operation in REGISTERED state
23
6.2.2.5
MBMS Client Operation in CAPTURE_NOTIFY State
26
6.2.2.6
MBMS Client Operation in CAPTURE_BACKGROUND State
29
6.2.3
Methods
29
6.2.3.1
Overview
29
6.2.3.2
Registration
30
6.2.3.2.1
Overview
30
6.2.3.2.2
Parameters
31
6.2.3.2.3
Pre-Conditions
32
6.2.3.2.4
Usage of Method for Application
32
6.2.3.2.5
Expected MBMS Client Actions
33
6.2.3.2.6
Post-Conditions
33
6.2.3.3
File Delivery Application Service Registration Response
33
6.2.3.3.1
Overview
33
6.2.3.3.2
Parameters
34
6.2.3.3.3
Pre-Conditions
34
6.2.3.3.4
Expected MBMS Client Actions
34
6.2.3.3.5
Usage of Method for Application
34
6.2.3.3.6
Post-Conditions
34
6.2.3.4
Getting information on available File Delivery Application Services
35
6.2.3.4.1
Overview
35
6.2.3.4.2
Parameters
35
6.2.3.4.3
Pre-Conditions
35
6.2.3.4.4
Expected MBMS Client Actions
36
6.2.3.4.5
Usage of Method for Application
36
6.2.3.4.6
Post-Conditions
36
6.2.3.5
Establishing the location where files are stored for an application
36
6.2.3.5.1
Overview
36
6.2.3.5.2
Parameters
37
6.2.3.5.3
Pre-Conditions
37
6.2.3.5.4
Usage of Method for Application
37
6.2.3.5.5
Expected MBMS Client behaviour
37
6.2.3.5.6
Post-Conditions
37
6.2.3.6
Updating the registered service classes
38
6.2.3.6.1
Overview
38
6.2.3.6.2
Parameters
38
6.2.3.6.3
Pre-Conditions
38
6.2.3.6.4
Usage of Method for Application
38
6.2.3.6.5
Expected MBMS Client Actions
39
6.2.3.6.6
Post-Conditions
39
6.2.3.7
Start File Delivery Capture
39
6.2.3.7.1
Overview
39
6.2.3.7.2
Parameters
39
6.2.3.7.3
Pre-Conditions
40
6.2.3.7.4
Usage of Method for Application
40
6.2.3.7.5
Expected MBMS Client Actions
40
6.2.3.7.6
Post-Conditions
40
6.2.3.8
File Available Notification
41
6.2.3.8.1
Overview
41
6.2.3.8.2
Parameters
41
6.2.3.8.3
Pre-Conditions
41
6.2.3.8.4
Expected MBMS Client Actions
41
6.2.3.8.5
Usage of Method for Application
41
6.2.3.8.6
Post-Conditions
42
6.2.3.9
File Delivery Application Service De-registration
42
6.2.3.9.1
Overview
42
6.2.3.9.2
Parameters
42
6.2.3.9.3
Pre-Conditions
42
6.2.3.9.4
Usage of Method for Application
42
6.2.3.9.5
Expected MBMS Client Actions
42
6.2.3.9.6
Post-Conditions
42
6.2.3.10
File Download Failure Notification
42
6.2.3.10.1
Overview
42
6.2.3.10.2
Parameters
43
6.2.3.10.3
Pre-Conditions
43
6.2.3.10.4
Expected MBMS Client Actions
43
6.2.3.10.5
Usage of Method for Application
43
6.2.3.10.6
Post-Conditions
43
6.2.3.11
File List Available Notification
44
6.2.3.11.1
Overview
44
6.2.3.11.2
Parameters
44
6.2.3.11.3
Pre-Conditions
44
6.2.3.11.4
Expected MBMS Client Actions
45
6.2.3.11.5
Usage of Method for Application
45
6.2.3.11.6
Post-Conditions
45
6.2.3.12
Getting the List of Available Files
45
6.2.3.12.1
Overview
45
6.2.3.12.2
Parameters
45
6.2.3.12.3
Pre-Conditions
45
6.2.3.12.4
Usage of Method for Application
46
6.2.3.12.5
Expected MBMS Client Operation
46
6.2.3.12.6
Post-Conditions
46
6.2.3.13
Stop File Delivery Capture
46
6.2.3.13.1
Overview
46
6.2.3.13.2
Parameters
46
6.2.3.13.3
Pre-Conditions
46
6.2.3.13.4
Usage of Method for Application
47
6.2.3.13.5
Expected MBMS Client Actions
47
6.2.3.13.6
Post-Conditions
47
6.2.3.14
Getting the list of outstanding fileURIs being captured
47
6.2.3.14.1
Overview
47
6.2.3.14.2
Parameters
48
6.2.3.14.3
Pre-Conditions
48
6.2.3.14.4
Usage of Method for Application
48
6.2.3.14.5
MBMS Client Actions
48
6.2.3.14.6
Post-Conditions
48
6.2.3.15
Notification on state change for files
48
6.2.3.15.1
Overview
48
6.2.3.15.2
Parameters
49
6.2.3.15.3
Pre-Conditions
49
6.2.3.15.4
Expected MBMS Client Actions
49
6.2.3.15.5
Usage of Method for Application
49
6.2.3.15.6
Post-Conditions
49
6.2.3.16
Getting the state on file(s) received or being received
49
6.2.3.16.1
Overview
49
6.2.3.16.2
Parameters
50
6.2.3.16.3
Pre-Conditions
50
6.2.3.16.4
Usage of Method for MAA
50
6.2.3.16.5
Expected MBMS Client Actions
50
6.2.3.16.6
Post-Conditions
50
6.2.3.17
Notification of updates to the service definition
50
6.2.3.17.1
Overview
50
6.2.3.17.2
Parameters
51
6.2.3.17.3
Pre-Conditions
51
6.2.3.17.4
Expected MBMS Client Operation
51
6.2.3.17.5
Usage of Method for Application
51
6.2.3.17.6
Post-Conditions
51
6.2.3.18
Notification of File Delivery Application Service errors
51
6.2.3.18.1
Overview
51
6.2.3.18.2
Parameters
52
6.2.3.18.3
Pre-Conditions
53
6.2.3.18.4
Expected MBMS Client Actions
53
6.2.3.18.5
Usage of Method for Application
53
6.2.3.18.6
Post-Conditions
53
6.2.3.19
Notification on storage limitations
53
6.2.3.19.1
Overview
53
6.2.3.19.2
Parameters
54
6.2.3.19.3
Pre-Conditions
54
6.2.3.19.4
Expected MBMS Client Actions
54
6.2.3.19.5
Usage of Method for Application
54
6.2.3.19.6
Post-Conditions
54
6.2.3.20
Notification on storage access issues
55
6.2.3.20.1
Overview
55
6.2.3.20.2
Parameters
55
6.2.3.20.3
Pre-Conditions
55
6.2.3.20.4
Expected MBMS Client Actions
55
6.2.3.20.5
Usage of Method for Application
55
6.2.3.20.6
Post-Conditions
56
6.2.3.21
Checking the version for File Delivery Application Service interface
56
6.2.3.21.1
Overview
56
6.2.3.21.2
Parameters
56
6.2.3.21.3
Pre-Conditions
56
6.2.3.21.4
Operation of Method in MBMS Client
56
6.2.3.21.5
Usage of Method for Application
56
6.2.3.21.6
Post-Conditions
56
6.2.3.22
Add SA file
56
6.2.3.22.1
Overview
56
6.2.3.22.2
Parameters
57
6.2.3.22.3
Pre-Conditions
57
6.2.3.22.4
Usage of Method for Application
57
6.2.3.22.5
Expected MBMS Client Actions
57
6.2.3.22.6
Post-Conditions
58
6.2.3.23
Add SA file Response
58
6.2.3.23.1
Overview
58
6.2.3.23.2
Parameters
58
6.2.3.23.3
Pre-Conditions
58
6.2.3.23.4
Usage of Method for Application
58
6.2.3.23.5
Expected MBMS Client Actions
58
6.2.3.23.6
Post-Conditions
58
6.3
DASH Streaming Service API
58
6.3.1
Introduction
58
6.3.2
MBMS Client State Model for DASH Streaming
59
6.3.2.1
Overview
59
6.3.2.2
MBMS Client Internal parameters
60
6.3.2.3
MBMS Client Operation in IDLE state
60
6.3.2.4
MBMS Client Operation in REGISTERED state
61
6.3.2.5
MBMS Client Operation in ACTIVE state
63
6.3.2.6
MBMS Client Operation in STALLED state
64
6.3.3
Methods
65
6.3.3.1
Overview
65
6.3.3.2
Registration
65
6.3.3.2.1
Overview
65
6.3.3.2.2
Parameters
66
6.3.3.2.3
Pre-Conditions
66
6.3.3.2.4
Usage of Method for MAA
67
6.3.3.2.5
Expected MBMS Client Actions
67
6.3.3.2.6
Post-Conditions
67
6.3.3.3
DASH Streaming Application Service Registration Response
67
6.3.3.3.1
Overview
67
6.3.3.3.2
Parameters
67
6.3.3.3.3
Pre-Conditions
67
6.3.3.3.4
Expected MBMS Client Actions
67
6.3.3.3.5
Usage of Method for MAA
67
6.3.3.3.6
Post-Conditions
68
6.3.3.4
Getting information on available DASH Streaming Application Services
68
6.3.3.4.1
Overview
68
6.3.3.4.2
Parameters
68
6.3.3.4.3
Pre-Conditions
69
6.3.3.4.4
Expected MBMS Client Actions
69
6.3.3.4.5
U Usage of Method for MAA
69
6.3.3.4.6
Post-Conditions
69
6.3.3.5
Updating the registered service classes
69
6.3.3.5.1
Overview
69
6.3.3.5.2
Parameters
70
6.3.3.5.3
Pre-Conditions
70
6.3.3.5.4
Expected MBMS Client Actions
70
6.3.3.5.5
Usage of Method for MAA
70
6.3.3.5.6
Post-Conditions
70
6.3.3.6
Updating the Streaming Service List
71
6.3.3.6.1
Overview
71
6.3.3.6.2
Parameters
71
6.3.3.6.3
Pre-Conditions
71
6.3.3.6.4
Expected MBMS Client Actions
71
6.3.3.6.5
Usage of Method for MAA
71
6.3.3.6.6
Post-Conditions
71
6.3.3.7
Start DASH Streaming Service
71
6.3.3.7.1
Overview
71
6.3.3.7.2
Parameters
72
6.3.3.7.3
Pre-Conditions
72
6.3.3.7.4
Usage of Method for MAA
72
6.3.3.7.5
MBMS Client Actions
72
6.3.3.7.6
Post-Conditions
72
6.3.3.8
Notification that DASH Streaming for a Service has started
73
6.3.3.8.1
Overview
73
6.3.3.8.2
Parameters
73
6.3.3.8.3
Pre-Conditions
73
6.3.3.8.4
Expected MBMS Client Actions
73
6.3.3.8.5
Usage of Method for MAA
73
6.3.3.8.6
Post-Conditions
73
6.3.3.9
Stop DASH Streaming Service
73
6.3.3.9.1
Overview
73
6.3.3.9.2
Parameters
73
6.3.3.9.3
Pre-Conditions
73
6.3.3.9.4
Usage of Method for MAA
74
6.3.3.9.5
MBMS Client Actions
74
6.3.3.9.6
Post-Conditions
74
6.3.3.10
DASH Streaming Application Service De-registration
74
6.3.3.10.1
Overview
74
6.3.3.10.2
Parameters
74
6.3.3.10.3
Pre-Conditions
74
6.3.3.10.4
Usage of Method for MAA
74
6.3.3.10.5
MBMS Client Actions
74
6.3.3.10.6
Post-Conditions
74
6.3.3.11
Notification that DASH Streaming for a Service has stalled
74
6.3.3.11.1
Overview
74
6.3.3.11.2
Parameters
75
6.3.3.11.3
Pre-Conditions
76
6.3.3.11.4
Expected MBMS Client Actions
76
6.3.3.11.5
Usage of Method for MAA
76
6.3.3.11.6
Post-Conditions
76
6.3.3.12
Notification of DASH Streaming Application Service errors
76
6.3.3.12.1
Overview
76
6.3.3.12.2
Parameters
77
6.3.3.12.3
Pre-Conditions
77
6.3.3.12.4
Expected MBMS Client Actions
77
6.3.3.12.5
Usage of Method for MAA
77
6.3.3.12.6
Post-Conditions
77
6.3.3.13
Checking the version for DASH Streaming Application Service interface
78
6.3.3.13.1
Overview
78
6.3.3.13.2
Parameters
78
6.3.3.13.3
Pre-Conditions
78
6.3.3.13.4
Usage of Method for MAA
78
6.3.3.13.5
MBMS Client Actions
78
6.3.3.13.6
Post-Conditions
78
6.4
MBMS Packet Delivery Service API
78
6.4.1
Introduction
78
6.4.2
MBMS Client State Model for MBMS packet delivery
78
6.4.2.1
Overview
78
6.4.2.2
MBMS Client Internal parameters
79
6.4.2.3
MBMS Client Operation in IDLE state
80
6.4.2.4
MBMS Client Operation in REGISTERED state
81
6.4.2.5
MBMS Client Operation in ACTIVE state
83
6.4.2.6
MBMS Client Operation in STALLED state
84
6.4.3
Methods
85
6.4.3.1
Overview
85
6.4.3.2
Registration
85
6.4.3.2.1
Overview
85
6.4.3.2.2
Parameters
86
6.4.3.2.3
Pre-Conditions
86
6.4.3.2.4
Usage of Method for MAA
87
6.4.3.2.5
Expected MBMS Client Actions
87
6.4.3.2.6
Post-Conditions
87
6.4.3.3
MBMS Packet Delivery Service Registration Response
87
6.4.3.3.1
Overview
87
6.4.3.3.2
Parameters
87
6.4.3.3.3
Pre-Conditions
87
6.4.3.3.4
Expected MBMS Client Actions
87
6.4.3.3.5
Usage of Method for MAA
88
6.4.3.3.6
Post-Conditions
88
6.4.3.4
Getting information on available MBMS Packet Delivery Services
88
6.4.3.4.1
Overview
88
6.4.3.4.2
Parameters
88
6.4.3.4.3
Pre-Conditions
89
6.4.3.4.4
Expected MBMS Client Actions
89
6.4.3.4.5
Usage of Method for MAA
89
6.4.3.4.6
Post-Conditions
89
6.4.3.5
Updating the registered service classes
90
6.4.3.5.1
Overview
90
6.4.3.5.2
Parameters
90
6.4.3.5.3
Pre-Conditions
90
6.4.3.5.4
Expected MBMS Client Actions
90
6.4.3.5.5
Usage of Method for MAA
90
6.4.3.5.6
Post-Conditions
90
6.4.3.6
Updating the Packet Service List
91
6.4.3.6.1
Overview
91
6.4.3.6.2
Parameters
91
6.4.3.6.3
Pre-Conditions
91
6.3.3.6.4
Expected MBMS Client Actions
91
6.4.3.6.5
Usage of Method for MAA
91
6.4.3.6.6
Post-Conditions
91
6.4.3.7
Start MBMS Packet Delivery Service
91
6.4.3.7.1
Overview
91
6.4.3.7.2
Parameters
92
6.4.3.7.3
Pre-Conditions
92
6.4.3.7.4
Usage of Method for MAA
92
6.4.3.7.5
MBMS Client Actions
92
6.4.3.7.6
Post-Conditions
92
6.4.3.8
Notification that MBMS Packet Delivery Service has started
93
6.4.3.8.1
Overview
93
6.4.3.8.2
Parameters
93
6.4.3.8.3
Pre-Conditions
93
6.4.3.8.4
Expected MBMS Client Actions
93
6.4.3.8.5
Usage of Method for MAA
93
6.4.3.8.6
Post-Conditions
93
6.4.3.9
Stop MBMS Packet Delivery Service
93
6.4.3.9.1
Overview
93
6.4.3.9.2
Parameters
93
6.4.3.9.3
Pre-Conditions
93
6.4.3.9.4
Usage of Method for MAA
93
6.4.3.9.5
MBMS Client Actions
94
6.4.3.9.6
Post-Conditions
94
6.4.3.10
MBMS Packet Delivery Service De-registration
94
6.4.3.10.1
Overview
94
6.4.3.10.2
Parameters
94
6.4.3.10.3
Pre-Conditions
94
6.4.3.10.4
Usage of Method for MAA
94
6.4.3.10.5
MBMS Client Actions
94
6.4.3.10.6
Post-Conditions
94
6.4.3.11
Notification that MBMS Packet Delivery Service has stalled
94
6.4.3.11.1
Overview
94
6.4.3.11.2
Parameters
95
6.4.3.11.3
Pre-Conditions
96
6.4.3.11.4
Expected MBMS Client Actions
96
6.4.3.11.5
Usage of Method for MAA
96
6.4.3.11.6
Post-Conditions
96
6.4.3.12
Notification of MBMS Packet Delivery Service errors
96
6.4.3.12.1
Overview
96
6.4.3.12.2
Parameters
97
6.4.3.12.3
Pre-Conditions
97
6.4.3.12.4
Expected MBMS Client Actions
97
6.4.3.12.5
Usage of Method for MAA
97
6.4.3.12.6
Post-Conditions
97
6.4.3.13
Checking the version for MBMS Packet Delivery Service interface
97
6.4.3.13.1
Overview
97
6.4.3.13.2
Parameters
97
6.4.3.13.3
Pre-Conditions
98
6.4.3.13.4
Usage of Method for MAA
98
6.4.3.13.5
MBMS Client Actions
98
6.4.3.13.6
Post-Conditions
98
7
MBMS Client to Application Interfaces for Data
98
7.1
General
98
7.2
File Copy Interface
98
7.3
HTTP Interface
98
7.4
DASH-Specific Interfaces
99
7.4.1
General
99
7.4.2
MBMS Client as DASH Server
99
7.4.2.1
General
99
7.4.2.2
Time Synchronization
100
7.4.2.3
Robustness
100
7.4.3
MBMS Client as DASH-Aware Network Element (DANE)
100
7.4.4
DASH Client of MBMS-Aware Application
100
7.5
RTP Streaming Delivery Method Interface
100
7.6
Packet Data Interface
100
8
MBMS URLs: Definition and URL Handling
101
8.1
General
101
8.2
Single Resource MBMS URL handling
101
8.2.1
Introduction
101
8.2.2
URL structure, definition and behaviour
102
8.2.2A
DNS URL RR Resolution
103
8.2.3
Examples
104
Annex A (informative):
Documentation Guidelines for APIs
105
A.1
Introduction Motivation
105
A.2
Documentation Details
105
A.2.0
General
105
A.2.1
IDL for Interface Specification
106
A.2.2
IDL as Data Format
106
A.2.3
Doxygen for API Semantics
106
A.2.4
Use Cases and Message Flows
107
Annex B (informative):
Interface Definition Language for MBMS-APIs
108
B.1
General
108
B.2
IDL for File Delivery Application Service API
108
B.3
IDL for DASH Streaming Service API
117
B.4
IDL for MBMS RTP streaming delivery Service API
122
Annex C (informative):
IANA registration for MBMS URLs
128
C.1
General
128
C.2
IANA Registration for Single Resource MBMS URL
128
Annex D (informative):
Service Name and Transport Protocol Port Number Registration
129
Annex E (informative):
Implementation Guidelines for DASH over MBMS
130
E.1
General
130
E.2
Hybrid Service Offering with Unicast Fallback
130
E.2.1
Description
130
E.2.2
Assumed MBMS User Service Description Signalling
131
E.2.3
Assumed DASH MPD
131
E.2.4
MBMS Client acting as DASH Server
132
E.2.5
MBMS Client acting as DANE
134
Annex F (informative):
Change history
136

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

-
Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document has been created as part of the MBMS Transport Protocol and API (TRAPI) work item and is based on the conclusions of TR 26.852 [6] in order to provide application-friendly methods and interfaces to access 3GPP MBMS User services. The present document is primarily targeted for developers of web and user applications and attempts to abstract complex MBMS procedures in simple methods and interfaces. MBMS Client vendors can implement this API and URL to simplify the integration of MBMS User Services.
1
Scope

The present document provides application methods and interfaces between an MBMS-aware application and the UE MBMS Client to access 3GPP MBMS User services. The purpose of the document is the definition of enablers in order to simplify the usage of MBMS in web-centric as well as app-based service environments.

The present document defines several APIs to access MBMS User Services and a URL to access resources available as part of an MBMS User Service. The MBMS User Services are defined in TS 26.346 [5] and are not part of the present document.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.146: "Multimedia Broadcast/Multicast Service; Stage 1".

[3]
3GPP TS 22.246: "Multimedia Broadcast/Multicast Service (MBMS) user services; Stage 1".

[4]
3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and functional description".

[5]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".

[6]
3GPP TR 26.852: "Multimedia Broadcast/Multicast Service (MBMS); Extensions and profiling".

[7]
3GPP TS 26.247: "Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".

[8]
IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1".

[9]
Object Management Group: "Interface Definition Language™ (IDL™) 4.0".
[10]
IETF RFC 3066: "Tags for the Identification of Languages".

[11]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[12]
3GPP TS 29.116: "Representational state transfer over xMB reference point between content provider and BM-SC".
[13]
IETF RFC 7595: "Guidelines and Registration Procedures for URI Schemes".
[14]
IETF RFC 7230: " Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[15]
IETF RFC 7553, "The Uniform Resource Identifier (URI) DNS Resource Record"
[16]
IETF RFC 6335, "Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry"
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Application Feature Enhanced Service: An end-user service for which all associated resources are delivered through more than one MBMS User Service.
MBMS Application User Service: An end-user service for which all associated resources are delivered through an MBMS User Service via broadcast and/or unicast bearers and which is accessible through the MBMS-API.

MBMS-API: An Application Programming Interface between the MBMS Client and the MBMS-Aware application for a specific Application User Service.

MBMS-aware Application: An application in the user space that communicates with the MBMS client through APIs as defined in the present document.

MBMS Client: A function that implements functionalities defined in TS 26.346 and provides APIs and protocol-related methods to expose relevant functionalities to an MBMS-aware application.

MBMS-URL: A Universal Resource Locator that enables a general application to access resources delivered through an MBMS User Service using the MBMS URL handler.

MBMS-URL Handler: A logical function that translates the MBMS-URL to a sequence of MBMS-API calls in order to provide resources delivered by MBMS User Services to a general application.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

API
Application Programming Interface
DANE
DASH-Aware Network Element
DASH
Dynamic Adaptive Streaming over HTTP
IDL
Interface Definition Language

JSON
JavaScript Object Notation
HLS
HTTP live Streaming
MAA
MBMS-Aware Application

MPD
Media Presentation Description
SAND
Server and Network Assisted DASH
SDP
Session Description Protocol
USD
User Service Description
URL
Universal Resource Locator

4
Overview

4.1
Introduction

The present document addresses a specific interface for an end-to-end application service, namely the interface between the MBMS client and the MBMS-Aware Application (MAA) as shown in Figure 4.1-1. An application service provider may provide content through xMB (see TS 26.346 [5] and TS 29.116 [12]) to the BMSC, but may also provide information directly to an MAA. The BMSC uses MBMS User Services as well as MBMS bearer services and unicast bearers to communicate with the MBMS client. The present document deals with the interface between the MBMS client and the MAA, referred to as MBMS Application Programming Interfaces (MBMS-APIs). The APIs may be used directly by the MAA, or the MBMS URL Handler may use the MBMS-APIs after receiving an MBMS URL from a generic application.

[image: image3.emf]BM-SC

MBMS-

GW

MME

E-UTRAN

SGi-mb

SGmb

Sm

M1

Application

Service

Provider

xMB

M3

MBMS-

aware

Application

UE

Modem

MBMS

Client

MBMS-API

Application Service Discovery

TS26.346 including broadcast and unicast

Figure 4.1-1: End-to-end Architecture for Application Service Providers using eMBMS for Delivery

4.2
Network Architecture and MBMS User Services (Informative)

According to TS 26.346 [5], three distinct functional layers are defined for the delivery of an MBMS-based service:

1)
Bearers: Bearers provide the mechanism by which IP data is transported. MBMS bearers as defined in 3GPP TS 23.246 [4] and 3GPP TS 22.146 [2] are used to transport multicast and broadcast traffic in an efficient one-to-many manner and are the foundation of MBMS-based services. MBMS bearers may be used jointly with unicast PDP contexts in offering complete service capabilities.

2)
Delivery Method: When delivering MBMS content to a receiving application one or more delivery methods are used. The delivery layer provides functionality such as security and key distribution, reliability control by means of forward-error-correction techniques and associated delivery procedures such as file-repair, delivery verification. Three delivery methods are defined, namely download, streaming, transparent and group communication. The present document does not address group communication.

3)
User service: The MBMS User service enables applications. Different applications impose different requirements when delivering content to MBMS subscribers and may use different MBMS delivery methods.

MBMS User Service architecture is based on an MBMS client on the UE side and a BM-SC on the network side. Details about the BM-SC functional entities are given in figure 4 of TS 26.346 [5].

The BM-SC and UE may exchange service and content related information either over point-to-point bearers or MBMS bearers whichever is suitable. Among others, the following MBMS procedures are defined in TS 26.346 [5]:

-
User Service Discovery / Announcement providing service description material to be presented to the end-user as well as application parameters used in providing service content to the end-user.

-
MBMS-based delivery of data/content from the BM-SC to the UE over IP multicast or over IP unicast.

-
Associated Delivery functions are invoked by the UE in relation to the MBMS data transmission. The following associated delivery functions are available:
-
File repair for download delivery method used to complement missing data.

The service and content related information may also be directly transmitted by the content provider to the MBMS aware application and then forwarded by the MBMS aware application to the MBMS client.
4.3
MBMS Application User Services

4.3.1
Introduction

The MBMS system may provide services to an MAA for which all associated resources are delivered through one or more MBMS User Services including broadcast and unicast. The services may be made accessible through an MBMS-API defined in the present document. The present document defines an initial set of Application User Services and corresponding MBMS-APIs. For each Application User Services, one MBMS-API is defined.

MBMS Application User Services are associated with MBMS-APIs which define how an MAA can obtain access to the content delivered via MBMS user services.

The specification may be extended to add additional Application User Services and MBMS-APIs.
The MBMS Application User Services that are covered by the present document are defined in this clause.
An MAA providing an Application feature enhanced service must acquire, from the MBMS client, multiple MBMS Applications User Services in order to obtain all the required resources.

4.3.2
File Delivery Application User Service

The File Delivery Application User Service provides MAAs with methods to manage the reception of files delivered over MBMS Download Delivery services as defined in TS 26.346 [5]. Some of the defined interfaces allow an MBMS-Aware Application to get information on the available MBMS File Delivery Application Services and possibly on the files scheduled to be carried on these services; to start and stop the capture of files on these services; and to allow the MBMS Client to provide notifications associated with the reception of files. Clause 6.2 provides a complete description and the associated uses for the interfaces in the File Delivery Application Service API and includes an abstract IDL definition for these interfaces.

4.3.3
Media
Application User Service

The Media Streaming Service API defined in clause 6.3 provides the MAA with interfaces to manage the reception of a media streaming service:
· The media streaming service can be formatted as DASH streaming content (as defined in TS 26.247 [7]) delivered over DASH-over-MBMS Streaming Services (as defined in TS 26.346 [5], clause 5.6) or

· The media streaming service can be formatted as HLS Content and delivered as a generic application service (as defined in TS 26.346 [5], clause 5.7).
Some of the interfaces defined allow an MAA to get information on the available Media Streaming Services; to start and stop the reception of media streaming content on these services; and to allow the MBMS Client to provide notifications associated with the receptions of media streaming content. Clause 6.3 provides a complete description and the associated uses for the interfaces in the media Streaming Service API and also includes an abstract IDL definition for these interfaces.
4.3.4
MBMS RTP Streaming User Service

MBMS RTP Streaming User Service provides the MAA with interfaces to access MBMS Streaming Delivery Services as defined in TS 26.346 [5]. The MAA may request start or stop any available RTP streaming service. The MAA will receive information about the RTP data. The API for the MBMS RTP Streaming User Services is defined in clause 6.4 using the the serviceType set to RTP for the service request.

The SDP provided in the sdpURI should be used together the RTP interface as documented in clause 7.5.
4.3.5
MBMS Transparent User Service

MBMS Transparent User Service provides the MAA with interfaces to access MBMS transparent delivery services as defined in TS 26.346 [5]. The MAA may request start or stop any available transparent service.
The Service API is defined in clause 6.4 using the the serviceType set to TRANSPARENT or TRANSPARENT-ROM for the service request.

TRANSPARENT refers to any transport service that is declared as a transparent service by the BMSC, if the Service Announcement includes a required capability '24', i.e. the signal for the "MBMS User Service Discovery / Announcement Profile for Transparent Delivery Services" as documented in Annex L.5 of TS26.346 [5].

TRANSPARENT-ROM refers to any transparent service that is also a Receive-Only Mode (ROM) Service, if the ROM service is signalled in the User Service Description.

The SDP provided in the sdpURI should be used together the Packet Data interface as documented in clause 7.6.
4.4
Specification Outline

The following aspects are defined in the present document:

-
The definition of different interfaces as part of client reference architecture in clause 5.

-
A set of service APIs (MBMS-APIs) for each application user service as defined in clause 4.3. The definition provide the ability to independently develop MBMS-aware applications and MBMS clients, even for different operating systems and execution environments, but rely on the service APIs to communicate with the MBMS client and to make use of the MBMS functionalities. This is defined in clause 6.

-
A set of interface options between the MBMS client and the application to support the transfer of user data. Primary focus is on the communication through HTTP interfaces, as for example DASH or other application services. This is defined in clause 7.

-
The mapping of the functionality to a URL handling and abstraction of the services in such environments. This is defined in clause 8.

5
Reference Client Architecture

Figure 5.1 shows a general service architecture including a reference client. On the network side, an MAA and content provider provides media formats to a BM-SC, typically through the xMB interface and initiates services and sessions through the xMB interface. The BMSC establishes MBMS User Services and the lower layers support the delivery of the data through regular 3GPP unicast as well as MBMS broadcast bearers.

The MAA initiates the communication with the MBMS client using the MBMS-API. The MBMS client identifies the relevant services and provides the delivered user data to MAA. Typically, the media formats are provided through interfaces and to functions that conform to well-defined media delivery formats. The MAA controls the media client.

In TS 26.346 [5] the interface between the BMSC and the MBMS client for both unicast and broadcast related services and functions are defined. The interface between the MBMS client and the MAA is defined in the present document..

The focus of the present document is to define app-developer and web-friendly interfaces and programming structures to enable such an MAA to interact with the MBMS client.

An MAA that communicates with the MBMS client through APIs and possibly URL handlers as defined in the present document is referred to as MAA. The MBMS Client is a function that implements functionalities defined in TS 26.346 and provides APIs interfaces to expose relevant functionalities to an MAA.

 [image: image4.emf]Network UE

MBMS

Management

System

Application

and Content

Provider

Media and

Content Server

BMSC

eNode-B

xMB

TS26.116

Modem

MBMS Client

MBMS-Aware

Application

Media Server

Unicast

MBMS Broadcast bearers

Media Client

TS26.346

MBMS API

Media/Content Format

Application Data

Figure 5.1: General Reference Architecture for Client

Figure 5.2 shows a specific instantiation for the media streaming Application User Service using the Media Streaming MBMS-API. In this case the content formats conform to TS 26.247. The DASH client may be viewed as part of the MAA, and as 3GPP defines interfaces into a DASH client in TS 26.247 [7] also interfaces to the DASH client function are in focus of the present document.

[image: image5.emf]Network

UE

MBMS

Management

System

Application

and Content

Provider

DASH Server

BMSC

eNode-B

xMB

TS26.116

Modem

MBMS Client

MBMS-Aware

Application

DASH Server

Unicast

MBMS Broadcast bearers

DASH Client

TS26.346

DASH

Streaming

MBMS API

TS 26.247

TS 26.247

Application Data

Figure 5.2: Client Reference Architecture for DASH-over-MBMS Streaming

The control part of the MBMS-API are used for service discovery, registration, notifications, state changes and other control messages between the MAA and the MBMS client and for other control messages. The control part of the MBMS-APIs are defined in clause 6.

The data part interfaces are used to provide content delivered through MBMS User services to the MAA. However, the data is using formats and interfaces that are primarily MBMS independent such that for the MAA the delivery over MBMS is obscured. MBMS Client to application interfaces for data is primarily introduced in clause 7.
6
MBMS Application Programming Interfaces

6.1
Overview

6.1.1
Background

Figure 6.1.1-1 provides a graphical overview of how the MBMS Control Application Programming Interface (API) fits into the UE architecture of delivering MBMS content to MAAs.

[image: image6.emf]MBMS URL

Handler

MBMS-Aware

Application

Application

URL Dispatch

MBMS-API

HTTP URL

Handler

HTTP

Function

MBMS Client

Figure 6.1.1-1: MAA to MBMS function API
The MBMS API implementation on High-Level Operating Systems and application development frameworks is typically realized as a programmatic library that is linked to the application code and that runs in the application context. That library implementation communicates with a particular MBMS Client implementation and abstracts the implementation-specific interactions with the MBMS Client from the MAA. The MBMS-API exposes to the MAA a set of simple interfaces described in the IDL definitions in clauses of the present document; in particular, the IDL makes use of callback functions as the means for the MBMS Client to notify MAAs of events relevant to the reception of content delivered over MBMS user services. The programmatic library communication with the MBMS Client is implementation-specific, it is not in the scope of the present document, and it can be implemented using different solution approaches (e.g., smartphone High-Level Operating System services, WebSockets, etc.).

It is understood that in some application development frameworks (e.g., HTML/Web Applications), linking a programmatic library to the MAA is not possible. In these cases, the callback functions may not be realized programmatically as function calls. In particular, the MAA may need to implement the necessary approach available on these frameworks (or the selected solution approach) to receive event notifications from the MBMS client in place of callback functions. For such frameworks, the implementation of callback functions described in the IDL of the present document is not required. However, the information structures defined on the IDL callback functions are to be communicated to the MAA when the MBMS Client generates the corresponding event notification to the MAA using the available (or selected) notification mechanism.

Figure 6.1.1-2 provides an overview of the graphical representation of multiple MAAs connecting to the MBMS client. Each MAA uses its own instantiation of the MBMS-API.

[image: image7.emf]MBMS-Aware

Application

MBMS Client

MBMS API

MBMS-Aware

Application

Figure 6.1.1-2: Multiple MAAs connecting to MBMS Client
Guidelines on API documentation are provided in Annex A.

It is also recommended to separate the description for MBMS client functions and the description of the MAA functions as it is expected that they are developed by independent parties.

6.1.2
Parameter description notation

In each Application Service API described in this clause, the parameters in the API interfaces are described in the following format:

-
dataType parameterName – description of the parameter.

Each interface parameter is defined via a separate item in the list of parameters. The dataType on the item defines the programmatic data type for the parameter named parameterName, as described on the IDL for the API; the dataType may be a complex structure on the IDL. The parameterName provides a name for a parameter on the API interface. A description follows to provide information on the meaning and use for the parameter.

6.1.3
MBMS Client State Model

For each Application Service, the MBMS client maintains certain states for the application and a set of internal parameters. The internal parameters may be updated based on information received from the MBMS system, by time-outs, or by communication with the application. It is recommended that an MBMS client state model for each defined MBMS-API is defined.
6.2
File Delivery Application Service API

6.2.1
Introduction

The File Delivery Application Service API provides MBMS Aware applications with interfaces to manage the reception of files delivered over File Delivery Application User Services. This API is intended to support applications that are running while files are being delivered through MBMS user services as well as applications that are not running to receive information on files received through an MBMS User service, for example as the user may have quit/exited the application.

In order to support applications that may not be currently running while files are being received, the MBMS client may keep received files for a period of time configured by the application, which includes means to collect received files even if the user does not actively interact with the application to consume the received files.

When the application is currently running and can collect the files received over MBMS User services, the MBMS client moves the files to the application space. It is ultimately the application's responsibility to manage the storage of requested files, especially the amount of storage to be used.

Any persistent storage of received files by the MBMS client is only intended to ensure that the received files are made available to the respective requesting application. Once files are moved/copied to the application space, the application is responsible for managing those files.
When the content provider use the "content provider" announcement mode (3GPP TS 29.116 [12]) for a file delivery session, the BM-SC provides the service announcement information to the content provider within a SA file, following the profile 1c (Annex L.3 of 3GPP 26.346 [2]). This SA file may be transmitted by the content provider directly to the MBMS Aware application. In such case, SA information may be provided to the MBMS client by the MBMS aware application.
The IDL for the File Delivery Application Service API is defined in clause B.2.

6.2.2
MBMS Client State Model

6.2.2.1
Overview

Figure 6.2.2.1-1 provides an informative MBMS client state model in order to appropriately describe the messages on the service API. Five different states are defined as listed in Table 6.2.2.1-1.

Note that the state model is defined on the granularity per service and each MAA. This means that the MBMS client may at least conceptually have to maintain multiple state machines, namely one for each MAA/service combination.

The state model does not imply any implementation requirements for an MBMS client, but is used as a model to support the description of the APIs.

State changes may be the result of:
-
Requests from the MAA

-
Timer expiration in the MBMS client

-
Information provided by the MBMS User Service (USD, schedule, FDT, file complete)
[image: image8.emf]CAPTURE_NOTIFY

CAPTURE_BACKGROUND

REGISTERED

IDLE

Timeout registrationValidityDuration

deregisterFdApp()

registerFdApp()

startFdCapture()

stopFdCapture()

registerFdApp()

deregisterFdApp()

startCaptureFd()

stopCaptureFd()

Figure 6.2.2.1-1: State Diagram

Table 6.2.2.1-1 describes the states for the MBMS client. Detailed descriptions are provided in the following subclauses.

Table 6.2.2.1-1: States and Parameters of MBMS Client

	States and Parameters
	Definition

	IDLE
	In this state the MAA is not registered with the MBMS client and it may not keep the service parameters up-to-date.

For more details see clause 6.2.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an MAA cannot register with the MBMS client. The MBMS client may not be aware of the state, it is only a state perceived by the MAA.

	REGISTERED
	In this state the MBMS client has registered the MAA, it may keep the service definition up to date, but it is not providing file capture services to the MAA(s).

For more details see clause 6.2.2.4.

	CAPTURE_NOTIFY
	In this state the MBMS client provides file capture for one specific service to a registered MAA and notifies the MAA on any received file.

For more details see clause 6.2.2.5.

	CAPTURE_BACKGROUND
	In this state the MBMS client provides file capture for one specific service to an MAA without notifying the MAA on any received file for some agreed time.

For more details see clause 6.2.2.6.

6.2.2.2
MBMS Client Internal parameters

The MBMS client maintains internal parameters as defined Table 6.2.2.2-1. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls.

Table 6.2.2.2-1: Parameters of MBMS Client

	States and Parameters
	Definition

	_Preconfigurations
	

	
	
	_maxRegistrationValidityDuration
	MBMS client parameter that provides the maximum time after deregistration that a client still captures files on behalf of an MAA.

	
	
	_defaultAvailabilityDeadline
	the time a file that is kept in the MBMS client owned storage location.

	_app[]
	The MBMS client maintains a parameter set per registered app

	
	_appId
	A unique ID provided by the MAA and assigned to the app.

	
	_serviceClass[]
	A list of service classes identifying the services the MAA has access to.

	
	_registrationValidityDuration
	A period of time following the MAA de-registration over which the MBMS client continues to capture files for the MAA.

	
	_locationPath
	The storage location where the MAA wants the MBMS client to store collected files.

	
	_backgroundCaptureTimer
	Timer on how long files are captured in background.

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a File Delivery Application service over which the MBMS client collects files for the MAA.

	
	
	_serviceClass
	The service class associated with the File Delivery Application service assigned the Service ID..

	
	
	_serviceLanguage
	The language of the service

	
	
	_serviceName[]

 _name

 _lang
	The service name, possibly expressed in different languages.

	
	
	_serviceBroadcastAvailability
	The service broadcast availability for the client.

	
	
	_fileCaptureRequest[]

 - _fileURI

 - _disableFileCopy

 - _captureOnce
	A sequence of requested file captures from the MAA with some parameters.

The _fileURI identifies the file(s) as they will also be used on the FLUTE FDTs for the File Delivery Application Service Allowed values for the _fileURI include:

-
The empty string signals that the MAA is interested in
receiving all new files and updates to previously received
files.

-
A BaseURL, i.e., a complete path for subdirectory (a
prefix) identifying a group of files under that directory.

-
An absoluteURL, i.e., a complete URL that identifies a
single file resource.

 _disableFileCopy – when set to true, this signals that the MAA does not want the MBMS client to make the file available on the application space.

_captureOnce – when set to true, signals that a file matching a requested via the _fileURI (i.e. a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once.

	
	
	_fileURIStatus[]

 _URI

 _contentType

 _deliveryState

 _md5

 _deliverySchedule[]

 _start

 _stop

 _appState

 _notified

 _fileLocation
	A sequence of _fileURIStatus[] that states the status of files the MAA may be interested or the service provides, possibly using scheduling information. The internal parameters store relevant information on the file such as content_type or MD5, if the information is available yet.

The delivery state can be:

-
FD_RECEIVED - the file is received by the MBMS client and no more updates are expected according to the file schedule.

-
FD_SCHEDULED - scheduled, if a file schedule is delivered and a file is scheduled, but not yet received.

-
FD_IN_PROGRESS – the reception of the file is in progress

The delivery schedule records the current upcoming delivery schedules.

The application state may be transitioned to express that

-
the file was moved to the application,

-
failed if the move failed or

-
the location path points to an MBMS client controlled space.

A _notified flag is provided to indicate if the MAA has been notified on the reception of the file.

	
	
	_sessionSchedule[]

 _start

 _stop
	Documents the session schedule for this session. Only _sessionSchedule records should be included for which the value of the _stop time is in the future.

6.2.2.3
MBMS Client Operation in IDLE state

In the IDLE state, the MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the MAA is in place.

When the MBMS client received the registerFdApp() call as defined in subclause 6.2.3.2, then:
1)
The MBMS client checks the input parameters for consistency and sets the internal variables

a)
If appId is an empty string then the MBMS client throws a MISSING_PARA
METER result code in the registerFdResponse() as defined in subclause 6.2.3.3 and aborts these steps. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

b)
The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided, the MBMS client considers the MAA to be registered with a service class that is also empty and only allows the MAA to have access to File Delivery Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined).

c)
On receiving a registerFdApp() following a deregisterFdApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setFdServiceClassFilter() method.

d)
If locationPath is not defined, the MBMS client provides means such that the MAA has access to the files the MBMS Client received on behalf of the MAA. If the locationPath is defined, the internal variable _locationPath is set to the value of the parameter.

e)
If registrationValidityDuration is not defined, the value of the internal parameter _registrationValidityDuration is set to 0 (zero) . If the registrationValidityDuration is defined, the internal variable _ registrationValidityDuration is set to this parameter, or to _maxRegistrationValidityDuration if the value of registrationValidityDuration is larger than _maxRegistrationValidityDuration.

f)
If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerFdApp() interface to send notifications of event occurrences to the MAA.

2)
generates a response registerFdResponse() as defined in subclause 6.2.3.3 and changes to REGISTERED state:

a)
If the MBMS client functions cannot be activated for any reason, especially if the File Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message and may set acceptedFdRegistrationValidityDuration to any arbitrary value.

b)
If the MAA did not provide a mandatory parameter, the MBMS client functions cannot be activated and the MISSING_PARAMETER registration response code is sent. The MBMS client may provide a message and may set acceptedFdRegistrationValidityDuration to any arbitrary value.

c)
If the MBMS client functions can be activated, then

i
the RegResponseCode is set to REGISTER_SUCCESS registration response code,
ii
a message may be generated,
iii
the MBMS client sets the value of acceptedFdRegistrationValidityDuration to the _registrationValidityDuration.

The MBMS client sends the response with the above parameters
3)
If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching file delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then the MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER, then MBMS client is in IDLE state.

If the MBMS client receives the getVersion() API call, it shall return version "1.0".
6.2.2.4
MBMS Client Operation in REGISTERED state

For each registered MAA and the assigned parameters according to Table 6.2.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the MAA in _app[] in the service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the MAA has interest.
For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service classes registered by the MAA in _serviceClass[], one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever an updated USD is available:

-
For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.

-
If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

-
The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

-
If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.

-
The _serviceBroadcastAvailability is continuously updated set it to BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service), if not, it is set to BROADCAST_UNAVAILABLE (if the UE is NOT in broadcast coverage of the service).

-
If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _fileURI[] and _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client should only include _fileUri[] list if there is a current or a future scheduled transmission of that file. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future. The _deliveryState is set appropriately, e.g. to FD_SCHEDULED if the file is scheduled and FD_IN_PROGRESS, if the FDT is available, but the file reception is not yet completed.

If updates are provided and added to the _service[] parameter, the MBMS client should send a fdServiceListUpdate() callback as defined in clause 6.2.3.17.

When the getFdServices() call is received by the MBMS client as defined in clause 6.2.3.4, the MBMS client sets the parameters as follows:

-
If the _service[] list is empty, then an empty list is returned.

-
For each MBMS user service in the service[] list, one service record is generated as follows:

-
The value of the attribute _serviceId is assigned to serviceId.

-
The value of the attribute _serviceClass is assigned to serviceClass.

-
The value of _serviceLanguage is assigned to serviceLanguage.

-
For each record in the _serviceName[] one serviceNameList entry is generated and:
-
the name is set to the value _name,

-
the language is set to the value _language.
-
The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.

-
If at least one _sessionSchedule[] record is present then:
-
The activeDownloadPeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[]such that the corresponding _stop time is in the future.

-
The activeDownloadPeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.

-
If no _sessionSchedule[] record is present, or the _start and _stop on existing entries in _sessionSchedule[] are in the past:
-
The activeDownloadPeriodStartTime is set to 0.

-
The activeDownloadPeriodStopTime is set to 0.

When the setFdStorageLocation() method as defined in sub-clause 6.2.3.5 is received by the MBMS client, the MBMS client runs the following steps:

-
It updates the internal variable _locationPath to the parameter value of locationPath provided in the call.

Note:
The MBMS client provides any new files for that MAA at the locationPath, but not ongoing file capture.

-
If the storage location is empty the MBMS client selects a local directory on the device, which the MAA can access directly via file access interfaces or via HTTP GET methods (see sub-clauses 6.2.2.5 and 6.2.2.6).

When the setFdServiceClassFilter() is received, the MBMS client runs the following steps:

-
It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.

Note that this does not necessarily change the ongoing MBMS client operation, e.g. capturing.
-
The MBMS client issues a fdServiceListUpdate() notification as defined in clause 6.2.3.17 to the MAA to notify it of this effect.

When the startFdCapture() method is received, the MBMS client runs the following steps:

-
The MBMS client checks for errors and if necessary, the fdServiceError() notification as defined in clause 6.2.3.18 is initiated.

-
If the requested fileURI matches an existing outstanding startFdCapture() request as recorded on the _fileCaptureRequest[], the internal error code is set to FD_DUPLICATE_FILE_URI and the fdServiceError() notification as defined in clause 6.2.3.18 is initiated.

-
If the requested fileURI is ambiguous in the following manner

-
The fileURI is an absolute URL or a Base URL and there is an existing outstanding startFdCapture() with an empty fileURI, or

-
fileURI is an absolute URL and there is an existing outstanding startFdCapture() with an Base URL in the fileURI that is base URL for the aboluteURL.

then, the internal error code is set to FD_AMBIGUOUS_FILE_URI and the fdServiceError() notification as defined in 6.2.3.18 is initiated.

-
Otherwise, The fileURI is added to the internal list of the MBMS client _fileCaptureRequest[]. Any overlapping entry should be avoided.

-
The MBMS client removes existing outstanding startFdCapture() requests from _fileCaptureRequest[] when the requested fileURI on a startFdCapture() is broader (i.e., superseding older requests) than these existing outstanding startFdCapture() requests; this request consolidation will not impact ongoing file downloads, specifically:
-
When fileURI is empty on the new startFdCapture(), all existing outstanding startFdCapture() are removed.

-
When fileURI is a Base URL, existing outstanding startFdCapture() requests with an absolute URL are removed if the new fileURI in the request is a base URL for the absolute URL on these existing outstanding startFdCapture().

-
The _disableFileCopy is set to the value of disableFileCopy.

-
The _captureOnce is set to the value of captureOnce.

-
The MBMS client is in CAPTURE_NOTIFY mode.

Whenever there has been a change to the parameters reported to the MAA in response to a getFdServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the _fileURIStatus[] adding new _URIs with _deliveryState set to FD_SCHEDULED, the MBMS client notifies MAA with fdServiceListUpdate() as defined in clause 6.2.3.17.

When the deregisterFdApp() is received, the client moves to IDLE state.

6.2.2.5
MBMS Client Operation in CAPTURE_NOTIFY State
In the CAPTURE_NOTIFY state, the MBMS client carries out all actions as in the REGISTERED state.

For one MBMS user service identified with one service record in the internal parameter _service[] with a specific _serviceID the MBMS client continuously updates the internal parameters for this service.

In addition, for each fileCaptureRequest[] record in the service record:
1)
If the _fileUri is empty then the MBMS client receives all new and updated files delivered on this MBMS service with service ID serviceId. Updated files may be discovered by a change of the MD5 in the FDT.
2)
If the _fileUri is a complete absolute URI, then the MBMS client receives only that file delivered on the MBMS service with service ID serviceId which has a matching URL as the fileURI parameter if the file is received for the first time or is a new version since the last reception.

3)
If the _fileUri is a Base URI as defined in RFC 3986 [11], then the MBMS client receives all new and updated files delivered on the MBMS service with service ID serviceId which are delivered through the MBMS user service with a matching BaseURL of the one defined in the fileURI parameter.

Furthermore, the MBMS Client performs the actions as follows.
4)
For each file announced via the file schedule element and matching any of the capture requests in _fileCaptureRequest[]:
-
the MBMS client creates an entry in the _fileURIStatus[] adding the _URI and delivery schedules _deliverySchedule[] and sets the _deliveryState to FD_SCHEDULED.

-
The MBMS Client should send a fdServiceListUpdate() callback as defined in clause 6.2.3.17.

5)
For each file announced in the FDT and matching any of the capture requests in fileCaptureRequest[], the MBMS client:
-
Updates or creates an entry adding the _URI.
-
Sets the _deliveryState to FD_IN_PROGRESS.
-
Does not download the same version of the file if the Content-MD5 in the File element of the FDT Instance is the same as a previously received version of the file.
-
If a MIME type was defined via the FDT describing that file transmission, the _contentType parameter is set to the value of the Content-Type as in the File entry of the FDT. If the MIME type is not defined, the _contentType parameter is set to an empty string. The MD5 may be extracted from the FDT if present.

6)
For each successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[]:
-
The MBMS client updates the _deliveryState to FD_RECEIVED.
-
If the _locationPath is defined and if the MBMS client is successful in copying/moving the collected file to the directory in _locationPath, the MBMS client sets the _appState to moved and the _fileLocation pointing to the file in the _locationPath.
-
If the _locationPath is empty, (i.e. _appState indicates that MBMS client space needs to be used or that the MBMS client selected a location on the MAA space) or if the MBMS client is not successful in copying/moving the collected file to the directory defined in _locationPath (_appState is set to indicate the failure) then the _fileLocation is set to:

-
A complete file name (including the directory path) on the UE local file system where the file can be accessed by the MAA. The file may be stored under an MBMS client defined directory that is accessible to the MAA.

-
An HTTP URL where the MAA can retrieve the file using the HTTP GET method. This format may be used when the file is stored on a location that is not directly accessible to the MAA.

-
The MBMS client announces it through fileAvailable() notification as defined in clause 6.2.3.8 to the MAA by setting the parameters as follows:

-
The serviceId is set to the _serviceID.

-
The fileUri is set to the value of _URI.

-
The fileLocation is set to the value of the _fileLocation.

-
The contentType is set to the _contentType.

-
If the _appState is failed or internal, the MBMS client sets the value of the availabilityDeadline to the internal variable _defaultAvailabilityDeadline, otherwise sets the value to 0.

-
The internal _notified flag is set to true.
-
If the _captureOnce is set to true, the corresponding fileURI is excluded/removed from the _fileCaptureRequest[] and from the internal _fileURIStatus[] list.

7)
For each non-successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[] (after file repair failed or when file repair is not defined for the service):

-
The MBMS client sets the sets the _deliveryState to FD_SCHEDULED
-
The MBMS client announces it through fileDownloadFailure() notification as defined in 6.2.3.10 to the MAA with the following parameter settings:
-
The serviceId is set to the _serviceID.

-
The fileUri is set to the value of _URI.

Whenever the in the internal _fileURIStatus[] was changed, the MBMS client should issue a fileDownloadStateUpdate()notification as defined in 6.2.3.15 with the following parameters:
-
The serviceId is set to the _serviceID.

The MBMS client moves to REGISTERED state if the _fileCaptureRequest[] is empty.

When the getFdAvailableFileList() API call as defined in clause 6.2.3.12 is received, the MBMS client runs the following steps:

-
For the service with internal _serviceId set to the input parameter serviceID, for each successfully received file (i.e. internal _deliveryState being received) that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record with an internal status _notified set to false, the following parameters are assigned
-
The fileUri is set to the value of _URI.

-
The fileLocation is set to the value of the _fileLocation.

-
The contentType is set to the _contentType.

-
If the _appState is failed or internal, the MBMS client sets the value of the availabilityDeadline to the internal variable _defaultAvailabilityDeadline, otherwise sets the value to 0.

-
The internal status _notified set to true.
When the MBMS client receives a stopFdCapture() request as defined in clause 6.2.3.13 that matches an entry in the internal parameter _fileCaptureRequest[]:
-
The MBMS client removes this entry from the _fileCaptureRequest[] record in order to stop any on-going and future file receptions that match that particular record.

-
The MBMS client should keep records of outstanding startFdCapture() requests that are unambiguous such that a stopFdCapture() can unambiguously remove an entry in the internal parameter _fileCaptureRequest[] from an earlier startFdCapture() request.
-
The MBMS client may also send a failure indication via the fdServiceError() with the FD_AMBIGUOUS_FILE_URI error code when the requested fileURI on a stopFdCapture() is more specific than an existing outstanding startFdCapture() requests that is broader:

-
When fileURI is an absolute URL or a Base URL and there exists an entry in the internal parameter _fileCaptureRequest[] with an empty fileURI.

-
When fileURI is an absolute URL and there exists an entry in the internal parameter _fileCaptureRequest[] with an empty fileURI. With an Base URL in the _fileURI that is base URL for the aboluteURL.

-
The MBMS client may send a failure indication via the fdServiceError() with the FD_STOP_FILE_URI_NOT_FOUND error code to any stopFdCapture() request that does not match an entry in the internal parameter _fileCaptureRequest[].

When the getFdActiveServices() API call as defined in clause 6.2.3.14 is received, the MBMS client runs the following steps:

-
For the service with internal _serviceId set to the input parameter serviceID, for each entry in the internal parameter _fileCaptureRequest[] one record in the response is set with the fileUri set to the value of _URI.
When the MBMS Client receives getFdDownloadStateList()API call as defined in clause 6.2.3.16, it runs the following steps:

-
For the service with internal _serviceId set to the input parameter serviceID, for each file that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record, the following parameters are assigned:
-
The fileUri is set to the value of _URI.

-
The state is set to the internal value _deliveryState.
If the deregisterFdApp() API call invoked the MBMS client:
-
And if the _fileCaptureRequest[] record contains no more entries or the _registrationValidityDuration is set to zero, the MBMS client moves to IDLE state.

-
If the _fileCaptureRequest[] record contains one or more entries, the MBMS client moves to CAPTURE_BACKGROUND state.
6.2.2.6
MBMS Client Operation in CAPTURE_BACKGROUND State
When the MBMS client enters this state, the internal _backgroundCaptureTimer is set to _registrationValidityDuration and started. The MBMS client remains in this state until this timer expires, or the MAA invokes a new registerFdApp() API call.

Once the time for the registration validation has expired, the MBMS client clears all context for the MAA and returns to IDLE state for the MAA. Until this is the case, the MBMS client performs the following actions.

The MBMS client carries out all actions as in the CAPTURE_NOTIFY state, except for those associated with sending notifications (invoking call-back functions) to the app.

While an MAA is deregistered and files are received for that MAA, if multiple versions of the same file (i.e., the same fileURI but different Content-MD5 in the FDT for a File Delivery Application Service) are received, only the last file version received is kept by the MBMS client and made available to the MAA after the new registration.

If the MAA is not currently registered at the time and the download of files for that MAA fails, the MBMS client is not able to inform MAA.

For one MBMS user service identified with one service record in the internal parameter _service[] with a specific _serviceID the MBMS client continuously updates the internal parameters for this service. Whenever the delivery state is changed in the state, the internal _notified flag is set to false.

6.2.3
Methods

6.2.3.1
Overview

Table 6.2.3.1-1 provides an overview over the methods defined for the File Delivery Application Service API. Different types are indicated, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow between the MAA (A) and the MBMS client (C) is provided.

Table 6.2.3.1-1: Methods defined for File Delivery Application Service API

	Method
	Type
	Direction
	Brief Description
	Clause

	registerFdApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.2.3.2

	deregisterFdApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.2.3.9

	startFdCapture
	State change
	A -> C
	Start download of files over file delivery service
	6.2.3.7

	stopFdCapture
	State change
	A -> C
	Stop download of files for the file delivery service
	6.2.3.13

	getFdActiveServices
	Status query
	C <-> A
	Get list of currently active services
	6.2.3.14

	getFdAvailableFileList
	Status query
	C <-> A
	Retrieves the list of files previously captured for the MAA
	6.2.3.12

	getFdServices
	Status query
	C <-> A
	Retrieves the list of File Delivery services defined in the USD
	6.2.3.4

	getFdDownloadStateList
	Status query
	C <-> A
	Retrieves the state of files pending download
	6.2.3.16

	getVersion
	Status query
	C <-> A
	the version of the File Delivery Application Service interface
	6.2.3.21

	setFdServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on file delivery services in which it is interested
	6.2.3.6

	setFdStorageLocation
	Update to parameter list
	A -> C
	Sets the storage location to store the MAA downloaded files
	6.2.3.5

	registerFdResponse
	Response
	C -> A
	The response to the MAA service register API
	6.2.3.3

	fileAvailable
	Notification
	C -> A
	Notification to MAA when a new file is downloaded per MAA capture request
	6.2.3.8

	fdServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for file delivery services
	6.2.3.17

	fdServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with broadcast download of service
	6.2.3.18

	fileDownloadFailure
	Notification
	C -> A
	Notification to MAA that download of a requested file failed
	6.2.3.10

	inaccessibleLocation
	Notification
	C -> A
	Notification to MAA that the storage location set by the MAA is not accessible by the MBMS Client.
	6.2.3.20

	insufficientStorage
	Notification
	C -> A
	Notification to MAA indicating a warning on the low storage condition
	6.2.3.19

	fileDownloadStateUpdate
	Notification
	C -> A
	Notify MAA of a change in the state of pending file downloads
	6.2.3.15

	fileListAvailable
	Notification
	C -> A
	Notify MAA when the list of downloaded files is available to retrieve
	6.2.3.11

	addSA
	State change
	A -> C
	MAA provides a SA file to the MBMS client
	6.2.3.22

	addSAResponse
	Response
	C -> A
	The response to the MAA set SA API
	6.2.3.23

6.2.3.2
Registration

6.2.3.2.1
Overview

This clause defines registerFdApp() interface.

An MAA calls the registerFdApp() interface to register with the MBMS Client to consume File Delivery Application Services. The registerFdApp() interface has two purposes:

1)
It signals to the MBMS Client that an MAA is interested to consume MBMS services. This registration may be considered as pre-condition for the MBMS Client to keep checking for updates to the File Delivery Application Services defined.
2)
It allows the MAA to identify its callback listeners defined in the File Delivery Application Service API for the MBMS Client to provide asynchronous notifications to the MAA on relevant events associated with the reception of files.

Note:
Since some application development frameworks do not support callback functions, an MAA for these frameworks will not provide callback listeners in the registerFdApp() interface. Instead, the MAA will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.

Figure 6.2.3.2.1-1 shows a call flow and the usage of the registerFdApp() interface.

[image: image9.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerFdApp()

deregisterFdApp()

getFdServices()

registerFdResponse()

Figure 6.2.3.2.1-1: MAA Registration sequence diagram
6.2.3.2.2
Parameters

The parameters for the registerFdApp() API are:

-
string appId – provides a unique ID for the application registering with the MBMS client, which uses this identity to maintain state information (e.g., capture requests and captured files) for a particular MBMS Aware Application. The uniqueness of the ID is in the context of any application that may possibly register with MBMS client. Uniqueness is typically provided at the platform level.

-
any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to communicate with the MBMS client via platform (e.g., HLOS) services.

-
sequence<string> serviceClassList – provides a comma-separated list of service classes which the application is interested to register. Each service class string can be any string or it may be empty.

-
StorageLocation locationPath – identifies a local directory available on the device storage, which the application can access and where successfully collected files can be copied/moved before notifying that the file is available to the application. The storage location is a string pointing to a directory, or it may be empty, if no location is provided.

-
unsigned long registrationValidityDuration – the period of time in seconds following the application de-registration (via the application call to deregisterFdApp(), or when the MBMS client detects that the application is no longer running), and possible exit, over which the eMBMS client still considers the application registered for the purpose of fulfilling any outstanding startFileCapture() requests. The default value of this option is 0 (zero) which signals to the MBMS client to clear any outstanding startFdCapture() requests for that application upon its de-registration, and possible exit.

Note 1:
The registrationValidityDuration is provided via the registerFdApp(), rather than via a deregisterFdApp(), to handle abnormal application termination conditions (e.g., application crash or it is terminated by the HLOS) before the application has a chance to invoke the deregisterFdApp().

-
ILTEFileDeliveryServiceCallback callBack – provides the MBMS client with the call back functions associated with File Delivery Application Service APIs for the registering MBMS Aware Application.

Note 2:
The callback element in the IDL description is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported on a given application development framework, the same information content as defined on the callback structures is to be provided to the application via the notification method available with that development framework when the respective condition is met.

6.2.3.2.3
Pre-Conditions

The application is assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The application is pre-configured with the set of service classes that allows it to consume the File Delivery Application Services associated with these service classes.

The application manages the storage of requested files, especially the amount of storage to be used.

The application may use this method at launch or after a deregisterFdApp() has been called.

The application assumes the client in IDLE state or CAPTURE_BACKGROUND state.
The MBMS client may be configured to support a maximum _maxRegistrationValidityDuration.

6.2.3.2.4
Usage of Method for Application

The application uses the method registerFdApp() to register with the MBMS Client to consume File Delivery Application Services.

The application provides its appId and, if applicable, some platform specific application context, platformSpecificAppContext.

The application provides the set of service classes which the application is interested to register.

Setting the registrationValidityDuration enables the application to allow the MBMS client to capture files in the background when the application is not currently running; typically after invoking the deregisterFdApp()or after crashing. The application developer should be aware that received files belong to the application and that the MBMS client does not provide content management functions beyond reception and temporary storage of received files in between consecutive runs of the application.

When the application is not interested in receiving files from File Delivery Application Services while the application is not running, the application should set the registrationValidityDuration to 0 (zero). When the application is interested in receiving files from File Delivery Application Services while the application is not running, the application should set the registrationValidityDuration to a non-zero value and it should call the deregisterFdApp() interface before stop running to disable notifications from the File Delivery Services APIs. If the MBMS client can determine that an application has crashed and exited without invoking the deregisterFdApp() interface, the MBMS client will assume that the application had called the deregisterFdApp() before exiting.

On issuing a registerFdApp() following a deregisterFdApp(), the application will include the same serviceClassList used on the last registerFdApp() or setFdServiceClassFilter()to signal interest on the same set of service classes identified before. The application may change the list of registered service classes by providing a serviceClassList as part of a new registerFdApp() request, similarly to using the setFdServiceClassFilter() method.

The application should define a local directory locationPath on the device, where successfully collected files will be copied/moved before making the file available to the application. If no directory is defined, the locationPath should be an empty string.
The application selects a value for the parameter registrationValidityDuration to constrain the amount of storage the MBMS client will use to collect and keep application-requested files in the MBMS client storage space while the application is not currently running (e.g., has de-registered or crashed). The amount of files cached for an application that does not collect its files may impact the MBMS client's ability to collect files for other applications. In selecting a value for the registrationValidityDuration the following should consider:

-
The frequency and amount of files received during the selected registrationValidityDuration. For instance, assuming that 100MB worth of files are delivered every day:

-
The application could select a registrationValidityDuration of Nx24h (e.g., N=10) to request the MBMS client to store at most Nx100MB (e.g., 1GB) if the application is not run by the user in Nx24h.

-
The application could ask its user (or have a preconfigured behavior on) how long the user wants files to be collected in-between the user's access to files delivered to the application. If the user selects a long period (e.g., 2months) the application should not use that large values as the registrationValidityDuration (e.g., this could mean 6GB in the example above). Instead, the application should include behaviors to periodically re-register (e.g., every 5days) and collect received files to manage storage of its application files. Leaving those files in the MBMS client storage space (e.g., 6GB) could exceed the MBMS client storage space allowance and impact the reception of files for other applications.

-
The relevance of older vs. newer files when managing the storage for files received if the user does not access the application over a long period of time.
-
The application could ask the user how much storage to use for received files and whether to delete older files (newer files preferred), or stop new downloads (older preferred), or however else the application choses to support managing received files.

-
As described above, in the absence of the user launching the application for File Delivery Application Services with outstanding startFdCapture() requests, that application should automatically re-register (e.g., every 5days as discussed above) with the MBMS client with a periodicity not greater than registrationValidityDuration and retrieve files captured during the period the application was not currently registered.

-
The application should then manage the downloaded files with respect to the amount of storage consumed by files of that application. For instance, the application may prioritize retaining newer versus older files or let the registrationValidityDuration expire (therefore causing the MBMS client to stop continued file downloads for that application) if the user does not consume file contents for that application.

Example 1:
Daily headline news application allows the user to collect files from two File Delivery Application Services with new/updated video clip files downloaded twice every day.

-
The application registrationValidityDuration is 2days, it re-registers with the MBMS client every 1.5 days and it keeps only the files that are no more than two days old, e.g., as configured by the user.

Example 2:
Weekly magazine application allows the user to collect files from a File Delivery Application Service with new/updated files for selected electronic versions of weekly magazines downloaded once a week.

-
The application registrationValidityDuration is 15 days, it re-registers with the MBMS client every 7 days and it keeps only the files that are no more than three weeks old, e.g., as configured by the user.

6.2.3.2.5
Expected MBMS Client Actions

When this method is received, the MBMS client registers the app. For more details refer to clause 6.2.2.3.
6.2.3.2.6
Post-Conditions

The application expects a registerFdResponse() as defined in clause 6.2.3.3.

6.2.3.3
File Delivery Application Service Registration Response

6.2.3.3.1
Overview

This subclause defines the registerFdResponse() call.

As illustrated in Figure 6.2.3.2.1-1, the MBMS client responds to an MAA call to the registerFdApp() API with a registerFdResponse() call back providing the result of the registration request.

6.2.3.3.2
Parameters

The parameters for the registerFdResponse() API are:

-
EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

-
REGISTER_SUCCESS – indicates that the registration has been processed successfully and the application can proceed with other API interactions with the MBMS client for File Delivery Application Services.

-
FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the File Delivery Application Service API did not find an MBMS client available on the UE on which the application is running and no MBMS service will be available to the application.

-
MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.

-
string message – provides an associated text description of the error message. The message may be empty.

-
unsigned long acceptedFdRegistrationValidityDuration – when returning REGISTER_SUCCESS, this parameter indicates the registration validity duration the MBMS client will provide to the registering application.

6.2.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerFdApp() API with the parameters documented in clause 6.2.3.2.2.

6.2.3.3.4
Expected MBMS Client Actions

Based on the parameters of the registerFdApp(), the MBMS client provides the response and changes the state. For more details see clause 6.2.2.3.
6.2.3.3.5
Usage of Method for Application

Once the application receives a the registerFdResponse() with the RegResponseCode set to REGISTER_SUCCESS, the application can proceed with other API interactions with the MBMS client, for instance, by issuing startFdCapture() requests.
Based on the response in acceptedFdRegistrationValidityDuration the application should adjust its expectations accordingly if the value returned is not what was requested.

If the MBMS client is temporarily in NOT_AVAILABLE, if the registerFdResponse() signaled a failure with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, the application may periodically recheck if the state of the MBMS client changes by retrying the registerFdRequest() API.

6.2.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then MBMS client is at least temporarily in NON_AVAILABLE state.
If the MBMS client functions cannot be activated and once the response is sent with a MISSING_PARAMETER, then MBMS client is at least temporarily in IDLE state.
If the MBMS client functions can be activated and a response is sent with REGISTER_SUCCESS, then MBMS client is in REGISTERED state with the REGISTERED state parameters as set above.
6.2.3.4
Getting information on available File Delivery Application Services

6.2.3.4.1
Overview

This clause defines the getFdServices() interface.

The getFdServices() interface returns the complete list of available File Delivery Application Services information. After a successful registration with the MBMS client, the MBMS Aware Application can use the getFdServices() API to discover the available File Delivery Application Services associated with the service classes registered via the registerFdApp(). Also the MBMS client may use the getFdServices() API after receiving a fdServiceListUpdate() call back notification to changes to the available File Delivery Application Services.

6.2.3.4.2
Parameters

The getFdServices() API does not have any input parameters.

The getFdServices() API returns a list describing the available File Delivery Application Service, where each service is described by the following output only parameters:

-
sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.

-
string name – offers a title for the user service on the language identified in the lang parameter.

-
string lang – identifies a natural language identifier per IETF RFC 3066 [10].

-
string serviceClass – identifies the service class which is associated with the service.

-
string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.

-
string serviceLanguage – indicates the available language for the service and represented as an identifier per IETF RFC 3066 [10].

-
EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.

-
The possible values are for a File Delivery Application Service:
-
-BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

-
BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

-
sequence<string> fileUriList – optionally provides a list of file names for the files that are currently scheduled to be transmitted.

-
EmbmsCommonTypes::Date activeDownloadPeriodStartTime – signals the current/next active File Delivery Application Service start time, when files start being broadcast over the air.

-
EmbmsCommonTypes::Date activeDownloadPeriodEndTime – signals the current/next active File Delivery Application Service stop time, when files stop being broadcast over the air.

Note that the available File Delivery Application Service list may be empty.

6.2.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state or in CAPTURE_NOTIFY state and may or may not have acquired any USD information for services that are included in the service class list.

The MBMS client may have updated internal _service[] list.

6.2.3.4.4
Expected MBMS Client Actions

When this method is received, the MBMS client returns its internal parameters. For more details see clause 6.2.2.3.
6.2.3.4.5
Usage of Method for Application

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the application.

The fileUriList may be used by the application for selective file reception, e.g. when used together with startFdCapture() as defined in clause 6.2.3.7.
The application should use this call right after the registerFdResponse() notification as defined in clause 6.2.3.3 is received or after the fdServiceListUpdate() notification as defined in 6.2.3.17 is received.

The application shall use the serviceId to identify the service in subsequent communication with the MBMS client to manage the files to be captured on that service for the application.

The parameters activeDownloadPeriodStartTime and activeDownloadPeriodEndTime provides the application the ability to determine the current broadcast state for the service as follows:

-
If the current time is such that activeDownloadPeriodStartTime ≤ current time ≤ activeDownloadPeriodEndTime, files may be captured for the service at the current time.

-
If the activeDownloadPeriodStartTime is in the future, there is currently file capturing expected for the service, but delivery is currently scheduled to start at this advertised time.

-
If the activeDownloadPeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

-
If the activeDownloadPeriodEndTime is in the past, or there are no activeDownloadPeriodStartTime and no activeDownloadPeriodEndTime defined for the service, then there is currently no broadcast being made for the service, and there is no currently scheduled broadcast time for the service.

6.2.3.4.6
Post-Conditions

This call does not change the MBMS client state.

6.2.3.5
Establishing the location where files are stored for an application

6.2.3.5.1
Overview

This clause defines setFdStorageLocation().

While an application is actively registered with the MBMS client to consume File Delivery Application Services, the MBMS Aware Application can call the setFdStorageLocation() API to set or update the location where files collected for the application are to be stored. This message flow is shown in Figure 6.2.3.5.1-1.

[image: image10.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

setFdStorageLocation()

registerFdResponse()

Figure 6.2.3.5.1-1: Sequence diagram for updating the storage location for collected files
6.2.3.5.2
Parameters

The parameters for the setFdStorageLocation() method are:

-
StorageLocation locationPath – see clause 6.2.3.2.2.
6.2.3.5.3
Pre-Conditions

The application is registered with the MBMS client to consume File Delivery Application Services, and MBMS client is in REGISTERED or CAPTURE_NOTIFY state.

6.2.3.5.4
Usage of Method for Application

The MBMS Aware Application may invoke the setFdStorageLocation() API call to update the previously defined storage location. This includes the case that the storageLocation was not set previously.

It may also use this API call if it receives an insufficient storage notification as defined in clause 6.2.3.19.
6.2.3.5.5
Expected MBMS Client behaviour

When this method is received, the MBMS client updates the internal parameters and notifies the client. For more details see clause 6.2.2.3.
6.2.3.5.6
Post-Conditions

The MBMS client internal variable _locationPath for this application is updated. No state change is applied.

6.2.3.6
Updating the registered service classes

6.2.3.6.1
Overview

This clause defines setFdServiceClassFilter().

While an application is actively registered with the MBMS client to consume File Delivery Application Services, the MBMS Aware Application can call the setFdServiceClassFilter() API to update the list of service classes the application wants to be registered with, see Figure 6.2.3.6.2-1.

[image: image11.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

setFdServiceClassFilter()

registerFdResponse()

fdServiceListUpdate()

getFdServices()

Figure 6.2.3.6.2-1: Sequence diagram for updating the registered service classes for an application

6.2.3.6.2
Parameters

The parameters for the setFdServiceClassFilter() method are:

-
sequence<string> serviceClassList – see clause 6.2.3.2.2.
6.2.3.6.3
Pre-Conditions

The application is actively registered with the MBMS client to consume File Delivery Application Services, and MBMS client is in REGISTERED state or CAPTURE_NOTIFY for the application.

6.2.3.6.4
Usage of Method for Application

The MBMS Aware Application may invoke the setFdServiceClassFilter() API to update the previously defined list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The application should be aware that the updates are only active once an fdServiceListUpdate() notification is received that confirms the new service class filters.

6.2.3.6.5
Expected MBMS Client Actions

When this method is invoked, the MBMS client updates the internal parameters and notifies the client.

6.2.3.6.6
Post-Conditions

The MBMS client issues an fdServiceListUpdate() notification as defined in clause 6.2.3.17. No state change is applied.

6.2.3.7
Start File Delivery Capture

6.2.3.7.1
Overview

This clause defines the startFdCapture() API.

Once the File Delivery Application Service registration is complete, the MBMS Aware Application can make calls on the startFdCapture() API to selected fileURIs for the files to be received through the MBMS service as shown in Figure 6.2.3.7.1-1.

[image: image12.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Initiate Download Delivery

(e.g. open FLUTE session, initiated file repair

perform FEC decode) and receive file(s)

stopFdCapture()

Figure 6.2.3.7.1-1: File Delivery Application Start Capture
6.2.3.7.2
Parameters

The parameters for the startFdCapture() API are:

-
string serviceId – see clause 6.2.3.4.2. The service ID for the service for which the files are captured.

-
string fileUri – identifies the files to be captured on the service identified in serviceId. Allowed values include:

-
The empty string signals that the MAA is interested in receiving all new files and updates to previously received files.

-
A BaseURL, i.e., a complete path for subdirectory (a prefix) identifying a group of files under that directory.

-
An absoluteURL, i.e., a complete URL that identifies a single file resource.

-
boolean disableFileCopy – when set to true, this signals that the MAA does not want the MBMS client to make the file available on the MAA space.
-
boolean captureOnce – when set to true, signals that the file requested via the fileURI (or a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once.

6.2.3.7.3
Pre-Conditions

The application is registered with the MBMS client to consume File Delivery Application Services.

The fileURI format is not validated by the MBMS client.

6.2.3.7.4
Usage of Method for Application

The MBMS Aware Application can make calls on the startFdCapture() API to the select file URIs for the files to be received through the MBMS service with service ID serviceId. It is recommended that http:// or file system names c:/user/… be used as file URIs.

An application may set the fileURI parameter to different values:

-
An empty string signals that the application is interested in receiving all new files and updates to previously received files.

-
If the fileURI is set to a Base URL as defined in RFC 3986 [11], the application may organize its files in a structured way (in a directory) such as to allow the identification of a group of files. For instance, a headline news clips application may group files under a …\sports\, a …\politics\, etc. folder and allow the user to select what type of headline news of interest and therefore request the MBMS client to capture all the files under …\sports\ if the user is only interested in sports headline news.

-
An absolute URL, i.e., a complete URL that identifies a single file resource. A software update application on a given OEM device model may be preconfigured with an absolute URL for the file name that identifies the software image for that device model. That application would use that absolute URL as the file URI when request that its software image be received on a File Delivery Application Service.

The application should avoid overlap requests, e.g. requesting a fileURI and at the same time the Base URL that matches the fileURI.

The application may use the getFdActiveServices() API as defined in clause 6.2.3.14 to get back in synch with fileURI in remaining outstanding startFdCapture() requests.

When application is no longer interested in capturing specific files, it should call the stopFdCapture() interface as defined in clause 6.2.3.13.
A software update application on a given OEM device model may be preconfigured with an absolute URL for the file name that identifies the software image for that device model. That application would use that absolute URL as the file URI when request that its software image be received on a File Delivery Application Service.

6.2.3.7.5
Expected MBMS Client Actions

When this method is received, the MBMS client updates the internal parameters. For more details see clause 6.2.2.4.
6.2.3.7.6
Post-Conditions

The MBMS client is in CAPTURE_NOTIFY state for the requested serviceID.

The parameters of the MBMS client are updated.
After capturing the files requested on a startFdCapture() request, the MBMS Client prepares to send fileAvailable() notification as defined via the registered callback listener.

6.2.3.8
File Available Notification

6.2.3.8.1
Overview

This clause defines the fileAvailable() callback function.

As illustrated in Figure 6, once the MBMS client has successfully collected a file that matches an outstanding startFdCapture() request from an MBMS Aware Application, the MBMS client invokes the fileAvailable() callback function.

6.2.3.8.2
Parameters

The parameters for the fileAvailable() API are:

-
string serviceId – definition see above.

-
The following is the file information for the received file:

-
string fileUri – identifies the file captured on the service identified in serviceId.

-
string fileLocation – identifies the location where the MBMS Aware Application can find the collected file.

-
string contentType – indicates the MIME type for the file identified in the fileUri.
-
unsigned long availabilityDeadline – signals a deadline in seconds when the file stored at the fileLocation will be removed from the MBMS client storage location.

6.2.3.8.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state for the serviceId.

The MBMS client has successfully received a file that is included in a _fileCaptureRequest[] record. Reception may be through broadcast only or may include unicast repair.

The MBMS client internal variable _locationPath may be defined or may not be defined.

The MBMS client has pre-configured an internal parameter defaultAvailabilityDeadline defining the time a file that is kept in the MBMS client owned storage location.

6.2.3.8.4
Expected MBMS Client Actions

The MBMS client invokes the fileAvailable() notification for each successfully received file that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[]record. For more details see clause 6.2.2.5.
6.2.3.8.5
Usage of Method for Application

Once the application receives the callback, the application may access the file that is announced by the parameters in the callback function. If the storage is not defined by the locationPath application should access the file before the announced availabilityDeadline.

An MBMS Aware Application can retrieve the file using the HTTP GET method if the fileLocation is an HTTP URL.

The MBMS Aware Application needs to arrange for a copy of the file to the application space if the application intends to have access to the file beyond an availabilityDeadline indicated. The file may no longer be accessible after this time

6.2.3.8.6
Post-Conditions

The file is available at the location defined by the fileLocation parameter.

6.2.3.9
File Delivery Application Service De-registration

6.2.3.9.1
Overview

This clause defines the deregisterFdApp() call.

An MAA registers services classes with the MBMS client to request the capture of files on File Delivery Application Services, but the MAA does not have to be currently registered while files are being captured as discussed earlier. The MAA may deregister using the deregisterFdApp() call.

6.2.3.9.2
Parameters

None.
6.2.3.9.3
Pre-Conditions

The MBMS client is in REGISTERED or in CAPTURE_NOTIFY state for this application.

6.2.3.9.4
Usage of Method for Application

MBMS Aware Application registered with the MBMS client via the registerFdApp() API should invoke the deregisterFdApp() before exiting.

If the application deregisters, it will no longer receive notifications from the MBMS client. However, the MBMS client still captures files in the background until the registrationValidityDuration expires.

Nevertheless, the absence of notifications may result in unreceived files, if the MBMS client observes problems, e.g. not being able to access the storage location or the MBMS client having insufficient storage. Hence, the application should continuously check if the storage is still sufficient and accessible, even if is deregistered.
6.2.3.9.5
Expected MBMS Client Actions

The MBMS client no longer sends notifications.

If open file capture requests exist, the MBMS client continues collection files in the background until the time for _registrationValidityDuration expires.

For more details see 6.2.2.4.

6.2.3.9.6
Post-Conditions

The MAA is no longer registered with the MBMS client to receive notifications.

The MBMS client is either in IDLE mode or in CAPTURE_BACKGROUND mode.

6.2.3.10
File Download Failure Notification

6.2.3.10.1
Overview

This clause defines the fileDownloadFailure()callback function.

As illustrated in Figure 6.2.3.10.1-1, once the MBMS client has attempted to collect symbols for a file (possibly even via the unicast file repair procedure), that match an outstanding startFdCapture() request from an MAA, the MBMS client may still not be able to recover the file. Once the MBMS client detects that it failed FEC decoding the file, the MBMS client invokes the fileDownloadFailure() callback function (which the application registered with the MBMS client.

[image: image13.emf]startFdCapture()

fileDownloadFailure()

MBMS Aware

Application

MBMS Client

Open FLUTE session and receive a file but fail FEC

decoding or fil repair for the file

stopFdCapture()

Figure 6.2.3.10.1-1: Signaling download failures
6.2.3.10.2
Parameters

The parameters for the fileDownloadFailure() API are:

-
string serviceId – identifies the File Delivery Application Service on.

-
string fileUri – identifies the file which failed being received.

6.2.3.10.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state for the serviceId.

6.2.3.10.4
Expected MBMS Client Actions

The MBMS client provides the fileAvailable() function for each non-successfully received file that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record.

6.2.3.10.5
Usage of Method for Application

The application may use this information to identify other ways to access the file, or initiate actions to operate without this file.

6.2.3.10.6
Post-Conditions

The MBMS client may remain in CAPTURE_NOTICE state or if this was the last outstanding capture request it may move to REGISTERED state for the serviceId.

6.2.3.11
File List Available Notification

6.2.3.11.1
Overview

This clause defines the fileListAvailable()callback function.

As illustrated in figure 6, an MBMS Aware Application that is registered when a requested file is successfully received is notified of the availability of the new file via the fileAvailable() API.

Figure 6.2.3.11.1-1 illustrates what happens when an application registers to consume File Delivery Application Services with a non-zero registrationValidityDuration, asks different files to be captured (possibly from different File Delivery Application Services), and then de-registers.

During the registration validity duration period following the application de-registration, the MBMS client collects files matching the outstanding capture requests from the application and keeps the files in its cache while the application is not currently registered.

[image: image14.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,fileURI1)

startFdCapture(S2,fileURI2)

Collect Files Matching

startCapture(S2,fileURI2) requests

registerFdApp()

fileListAvailable(S2)

getFdAvailableFileList(S2)

Figure 6.2.3.11.1-1: Sequence diagram for notifying the application about collected files

6.2.3.11.2
Parameters

The parameters for the fileListAvailable() API are:

-
string serviceId – identifies the File Delivery Application service.

6.2.3.11.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY mode.

The MBMS client does have an _fileURIStatus[] entry for which the _notified flag is set to false

6.2.3.11.4
Expected MBMS Client Actions

The MBMS client invokes the fileListAvailable() notification with the following parameters:
-
The serviceId is set to the _serviceID.

6.2.3.11.5
Usage of Method for Application

The application receiving this notification may then ask the client on the status of the file list using the getFdDownloadStateList() method defined in clause 6.2.3.16.

6.2.3.11.6
Post-Conditions

No state change is involved.

6.2.3.12
Getting the List of Available Files

6.2.3.12.1
Overview

This clause defines the getFdAvailableFileList() request.

As illustrated in Figure 6.2.3.12.1-1, once the MBMS Aware Application re-registers with the MBMS client, the MBMS client may indicate through the fileListAvailable() callback function to the application know that a list of files have been received for a service and are now ready to be accessed.

That application can then invoke the getFdAvailableFileList() API to retrieve information on these received files.

6.2.3.12.2
Parameters

The parameters for the getFdAvailableFileList() API are:

-
Input parameters:
-
string serviceId – identifies the File Delivery Application Service on for which the application requests the available file list.

-
Output parameters

-
A list for records, each containing:

-
string fileUri – identifies the file captured on the service identified in serviceId.

-
string fileLocation – identifies the location where the MBMS Aware Application can find the collected file.

-
string contentType – indicates the MIME type for the file identified in the fileUri.
-
unsigned long availabilityDeadline – signals a deadline in seconds when the file stored at the fileLocation will be removed from the MBMS client storage location, if applicable.

6.2.3.12.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state for the serviceId.

The MBMS client has indicated through the fileListAvailable() callback function to the application know that a list of files have been received for a service and are ready to be accessed.

The MBMS client has pre-configured an internal parameter defaultAvailabilityDeadline defining the time a file that is kept in the MBMS client owned storage location.

6.2.3.12.4
Usage of Method for Application

The application may use this method in order to retrieve information on the received files.
Once the application receives the response, the application may access the files that are announced by the parameters in the callback function. If the storage is not defined by the locationPath the application should access the file before the announced availabilityDeadline.

6.2.3.12.5
Expected MBMS Client Operation

When this method is invoked, the MBMS client provides the file parameters as defined above.

6.2.3.12.6
Post-Conditions

The MBMS client has notified the application about all accessible files.

6.2.3.13
Stop File Delivery Capture

6.2.3.13.1
Overview

This clause defines the stopFdCapture() request.
The application can make startFdCapture() calls to define fileURIs for the files to be received within an MBMS Service. The application may use the use the stopFdCapture()request to undo such a call and stop capturing such requested files. This is shown in Figure 6.2.3.13.1-1.

[image: image15.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) and

perform FEC decode

stopFdCapture()

Figure 6.2.3.13.1-1: File Delivery Application Stop Capture

6.2.3.13.2
Parameters

The parameters for the stopFdCapture() API are identical to the parameters for startFdCapture() as defined in clause 6.2.3.7.2.

6.2.3.13.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state.

6.2.3.13.4
Usage of Method for Application

The application may use this request to undo such a call and stop capturing such requested files.
The application should cache the requested fileURIs and use the stopFdCapture() API to signal to the MBMS client when the application no longer wishes to receive files matching the fileURIs on earlier capture requests.
If the MBMS Aware application has not properly cached the list of fileURIs on its outstanding startFdCapture() requests, the application should invoke the getFdActiveServices() API described in clause 6.2.3.4 to re-synchronize on its outstanding startFdCapture() requests.

6.2.3.13.5
Expected MBMS Client Actions

Upon receiving a stopFdCapture() the MBMS client updates its internal parameters and sends notifications, if applicable.

6.2.3.13.6
Post-Conditions

Entries in the _fileCaptureRequest[] record may be removed. If by this action the _fileCaptureRequest[] gets empty, the MBMS client changes to REGISTERED state.
6.2.3.14
Getting the list of outstanding fileURIs being captured

6.2.3.14.1
Overview

This clause defines the getFdActiveServices() request.

Figure 6.2.3.14.1-1 illustrates that the application may also invoke the getFdActiveServices() API to retrieve the fileURI for outstanding startFdCapture() requests.
[image: image16.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,BaseURL1)

registerFdApp()

stopFdCapture(S1,BaseURL1)

getFdActiveServices()

Figure 6.2.3.14.1-1: Sequence diagram for an application to collect info on outstanding startFdCapture() requests
6.2.3.14.2
Parameters

The parameters for the getFdAvailableFileList() API are:

-
Input parameters:
-
string serviceId – identifies the File Delivery Application Service on for which the application requests outstanding startFdCapture() requests.

-
Output parameters:
-
A list for records, each containing:

-
string fileUri – as defined in clause 6.2.3.7.2.
6.2.3.14.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state.

6.2.3.14.4
Usage of Method for Application

The application may also invoke the getFdActiveServices() API to retrieve the fileURI for outstanding startFdCapture() requests.
It is recommended that especially after a new registration or once a more recent startFdCapture() with a BaseURL superseded an earlier startFdCapture() with an AbsoluteURL.

6.2.3.14.5
MBMS Client Actions

When this method is invoked, the MBMS client provides the parameters in the call.
6.2.3.14.6
Post-Conditions

This call does not change any state or internal parameters of the MBMS client.
6.2.3.15
Notification on state change for files

6.2.3.15.1
Overview

This clause defines the fileDownloadStateUpdate()callback function.

As illustrated in Figure 6.2.3.15.1-1, after an MBMS Aware Application registers with the MBMS client and requests that files are to be captured, the MBMS client may issue fileDownloadStateUpdate() notifications to an application to signal that the state the MBMS client maintains for file(s) received or being received for the application has changed.

[image: image17.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

fileDownloadStateUpdate(S1)

registerFdResponse()

startFdCapture(S1,BaseURL1)

fdServiceListUpdate()

getFdDownloadStateList()

getFdServices()

getFdDownloadStateList()

Figure 6.2.3.15.1-1: Sequence diagram for notifying the application about changes to the state of files being collected

6.2.3.15.2
Parameters

The parameters for the fileDownloadStateUpdate()callback function are:

-
string serviceId – identifies the File Delivery Application Service on for which a new status is indicated.

6.2.3.15.3
Pre-Conditions

The MBMS client is in the CAPTURE_NOTIFY state.

6.2.3.15.4
Expected MBMS Client Actions

The MBMS client may invoke this method whenever the in the internal _fileURIStatus[] was changed.

6.2.3.15.5
Usage of Method for Application

If the application receives this callback notification, it should issue a getFdDownloadStateList().

6.2.3.15.6
Post-Conditions

No state change is happening, but the application is aware that it can receive updated information from the MBMS client.

6.2.3.16
Getting the state on file(s) received or being received

6.2.3.16.1
Overview

This clause defines the getFdDownloadStateList()request function.

An MBMS Aware application may be interested to retrieve the current state for files downloaded or being downloaded by the MBMS client on behalf of that application. The application may choose to request this information in response to a notification from the MBMS client of such state change via a fileDownloadStateUpdate() notification, but also in other cases.

6.2.3.16.2
Parameters

The parameters for the getFdDownloadStateList() API are:

-
Input parameters:
-
string serviceId – identifies the File Delivery Application Service on for which the application requests the available file list.

-
Output parameters:
-
A list for records, each containing:

-
string fileUri – identifies the file captured on the service identified in serviceId.

-
DownloadState state – state of the file identified by the fileUri. The value can be as follows:

-
FD _REQUESTED - capture is requested, but file is neither scheduled nor is reception in process. This may for example be the case if the reception has failed, so the capture request stays open.
-
FD_SCHEDULED - scheduled, if a file schedule is delivered and a file is scheduled, but not yet received.

-
FD_IN_PROGRESS – the reception of the file is in progress.

6.2.3.16.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state.

6.2.3.16.4
Usage of Method for MAA
An MAA may be interested to retrieve the current state for files downloaded or being downloaded by the MBMS client on behalf of that MAA. The MAA may choose to request this information in response to a notification from the MBMS client of such state change via a fileDownloadStateUpdate() notification.

The MAA may also detect via updated service definition information (i.e., via a fdServiceListUpdate() followed by a getFdServices()) that a file previously advertised on an earlier getFdServices() and which the MAA requested to be capture is no longer described on the information retrieved via the latest getFdServices(), and the MAA did not receive a fileAvailable() or a fileDownloadFailure() reporting the successful or failed reception of the requested file, respectively. This could happen because the requested file is no longer advertised as available for request (there is no current of future transmission for the file described on a fileSchedule in the schedule description fragment), but the file is still pending file repair.

An interested MAA can request information on the current state for files requested to be downloaded by the MBMS client on behalf of that MAA by invoking the getFdDownloadStateList() API.

6.2.3.16.5
Expected MBMS Client Actions

When this API call is received, the MBMS client provides the state of all files for which a capture request is issued.
6.2.3.16.6
Post-Conditions

There is no state change involved in the client.

6.2.3.17
Notification of updates to the service definition

6.2.3.17.1
Overview

This clause defines the fdServiceListUpdate()callback function.
As illustrated in Figure 6.2.3.15.1-1, after an MBMS Aware Application registers with the MBMS client and possibly requests that files are to be captured, the MBMS client may issue fdServiceListUpdate() notifications to an application to signal that there have been changes to the definition of File Delivery Application Services associated with the service classes the application has registered with the MBMS client.

6.2.3.17.2
Parameters

none

6.2.3.17.3
Pre-Conditions

The MBMS client is in REGISTERED or CAPTURE_NOTIFY mode.

6.2.3.17.4
Expected MBMS Client Operation

The MBMS client invokes this notification when there has been a change to the parameters reported to the application in response to a getFdServices() API.

6.2.3.17.5
Usage of Method for Application

In response to a fdServiceListUpdate() API notification from the MBMS client, the MBMS Aware application should invoke a getFdServices() API and process the updated information accordingly.

6.2.3.17.6
Post-Conditions

There is no change in the client state.

6.2.3.18
Notification of File Delivery Application Service errors

6.2.3.18.1
Overview

This clause defines the fdServiceError() callback function.

As illustrated in Figure 6.2.3.18.1-1, the startFdCapture() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the fdServiceError() to signal the error code for the result of processing the application's startFdCapture().

Figure 6.2.3.18.1-2 also illustrates that the fdServiceError() is used to signal the error code for the result of processing the application's stopFdCapture() request.

[image: image18.emf]startFdCapture()

fdServiceError()

MBMS Aware

Application

MBMS Client

startFdCapture() validation

errors detected

Figure 6.2.3.18.1-1: Signaling errors with the startFdCapture() request from the MBMS Aware Application

[image: image19.emf]stopFdCapture()

fdServiceError()

MBMS Aware

Application

MBMS Client

stopFdCapture() validation

errors detected

Figure 6.2.3.18.1-2: Signaling errors with the stopFdCapture() request from the MBMS Aware Application

6.2.3.18.2
Parameters

The parameters for the fdServiceError() callback are:

-
string serviceId – identifies the File Delivery Application service for which this notification applies.

-
FdErrorCode errorCode – identifies the error code for the reason causing the startFdCapture() or the stopFdCapture() request for the serviceId and fileUri to fail. The available error codes are:

-
FD_INVALID_SERVICE – signals that serviceID defined on the startFdCapture() or the stopFdCapture() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

-
FD_DUPLICATE_FILE_URI – signals that fileUri defined on the startFdCapture() request has already been requested on a previous startFdCapture() request. This is a duplicate request and the previous request is still in effect, i.e., impact to that earlier request. The MBMS client will not signal this error for the same condition on a stopFdCapture() request.

-
FD_AMBIGUOUS_FILE_URI – signals that fileUri defined on the startFdCapture() or the stopFdCapture() request creates ambiguity with a previously issued startFdCapture() or stopFdCapture() request. See clauses 6.2.3.7 and 6.2.3.13 for details on the conditions when this error code is generated for the startFdCapture() and the stopFdCapture() request, respectively.

-
FD_STOP_FILE_URI_NOT_FOUND – signals that the indicated fileURI does not match an outstanding startFdCapture() request.

-
FD_UNKNOWN_ERROR – signals an error condition not explicitly identified.

-
string errorMsg – may provide additional textual description of the error condition.

6.2.3.18.3
Pre-Conditions

The MBMS client is in REGISTERED or CAPTURE_NOTIFY mode.

6.2.3.18.4
Expected MBMS Client Actions

If a startFdCapture() or a stopFdCapture() request from an MBMS Aware Application may not be served, the MBMS client will send a failure indication via the fdServiceError() to signal the error code for the result of processing

6.2.3.18.5
Usage of Method for Application

If the application receives such a notification, it should check the capture requests and possibly also invoke the getFdActiveServices() API call to re-synchronize on its outstanding startFdCapture()requests.

6.2.3.18.6
Post-Conditions

No state change applies.

6.2.3.19
Notification on storage limitations

6.2.3.19.1
Overview

This clause defines the insufficientStorage() callback function.

As illustrated in Figure 6.2.3.19.1-1, once a file is to be received for an MBMS Aware Application (at a scheduled transmission time for the respective File Delivery Application Service), the FDT for the FLUTE session for that service will signal the size for that file.

When the MBMS client detects that not enough storage is available on the UE to receive the file, the MBMS client will send the warning indication via the insufficientStorage() API to signal the application of the low storage condition. The application may be able to clean up some of its own files or alert the user to clean up storage space on the UE.

[image: image20.emf]startFdCapture()

insufficientStorage()

MBMS Aware

Application

MBMS Client

Not enough storage is available to capture the

file of size as described on the FDT

Figure 6.2.3.19.1-1: Signaling a low storage level condition impacting a file download

6.2.3.19.2
Parameters

The parameters for the insufficientStorage() callback are:

-
string serviceId – identifies the File Delivery Application service for which this notification applies.

-
string fileUri – identifies the file being transmitted on the File Delivery Application Service in serviceId which the MBMS client has started to capture and that will fail download because of insufficient storage on the UE.

-
StorageLocation locationPath – identifies a local directory available on the device storage, which the application can access and where successfully collected files can be copied/moved before notifying that the file is available to the application. The storage location is a string pointing to a directory, or it may be empty, if no location is provided.

-
unsigned long storageNeeded – indicates the additional storage space that needs to be cleared on the storage Path to enable the download of the file in fileURI to succeed.

-
string errorMsg – may provide additional textual description of the error condition.

6.2.3.19.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state.

6.2.3.19.4
Expected MBMS Client Actions

The insufficientStorage() API is invoked for the applications that are currently registered at the time that the low storage condition is detected.

6.2.3.19.5
Usage of Method for Application

If the MBMS-aware application receives such a notification, it should take appropriate measures to enable to continue the service. This may include to change the service location, clear some storage autonomously or to communicate with the user to release storage.

6.2.3.19.6
Post-Conditions

No state changes occur.

6.2.3.20
Notification on storage access issues

6.2.3.20.1
Overview

This clause defines the inaccessibleLocation() callback function.

As illustrated in Figure 6.2.3.20.1-1, the locationPath where the MAA registered to have its requested files copied may not be available (e.g., SD card not inserted/locked). When the MBMS client detects that the register locationPath is not accessible, the MBMS client will send the warning indication via the inaccessibleLocation() API to signal the MAA of the storage access limitation; this can be done at different times, e.g., following a startFdCapture() as illustrated in Figure 6.2.3.20.1-1. The MAA may select an alternative locationPath, or prompt the user to choose another locationPath. The MAA can notify the MBMS client of the new locationPath via the setFdStorageLocation() API.

[image: image21.emf]startFdCapture()

inaccessibleLocation()

MBMS Aware

Application

MBMS Client

The storage location is not accessible for the

MBMS client to copy files

Figure 6.2.3.20.1-1: Signaling a storage access condition limitation impacting file download

6.2.3.20.2
Parameters

The parameters for the inaccessibleLocation()callback are:

-
string serviceId – identifies the File Delivery Application service for which this notification applies.

-
StorageLocation locationPath – indicates the storage location where files are to be stored per the registered locationPath at the time that the download started, which is not accessible by the MBMS client.

-
string errorMsg – may provide additional textual description of the error condition.

6.2.3.20.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state.

6.2.3.20.4
Expected MBMS Client Actions

The inaccessibleLocation() API is only invoked for the applications that are currently registered at the time that the storage inaccessible condition is detected.

6.2.3.20.5
Usage of Method for Application

If the application receives this notification, the application should take appropriated measures. It may for example change the location or may alert the user that the storage is not accessible.

6.2.3.20.6
Post-Conditions

No state change is applied, but the MBMS client may fail to receive files .

6.2.3.21
Checking the version for File Delivery Application Service interface

6.2.3.21.1
Overview

This clause defines the getVersion() request function.

6.2.3.21.2
Parameters

The parameters for the getVersion()API call are:

-
string version – identifies the version of the MBMS clients API implementation.

6.2.3.21.3
Pre-Conditions

The MBMS client may be in any state.

6.2.3.21.4
Operation of Method in MBMS Client

The getVersion() API returns the version of the implemented APIs of the MBMS client.
6.2.3.21.5
Usage of Method for Application

In order for the MBMS Aware Application to know the version of the File Delivery Application Service interface, the getVersion() API may be used. If the version number is not supported by the application, it should deregister and not use the API.

6.2.3.21.6
Post-Conditions

Note state change applies.
6.2.3.22
Add SA file
6.2.3.22.1
Overview

This clause defines addSA() interface.

An MAA calls the addSA() interface to provide SA file to the MBMS Client.

Figure 6.2.3.22.1-1 shows a call flow and the usage of the addSA() interface.

[image: image22.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

addSA()

registerFdResponse()

addSAResponse()

fdServiceListUpdate()

Figure 6.2.3.22.1-1: Add SA file sequence diagram
6.2.3.22.2
Parameters

The parameter for the addSA() API is:

-
string saFileLocation – identifies the location where the MBMS Client can find the SA file, following the profile 1c (Annex L.3 of 3GPP 26.346 [2]).
6.2.3.22.3
Pre-Conditions

The application is registered with the MBMS client to consume File Delivery Application Services.

6.2.3.22.4
Usage of Method for Application

The application uses the method addSA() to provide additionnal service announcement information to the MBMS Client.

6.2.3.22.5
Expected MBMS Client Actions

When this method is received, the MBMS client reads the SA file from the location given by the saFileLocation parameter and parses it.
The MBMS Client

-
adds the new MBMS user services announced by the SA file to the internal _service[] list for the invoking MAA;

-
updates the MBMS user services announced by the SA file whose service ID is already included with the _service[] list for the invoking MAA.

Note:
the internal _service[] lists for the other MAA are unchanged.
6.2.3.22.6
Post-Conditions

The application expects a addSAResponse() as defined in clause 6.2.3.23.

6.2.3.23
Add SA file Response
6.2.3.23.1
Overview

This subclause defines the addSAResponse() call.

As illustrated in Figure 6.2.3.22.1-1, the MBMS client responds to an MAA call to the addSA() API with a addSAResponse() call back providing the result of addition of the SA file.
6.2.3.23.2
Parameters

The parameters for the addSAResponse() API are:

-
EmbmsCommonTypes::AddSAresponseCode value – provides a result code on the registration request. The allowed values are:

-
SUCCESS – indicates that the SA file has been parsed and the announced MBMS user service have been added to the internal _service[] list.
-
SA_FILE_INVALID – indicates that the SA file can not be parsed according the profile 1c (Annex L.3 of 3GPP 26.346 [2])
-
string message – provides an associated text description of the error message. The message may be empty.

6.2.3.23.3
Pre-Conditions

The MBMS client has received a call via the addSA() API with the parameters documented in subclause 6.2.3.23.2.

6.2.3.23.4
Usage of Method for Application
If the MBMS-aware application receives such a notification with the response code set to SA_FILE_INVALID, the application may inform the application user or the content provider that the SA file could not be imported by the MBMS client.
6.2.3.23.5
Expected MBMS Client Actions

The parameters of the MBMS client are updated. The MBMS client may issue an fdServiceListUpdate() notification as defined in subclause 6.2.3.17.
6.2.3.23.6
Post-Conditions

There is no change in the client state.
6.3
Media Streaming Service API

6.3.1
Introduction

The Media Streaming Service API provides MBMS Aware Applications with interfaces to manage the reception of Media Presentations delivered over-MBMS services that are built on the Download Delivery Method. This API is intended to support live media streaming applications.

The IDL for the Media Streaming Service API is defined in Annex B.3.

6.3.2
MBMS Client State Model for Media Streaming

6.3.2.1
Overview

Figure 6.3.2-1 provides an informative client state model in order to appropriately describe the messages on the Media streaming service API. Four different states are defined. State changes may happen based on:

-
Calls from the MAA or the Media client
-
Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

-
Changes in the reception conditions

[image: image23.emf]IDLE

REGISTERED ACTIVE

STALLED

r

e

g

i

s

t

e

r

S

t

r

e

a

m

i

n

g

A

p

p

(

)

d

e

R

e

g

i

s

t

e

r

S

t

r

e

a

m

i

n

g

A

p

p

(

)

startStreamingService()

stopStreamingService()

s

e

r

v

i

c

e

S

t

a

l

l

e

d

(

)

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

Figure 6.3.2-1: State Diagram

Table 6.3.2-1 defines states for the MBMS client. Detailed descriptions are provided in the following subclauses .

Table 6.3.2-1: States of MBMS Client
	States and Parameters
	Definition

	IDLE
	In this state the MBMS client does not have a registered MAA and it may not keep the service definition up to date.

For more details see clause 6.3.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an MAA cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered the MAA, it may keep the service definition up to date, and it may be providing file capture services to the MAA(s).

In this state the MBMS client sends callback notifications to the MAA.

For more details see clause 6.3.2.4.

	ACTIVE
	In this state the MBMS client provides all services to of the REGISTERED state and also provides the streaming service to the MAA.

For more details see clause 6.3.2.5.

	STALLED
	In this state the MBMS client provides all services to of the REGISTERED state, but the streaming services is at least temporarily stalled.

For more details see clause 6.3.2.6.

6.3.2.2
MBMS Client Internal parameters

The MBMS client maintains internal parameters as defined in Table 6.3.2.2-1. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls.

Table 6.3.2.2-1: Parameters of MBMS Client for Media Streaming Service

	Internal Parameters
	Definition

	_app[]
	The MBMS client maintains a parameter set per registered app

	
	_appId
	A unique ID provided by the application and assigned to the app.

	
	_serviceClass[]
	A list of service classes identifying the services the application has access to.

	
	_registrationValidityDuration
	A period of time following the application de-registration over which the MBMS client continues to capture files for the application, see clause.

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a Streaming Application service over which the MBMS client collects files for the application.

	
	
	_serviceClass
	The service class associated with the Streaming Application service assigned the Service ID.

	
	
	_serviceLanguage
	The language of the service

	
	
	_serviceName[]

 _name

 _lang
	The service name, possibly expressed in different languages.

	
	
	_serviceBroadcastAvailability
	The service broadcast availability for the client. Three different types are defined:

BROADCAST_AVAILABLE – UE is in broadcast coverage

BROADCAST_UNAVAILABLE – UE is outside of broadcast coverage
SERVICE_UNAVAILABLE – The service is unavailable for the UE

	
	
	ServiceFormat[]
	A list of possible formats for the service as specified in clause 6.3.2.4.

	
	
	
	_ServiceMimeType
	The MIME type which identifies the service format.

	
	
	
	_Manifest
	The latest Manifest associated to the service for that particular MIME type.

	
	
	
	IS[]

	The Initialization Segments for the Media Presentation i.e. Initialization Segment in the case of DASH, CMAF Header for CMAF, Media Initialization Section in the case of HLS.

	
	
	_ManifestURI
	The URI which is provided to the application for initiating the Media Presentation.

	
	
	_sessionSchedule[]

 _start

 _stop
	Documents the session schedule for this session. Only sessionSchedule records should be included for which the value of the _stop time is in the future.

6.3.2.3
MBMS Client Operation in IDLE state

In the IDLE state, the MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the MAA is in place.

When the registerStreamingApp() as defined in subclause 6.3.3.2 is invoked, then:
1)
The MBMS client checks the input parameters for consistency and sets the internal variables:
a)
If the functions of the MBMS client is not accessible, the MBMS client throws a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE result code in the registerStreamingResponse() as defined in subclause 6.3.3.3 and abort the following steps and may at least temporarily move in NOT_AVAILABLE state.
b)
If appId is an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerStreamingResponse() as defined in subclause 6.3.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

c)
The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided the MBMS client considers the MAA to be registered with a service class that is also empty and only allow the MAA to have access to Media Streaming Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined).
d)
On receiving a registerStreamingApp() following a deregisterStreamingApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setStreamingServiceClassFilter() method.

e)
If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerStreamingApp() interface to send notification of event occurrences to the MAA.

2.
generates a response registerStreamingResponse() as defined in subclause 6.3.3.3 and changes to REGISTERED state as defined in clause 6.3.2.4:

a)
If the MBMS client functions cannot be activated for any reason, especially if the Streaming Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message.

b)
If the MAA did not provide a mandatory parameter the MBMS client functions cannot be activated, the MISSING_PARAMETER registration response code is sent.

c)
If the MBMS client functions can be activated, then:
i)
the RegResponseCode is set to REGISTER_SUCCESS registration response code;
ii)
a message may be generated.
d)
Sends the response with the above parameters.
3.
If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching streaming delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER, then MBMS client is in IDLE state.

If the MBMS client receives the getVersion() API call as defined in clause 6.3.3.13, it shall return version 1.0.

6.3.2.4
MBMS Client Operation in REGISTERED state

For each registered MAA and the assigned parameters according to Table 6.3.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the MAA in _app[] in the service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the MAA has interest.
For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service classes registered by the MAA in _serviceClass[] and which is identified as a DASH-over-MBMS service according to the definition in TS 26.346 [5], clause 5.6, or identified as a generic application service according to the definition in TS 26.346 [5], clause 5.7 for HLS, one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever a new USD is available:

-
For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.

-
If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

-
The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

-
If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.
If there is a r9:mediaPresentationDescription element or or a r12:appService element (with an attribute mimeType whose value contains "application/dash+xml" or “application/dash+xml profiles=' urn:mpeg:dash:profile:cmaf:2019'”), a instance of service format is created:

-
ServiceMimeType is equals to “application/dash+xml” and
-
The Media Presentation Description fragment referenced by the r9:mediaPresentationDescription element or the Application Service Description fragment referenced by an a r12:appService (with an attribute mimeType whose value contains "application/dash+xml" or “application/dash+xml profiles=' urn:mpeg:dash:profile:cmaf:2019'”) referencing an MPD and conforming to TS 26.247 [7] is extracted by the MBMS client. The contained MPD is stored in the Manifest parameter and the Initialization Segments are stored in the _IS[]. The MnifestURI parameter is generated at which location the MPD will be made available.
 If there is a r12:appService element (with an attribute mimeType whose value contains "application/vnd.apple.mpegurl "), a instance of service format is created:
-
ServiceMimeType is equals to “application/vnd.apple.mpegurl”,
- the Application Service Description fragment whose content is the Master Playlist referenced by the r12:appService (with an attribute mimeType whose value contains "application/vnd.apple.mpegurl ") is extracted by the MBMS client . The contained Master Playlist is stored in the _Manifest parameter and the Initialization Segments are stored in the _IS[]. The _ManifestURI parameter is generated at which location the Master Playlist will be made available.
-
The _serviceBroadcastAvailability is continuously updated set it to
-
BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service),
-
BROADCAST_UNAVAILABLE, if broadcast is not available (if the UE is NOT in broadcast coverage of the service).

-
If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future.
If updates are provided and added to the _service[] parameter, the MBMS client should send a streamingServiceListUpdate() callback as defined in clause 6.3.3.6.

When the getStreamingServices() method is received as defined in clause 6.3.3.4, the MBMS client sets the parameters as follows:

-
If the _service[] list is empty, the list is empty.
-
For each MBMS user service in the service[] list, one service record is generated as follows:

-
The value of the attribute _serviceId is assigned to serviceId.

-
The value of the attribute _serviceClass is assigned to serviceClass.

-
The value of _serviceLanguage is assigned to serviceLanguage.

-
For each record in the _serviceName[] one serviceNameList entry is generated and:
-
the name is set to the value _name,

-
the name is set to the value _name,

-
The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.

-
The list of MIME types available. For each element of this list, _ManifestURI is assigned to ManifestURI
-
If at least one _sessionSchedule[] record is present then:
-
The activeDownloadPeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[].

-
The activeDownloadPeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.

-
If no _sessionSchedule[] record is present:
-
The activeDownloadPeriodStartTime is set to 0.

-
The activeDownloadPeriodStopTime is set to 0.

When the setStreamingServiceClassFilter() as defined in clause 6.3.3.5 is received, the MBMS client runs the following steps:

-
It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.

-
The MBMS client dis-associates the service classes previously associated with the MAA that are not included on this list.

-
The MBMS client associates the service classes not previously associated with the MAA that are newly included on this list.

-
The MBMS client issues a streamingServiceListUpdate() notification as defined in clause 6.3.3.6 to the MAA to notify of this effect.

When the startStreamingService() method as defined in clause 6.3.3.7 is received with a parameter serviceID, the MBMS client runs the following steps:

-
The MBMS client checks for errors and if necessary, the streamingServiceError() notification as defined in clause 6.3.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code STREAMING_INVALID_SERVICE. Otherwise it may use the error code STREAMING_UNKNOWN_ERROR. An error message may be provided in the errorMsg string.

-
If the service with the serviceId parameter can be started:
-
The MBMS client uses the Manifest file in the _ Manifest file parameter and the remaining associated metadata to offer a valid media presentation to the Media client by providing a Media server in the MBMS client. For different options to provide such a service, refer to clause 7.
-
The URL to the Manifest file that is exposed to the MAA for media consumption is stored in the internal variableManifestURI. The Manifest file stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband Manifest file updates.
-
The MBMS client sends a serviceStarted() notification as defined in clause 6.3.3.8 with the serviceId being passed along with the notification.
-
The MBMS client moves to ACTIVE state as defined in clause 6.3.2.5.
Whenever there has been a change to the parameters reported to the MAA in response to a getStreamingServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the __Manifest URI, the MBMS client notifies the MAA with streamingServiceListUpdate() as defined in clause 6.3.3.6.

When the deregisterStreamingApp() is received, all internal parameters for the MAA are cleared and the client moves to IDLE state.

6.3.2.5
MBMS Client Operation in ACTIVE state

In the ACTIVE state, the MBMS client carries out all actions as in the REGISTERED state.

The MBMS client continuously downloads the media resources and makes them available as announced in the Manifest. For different options to provide such a service to the MAA and media client, refer to clause 7. The URL to the MPD that is exposed to the MAA for media consumption is stored in the internal variable _ManifestURI. The Manifest file stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband Manifest file updates.
When the MBMS client receives a stopStreamingService() request as defined in clause 6.3.3.9 that matches an active service.

-
The MBMS client checks for errors and if necessary, the streamingServiceError() notification as defined in clause 6.3.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code STREAMING_INVALID_SERVICE. Otherwise it may use the error code STREAMING_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.

-
the MBMS client stops providing the media resources at its media server, i.e. at the location announced in the Manifest file referenced by the _ManifestURI.

-
The MBMS client moves to REGISTERED state as defined in clause 6.3.2.4.

When the MBMS client receives a stopStreamingService() request as defined in clause 6.3.3.9 that matches an active service, the MBMS client terminates the download of the resources of this download delivery session and no longer makes it available at the indicated resources in the Manifest. The MBMS client transitions to REGISTERED state
When the MBMS the internal parameter _serviceBroadcastAvailability transitions to BROADCAST_UNAVAILABLE, and no alternative delivery method is defined, or if the service is no longer available for other reasons (e.g. frequency conflict), then the service is stalled. In this case the MBMS client:
-
No longer makes available the resources in the announced locations by the _ManifestURI and the references therein.
-
Sends a serviceStalled() notification as defined in clause 6.3.3.11, along with one of the following reasons:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

-
Transitions to the STALLED state as defined in clause 6.3.2.6.

6.3.2.6
MBMS Client Operation in STALLED state

In the STALLED state, the MBMS client carries out all actions as in the REGISTERED state.

In this state the MBMS client continuously monitors if the service can be made available again.

Once the service gets available again, the MBMS client:
-
The MBMS client downloads the media resources and makes them available as announced in the Manifest. For different options to provide such a service, refer to clause 7. The URL to the Manifest that is exposed to the MAA for media consumption is stored in the internal variable _ManifestURI. The Manifest stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband Manifest updates

-
The MBMS client sends a serviceStarted() notification as defined in clause 6.3.3.8 with the serviceId being passed along with the notification.

-
The MBMS client moves to ACTIVE state as defined in clause 6.3.2.5.
6.3.3
Methods

6.3.3.1
Overview

Table 6.3.3.1-1 provides an overview over the methods defined for the Streaming Delivery Application Service API. Different types are differentiated, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow between MAA (A) and MBMS Client (C) is provided.

Table 6.3.3.1-1: Methods defined for Streaming Delivery Application Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerStreamingApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.3.3.2

	deregisterStreamingApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.3.3.10

	startStreamingService
	State change
	A -> C
	Starts streaming service
	6.3.3.7

	stopStreamingService
	State change
	A -> C
	Stop streaming service
	6.3.3.9

	getStreamingServices
	Status query
	C <-> A
	Get list of currently active services
	6.3.3.4

	getVersion
	Status query
	C <-> A
	Retrieves the list of files previously captured for the MAA
	6.3.3.13

	setStreamingServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on file delivery services in which it is interested
	6.3.3.5

	registerStreamingResponse
	Update to parameter list
	C-> A
	The response to the MAA streaming service register API
	6.3.3.3

	serviceStarted
	Notification
	C -> A
	Notification to MAA when the streaming service started.
	6.3.3.8

	streamingServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for Media streaming delivery services
	6.3.3.6

	streamingServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with the download of service
	6.3.3.12

	serviceStalled
	Notification
	C -> A
	Notification to MAA that download Media segments failed
	6.3.3.11

6.3.3.2
Registration

6.3.3.2.1
Overview

This clause defines registerStreamingApp() interface.

An MAA calls the registerStreamingApp() interface to register with the MBMS Client to consume streaming services. The registerStreamingApp() interface has two purposes:

1)
It signals to the MBMS Client that an MAA is interested to consume MBMS Media Streaming Services.

2)
It allows the MAA to identify its callback listeners defined in the Streaming Service API for the MBMS Client to provide asynchronous notifications to the MAA on relevant events associated with streaming.

Note:
Since some application development frameworks do not support callback functions, an MAA for these frameworks will not provide callback listeners in the registerStreamingApp() interface. Instead, the MAA will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.

Figure 6.3.3.2-1 shows the registration process[image: image24.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerStreamingApp()

deregisterStreamingApp()

getStreamingServices()

registerStreamingResponse()

Figure 6.3.3.2-1: Application Registration sequence diagram

6.3.3.2.2
Parameters

The parameters for the registerStreamingApp () API are:

-
string appId – provides a unique ID for the MAA registering with the MBMS client, which uses this identity to maintain state information for a particular MAA. The uniqueness of the ID is in the context of any MAA that may possibly register with MBMS client. Uniqueness is typically provided on platform level.

-
any platformSpecificAppContext – a platform-specific context for the registering MAA that enables the MBMS client to get extra information about the MAA that may be need to enable the MAA to have access to MBMS services, e.g., to enable MAA authentication or to enable the MAA to communicate with the MBMS client via platform (e.g., HLOS) services.

-
sequence<string> serviceClassList – provides a comma-separated list of service classes which the MAA is interested to register. Each service class string can be any string or it may be empty.

-
ILTEStreamingServiceCallback callBack – provides the MBMS client with the call back functions associated with Media Streaming Application Service APIs for the registering MAA.

Note:
The callback element in the IDL description is optional and only included when the MAA development framework supports programmatic callback interfaces. If callbacks are not supported on a given MAA development framework, the same information content as defined on the callback structures is to be provided to the MAA via the notification method available with that development framework when the respective condition is met.

6.3.3.2.3
Pre-Conditions

The MAA has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The MAA is pre-configured with the set of service classes that allows it to consume the Media Streaming Services associated with these service classes.

The MAA has access to a Media Streaming client.

The MAA may use this method at launch or after a deregisterStreamingApp() has been called.

The MBMS client is in IDLE state.
6.3.3.2.4
Usage of Method for MAA
The MAA uses the method registerStreamingApp() to register with the MBMS Client to consume Streaming Services.

The MAA provides its appId and, if applicable, some platform specific MAA context, platformSpecificAppContext.

The MAA provides the set of service classes which the MAA is interested to register.

6.3.3.2.5
Expected MBMS Client Actions

When this method is invoked, the MBMS client registers the app, if possible. For more details refer to clause 6.3.2.3.

6.3.3.2.6
Post-Conditions

The MAA expects the registerStreamingResponse() as defined in clause 6.3.3.3.

6.3.3.3
Media Streaming Application Service Registration Response

6.3.3.3.1
Overview

This clause defines registerStreamingResponse()call.

As illustrated in Figure 6.3.3.2-1, the MBMS client responds to an MAA call to the registerStreamingApp() API with a registerStreamingResponse() call back providing the result of the registration request.

6.3.3.3.2
Parameters

The parameters for the registerStreamingResponse() API are:

-
EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

-
REGISTER_SUCCESS – indicates that the registration has been processed successfully and the MAA can proceed with other API interactions with the MBMS client for Streaming Delivery Application Services.

-
FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the Streaming Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running and no MBMS service will be available to the MAA.

-
MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.

-
string message – provides an associated text description of the error message. The message may be empty.

6.3.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerStreamingApp() API as defined in clause 6.3.3.2.

6.3.3.3.4
Expected MBMS Client Actions

The MBMS client responds accordingly and depending on the response moves to one of the states: IDLE, NOT_AVAILABLE, or REGISTERED. For more details refer to clause 6.3.2.4.

6.3.3.3.5
Usage of Method for MAA
Once the MAA receives a the registerStreamingResponse() with the RegResponseCode set to REGISTER_SUCCESS, the MAA can proceed with other API interactions with the MBMS client.
If the MBMS client is temporarily in NOT_AVAILABLE, if the registerStreamingResponse() signaled a failure with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, the MAA may periodically recheck if the state of the MBMS client changes by retrying the registerStreamingApp()API.

If the MBMS client is responding with MISSING_PARAMETERS, the MAA should fix the parameters and retry the registerStreamingApp() API.

6.3.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.

If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.

6.3.3.4
Getting information on available Media Streaming Application Services

6.3.3.4.1
Overview

This clause defines getStreamingServices() API call.

The registerStreamingApp() interface returns the complete list of available Streaming Services information. As illustrated in Figure 6.3.3.2-1, after a successful registration with the MBMS client, the MAA can use the getStreamingServices() API to discover the available Streaming Services associated with the service classes registered via the registerStreamingApp().

6.3.3.4.2
Parameters

The getStreamingServices() API does not have any input parameters.
The getStreamingServices() API returns a list describing the available Media Streaming Services, where each service is described by the following output only parameters:

-
sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.

-
string name – offers a title for the user service on the language identified in the lang parameter.

-
string lang – identifies a natural language identifier per RFC 3066 [10].

-
string serviceClass – identifies the service class which is associated with the service.

-
string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.

-
string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC 3066 [10].

-
EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.

-
The possible values are:

-
BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

-
BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

-
SERVICE_UNAVAILABLE – if content for the service is at all available at the current device location.
-
string mimeType – provides the MIME type which defines the media transport format used (DASH, HLS).
-
string ManifestUri – provides an HTTP URL where the Manifest for the Media Streaming Application Service is hosted and available for Media Clients access.

-
EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active Media Streaming Application Service start time, when media segments and other resources start being broadcast over the air.

-
EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active DASH Streaming Application Service stop time, when media segments and other resources stop being broadcast over the air.
6.3.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state.

6.3.3.4.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client returns the streaming service parameters. For more details refer to clause 6.3.2.4.
6.3.3.4.5
Usage of Method for MAA
The MAA should use this call right after the registerStreamingResponse() notification as defined in clause 6.3.3.3 is received or after the streamingServiceListUpdate() notification as defined in clause 6.3.3.6 is received.

The MAA should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the streaming service.

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the MAA.
The mimeType should be used by the MAA to select the media transport format used
The ManifestURI should be used by the MAA to initiate playback by initiating a Media Client. The MAA should assume that Media Presentation can be consumed by the Media Client without any further interaction with the MAA.
 The parameters activeServicePeriodStartTime and activeBroadacstPeriodEndTime provides the MAA the ability to determine the current broadcast state for the service as follows:

-
If the current time is such that activeServicePeriodStartTime ≤ current time ≤ activeServicePeriodEndTime, media content is being broadcast for the service at the current time.

-
If the activeServicePeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

-
If the activeServicePeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.
6.3.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The MAA uses the serviceId to identify the service in subsequent communication with the MBMS client.

6.3.3.5
Updating the registered service classes

6.3.3.5.1
Overview

This clause defines setStreamingServiceClassFilter() call.

While an MAA is actively registered with the MBMS client to consume Media Streaming Services, the MAA can call the setStreamingServiceClassFilter() API to update the list of service classes the MAA wants to be registered with, see Figure 6.3.3.5.1-1.
[image: image25.emf]MBMS Aware

Application

MBMS Client

registerStreamingApp()

deregisterStreamingApp()

setStreamingServiceClassFilter()

registerStreamingResponse()

streamingServiceListUpdate()

getStreamingServices()

Figure 6.3.3.5.1-1: Sequence diagram for updating the registered service classes for an MAA
6.3.3.5.2
Parameters

The parameters for the setStreamingServiceClassFilter() method are:

-
sequence<string> serviceClassList – see clause 6.3.3.2.2

6.3.3.5.3
Pre-Conditions

The MAA is actively registered with the MBMS client to consume Media Streaming Services, and MBMS client is in REGISTERED state for the MAA.

6.3.3.5.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client updates the internal parameters and is expected to provide a streamingServiceListUpdate() notification as defined in clause 6.3.3.6. For more details refer to clause 6.3.2.4.

6.3.3.5.5
Usage of Method for MAA
The MAA may invoke the setStreamingServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The MAA should be aware that the updates are only active once an streamingServiceListUpdate() notification is received that confirms the new service class filters.

6.3.3.5.6
Post-Conditions

The MAA expects a streamingServiceListUpdate() notification as defined in clause 6.3.3.6.

6.3.3.6
Updating the Streaming Service List

6.3.3.6.1
Overview

This clause defines streamingServiceListUpdate() notification.

This notification is used by the MBMS client to inform the MAA about a successful API call setStreamingServiceClassFilter() as shown in Figure 6.3.3.5.1-1 or other updates in streaming service list.

6.3.3.6.2
Parameters

None.

6.3.3.6.3
Pre-Conditions

The MBMS client is in REGISTERED state for the MAA. The MAA has issued a setStreamingServiceClassFilter()API call.

6.3.3.6.4
Expected MBMS Client Actions

The MBMS client issues this notification as a response to a successful setStreamingServiceClassFilter()API call or to the response to updates of the service list provided in the Manifest. For more details see clause 6.3.2.4.

6.3.3.6.5
Usage of Method for MAA
The MAA is informed about the updates of the service class list and may issues a getStreamingServices() API call as defined in clause 6.3.3.4 to obtain the updated service list.

6.3.3.6.6
Post-Conditions

The MAA has the latest service list. No state change is involved.

6.3.3.7
Start Media Streaming Service

6.3.3.7.1
Overview

This clause defines startStreamingService() API.

After the Media Streaming Application Service registration, the MAA can make calls on the startStreamingService() API for the MBMS client to start reception of Media content received over unicast or broadcast as shown in Figure 6.3.3.7-1.

[image: image26.emf]startStreamingService()

stopStreamingService()

MBMS Aware

Application

MBMS Client

Iniitiate File Download, e.g. open FLUTE

session (local multicast join) and receive

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Terminate File Download

Stop Playback

Get MPD/DASH Segments

Figure 6.3.3.7-1: MAA starts Media Streaming Services (DASH Example)
6.3.3.7.2
Parameters

The parameters for the startStreamingService() API are:

-
string serviceId – see definition in clause 6.3.3.2.2.

6.3.3.7.3
Pre-Conditions

The MBMS client is in REGISTERED state.

The MAA has the latest service list, for example through the getStreamingServices() API call as defined in clause 6.3.3.4.

6.3.3.7.4
Usage of Method for MAA
The MAA can make calls on the startStreamingService() API for the MBMS client to start reception of Media content received over unicast or broadcast.
When MAA is no longer interested in consuming the Streaming Service, it should call the stopStreaming() API call as defined in clause 6.3.3.9.

6.3.3.7.5
MBMS Client Actions

When this method is invoked, the MBMS client starts the streaming service, if possible. For more details see clause 6.3.2.4.

6.3.3.7.6
Post-Conditions

When this method is invoked, the MBMS client starts the streaming service, if possible. For more details see clause 6.3.2.4.

6.3.3.8
Notification that Media Streaming for a Service has started

6.3.3.8.1
Overview

This clause defines serviceStarted() callback function.

As illustrated in Figure 6.3.3.7-1, once the MBMS client has successfully collected all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.

6.3.3.8.2
Parameters

The parameters for the serviceStarted() API are:

-
string serviceId – see definition in clause 6.3.3.2.2.

6.3.3.8.3
Pre-Conditions

The MAA issued a startStreamingService() API call.

The MBMS client is in REGISTERED state for the serviceId.

6.3.3.8.4
Expected MBMS Client Actions

The MBMS client issues this notification if the service is started successful. For details see clause 6.3.2.4.

6.3.3.8.5
Usage of Method for MAA
Once the MAA receives the callback on the successful start of the service with the serviceId, the MAA may start the streaming service by initiating a Media Presentation at a Media Client by handing over the mpdURI received during the registration process for this service.

6.3.3.8.6
Post-Conditions

The Media Cclient can communicate with the MBMS client. The MBMS client makes available the Media Streaming APplication Services - based on the Manifest referenced in by the ManifestURI of the service.

6.3.3.9
Stop Media Streaming Service

6.3.3.9.1
Overview

This clause defines stopStreamingService() API.

As Figure 6.3.3.7-1 illustrates, when an MAA that issued a startStreamingService() for a service is no longer interested in consuming the Media content for that service, it will call the stopStreamingService() API call.

6.3.3.9.2
Parameters

The parameter for the stopStreamingService() API is:

-
string serviceId – see definition in clause 6.3.3.2.2.

6.3.3.9.3
Pre-Conditions

The MBMS client is in ACTIVE state for this MAA.

6.3.3.9.4
Usage of Method for MAA
If an MAA is no longer interested in consuming the Media service, it should call the stopStreamingService() API call. Latest at the same time, the MAA should inform the DASH client about the termination of the service and the Media client should no longer request resources that are provided directly or referenced by the ManifestURI.

6.3.3.9.5
MBMS Client Actions

The MBMS terminates the reception. For more details see clause 6.3.2.5.

6.3.3.9.6
Post-Conditions

The MBMS client is in REGISTERED state. The Media Presentation referenced by the ManifestURI can no longer be accessed as the referenced Segments will no longer be provided at the announced location in the Manifest.

6.3.3.10
Media Streaming Application Service De-registration

6.3.3.10.1
Overview

This clause defines deregisterStreamingApp() API call.

An MAA registers services classes with the MBMS client to request the start of streaming for Media Streaming Application Services. The MAA that registered with the MBMS client via the registerStreamingApp() API should invoke the deregisterStreamingApp() before exiting. The MBMS clients stops monitoring for Service Announcement updates when there are no MAAs registered. There are no parameters for the registerStreamingApp() API.

6.3.3.10.2
Parameters

None.

6.3.3.10.3
Pre-Conditions

The MBMS client is in REGISTERED state for this MAA.

6.3.3.10.4
Usage of Method for MAA
MAA registered with the MBMS client via the registerStreamingApp() API should invoke the deregisterStreamingApp() before exiting.

If the MAA deregisters, it will no longer receive notifications from the MBMS client and all context is cleared.

6.3.3.10.5
MBMS Client Actions

The MBMS client no longer sends notifications and clears all context for the MAA.

6.3.3.10.6
Post-Conditions

The MAA is no longer registered with the MBMS client.

The MBMS client is in IDLE mode..

6.3.3.11
Notification that Media Streaming for a Service has stalled

6.3.3.11.1
Overview

This clause defines the serviceStalled() notification.

The MBMS client enables consumption of a Media Streaming Application Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. However, due to UE mobility in and out of broadcast coverage for some Media Streaming Application Services, the serviceBroadcastAvailability for those services may change to SERVICE_UNAVAILABLE (i.e., the UE moves out of coverage for that service). Other circumstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client can signal the MAA that the service is temporarily not available for playback by invoking the serviceStalled() API.

When broadcast reception of the service is re-established, the MBMS client will signal the MAA that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in Figure 6.3.3.11.1.

[image: image27.emf]startStreamingService()

MBMS Aware

Application

MBMS Client

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Segments unavailable, e.g.

out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

serviceStalled()

Segments available, e.g.

Back inbroadcast coverage

Start Playback (MPD url)

serviceStarted()

Figure 6.3.3.11.1: Signaling that a Media Streaming Service stalled (DASH Example)
6.3.3.11.2
Parameters

The parameter for the serviceStalled() API are:

-
string serviceId – identifies the Media Streaming Application Service for which broadcast receptions have temporarily stalled.

-
StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

6.3.3.11.3
Pre-Conditions

The MBMS client is in ACTIVE mode.

6.3.3.11.4
Expected MBMS Client Actions

The MBMS client provides a serviceStalled() notification in case it can no longer provide the referenced resources in the Media Presentation provided with ManifestURI. For more details refer to clause 6.3.2.5.

6.3.3.11.5
Usage of Method for MAA
The MAA should stop the Media client playback on reception of the serviceStalled() notification. However, unless the MAA is no longer interested in the content, it should not issue a stopStreamingService() call in order to allow the MBMS client from trying to collect Media content once the download problem is resolved. The MAA should inform the user of the temporary service interruption.

If the Media client maintains in STALLED state for too long, the MAA should stop the service by issuing a stopStreamingService().

6.3.3.11.6
Post-Conditions

The MBMS client is in STALLED mode.

6.3.3.12
Notification of Media Streaming Application Service errors

6.3.3.12.1
Overview

This clause the streamingServiceError() notification.

As illustrated in Figure 6.3.3.12.1-1, the startStreamingService() request from an MAA may not be served, so the MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the MAA's startStreamingService().

[image: image28.emf]startStreamingService()

streamingServiceError()

MBMS Aware

Application

MBMS Client

startStreamingService() validation

errors detected

Figure 6.3.3.12.1-1: Signaling errors with the startStreamingService() request from the Media Streaming Application
Figure 6.3.3.12.1-2 also illustrates that the streamingServiceError() is used to signal the error code for the result of processing the MAA's a stopStreamingService() request.

[image: image29.emf]stopStreamingCapture()

streamingServiceError()

MBMS Aware

Application

MBMS Client

stopStreamingCapture() validation

errors detected

Figure 6.3.3.12.1-2: Signaling errors with the stopStreamingService() request from the Media Streaming Application

6.3.3.12.2
Parameters

The parameters for the streamingServiceError() API are:

-
string serviceId – identifies the Media Streaming Application Service on which the MBMS client failed.

-
StreamingErrorCode errorCode – identifies the error code for the reason causing the startStreamingService() or the stopStreamingService() request for the serviceId to fail. The available error codes are:

-
STREAMING_INVALID_SERVICE – signals that serviceID defined on the startStreamingService() or the stopStreamingService() request is not currently defined or it is not associated with the service classes with the MAA is registered.

-
STREAMING_UNKNOWN_ERROR – signals an error condition not explicitly identified.

-
string errorMsg – may provide additional textual description of the error condition.

6.3.3.12.3
Pre-Conditions

The MBMS client has received a the startStreamingService() or a stopStreamingService() request.

6.3.3.12.4
Expected MBMS Client Actions

The MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the MAA. For more details refer to clause 6.3.2.4 and 6.3.2.5.
6.3.3.12.5
Usage of Method for MAA
If the MAA receives this notification, it should revalidate the capture call. The MAA should also update the service list by issuing a getStreamingServices() as defined in clause 6.3.3.4.

6.3.3.12.6
Post-Conditions

No state change is applied.

6.3.3.13
Checking the version for Media Streaming Application Service interface

6.3.3.13.1
Overview

This clause defines the getVersion() request function.

6.3.3.13.2
Parameters

The parameters for the getVersion()API call are:

-
string version – identifies the version of the MBMS clients API implementation.

6.3.3.13.3
Pre-Conditions

The MBMS client may be in any state.

6.3.3.13.4
Usage of Method for MAA
In order for the MAA to know the version of the Media Streaming Delivery Application Service interface, the getVersion() API call may be used. If the version number is not supported by the MAA, it should deregister and not use the API.

6.3.3.13.5
MBMS Client Actions

The getVersion() API returns the version of the implemented APIs of the MBMS client.
6.3.3.13.6
Post-Conditions

No state changes apply.
6.4
MBMS Packet Delivery Service API
6.4.1
Introduction

The MBMS packet Streaming delivery Service API provides MAAs with interfaces to manage the reception of packet services delivered over MBMS User services. This API is intended to support packet streaming MAAs.

The IDL for the MBMS Packet Delivery Service API is defined in clause B.4.
The Packet Delivery Service API supports different types of Application Services by using an argument in the service request.
6.4.2
MBMS Client State Model for MBMS packet delivery
6.4.2.1
Overview

Figure 6.4.2.1-1 provides an informative client state model in order to appropriately describe the messages on the MBMS Packet Delivery service API. Four different states are defined as listed in Table 6.4.2.1-1. State changes may happen based on:

-
Calls from the MAA or the packet streaming client

-
Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

-
Changes in the reception conditions

[image: image30.png]serviceStarted()
serviceStalled()
deregisterRTPApp()
registerRTPApp()

startRTPService()
stopRTPService()

Figure 6.4.2.1-1: State Diagram

Table 6.4.2.1-1 defines states for the MBMS client. Detailed descriptions are provided in the following subclauses.

Table 6.4.2.1-1: States of MBMS Client

	States and Parameters
	Definition

	IDLE
	In this state the MBMS client does not have a registered MAA and it may not keep the service definition up to date.

For more details see clause 6.4.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an MAA cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered the MAA, it may keep the service definition up to date, and it may be providing file capture services to the MAA(s).

In this state the MBMS client sends callback notifications to the MAA.

For more details see clause 6.4.2.4.

	ACTIVE
	In this state the MBMS client provides all services to of the REGISTERED state and also provides the PACKET service to the MAA.

For more details see clause 6.4.2.5.

	STALLED
	In this state the MBMS client provides all services to of the REGISTERED state, but the packet services is at least temporarily stalled.

For more details see clause 6.4.2.6.

6.4.2.2
MBMS Client Internal parameters

The MBMS client maintains internal parameters as defined in Table 6.4.2.2-1. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls.

Table 6.4.2.2-1: Parameters of MBMS Client for MBMS Packet Delivery Service

	Internal Parameters
	Definition

	_app[]
	The MBMS client maintains a parameter set per registered app

	
	_appId
	A unique ID provided by the MAA and assigned to the app.

	
	serviceType
	specifies the service type the MAA has requested.

	
	_serviceClass[]
	A list of service classes identifying the services the MAA has access to.

	
	_registrationValidityDuration
	A period of time following the MAA de-registration over which the MBMS client continues to capture files for the MAA, see clause.

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a packet Application service over which the MBMS client collects files for the MAA.

	
	
	_serviceClass
	The service class associated with the packet Application service assigned the Service ID.

	
	
	_serviceLanguage
	The language of the service

	
	
	_serviceName[]

 _name

 _lang
	The service name, possibly expressed in different languages.

	
	
	_serviceBroadcastAvailability
	The service broadcast availability for the client. Three different types are defined:

BROADCAST_AVAILABLE – UE is in broadcast coverage

BROADCAST_UNAVAILABLE – UE is outside of broadcast coverage

	
	
	_SDP

_interfaceName

_sdpURI
	The latest SDP associated to the service

The network interface name from which the started MBMS Packet Delivery service can be received.

The URI which is provided to the MAA for initiating the Packet Session.

	
	
	_sessionSchedule[]

 _start

 _stop
	Documents the session schedule for this session. Only sessionSchedule records should be included for which the value of the _stop time is in the future.

6.4.2.3
MBMS Client Operation in IDLE state

The MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the MAA is in place.

When the registerPacketApp()is invoked, then

1)
The MBMS client checks the input parameters for consistency and sets the internal variables:
a)
If the functions of the MBMS client is not accessible, the MBMS client throws a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE result code in the registerPacketResponse() as defined in subclause 6.4.3.3 and abort the following steps and may at least temporarily move in NOT_AVAILABLE state.
b)
If the MBMS client supports serviceType provided in the service _serviceType record. If the MBMS client does not support the service, it will respond with the appropriate error code, see below.

c)
If the service type provided in the serviceType field, in the request is recognized by the MBMS client, an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerPacketResponse() as defined in subclause 6.4.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

d)
c)
If appId is an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerPacketResponse() as defined in subclause 6.4.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.

e)
d)
The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided, the MBMS client considers the MAA to be registered with a service class that is also empty and only allow the MAA to have access to MBMS Packet Delivery Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined).

f)
e)
On receiving a registerPacketApp() following a deregisterPacketApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setPacketServiceClassFilter() method.

g)
f)
If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerPacketApp()interface to send notification of event occurrences to the Application.

2)
generates a response registerPacketResponse() as defined in subclause 6.4.3.3 and changes to REGISTERED state as defined in clause 6.4.2.4:

a)
If the MBMS client functions cannot be activated for any reason, especially if the Packet Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide an error message.

b)
If the MAA did not provide a mandatory parameter the MBMS client functions cannot be activated, the MISSING_PARAMETER registration response code is sent.
c)
If the MBMS client does not support the service type, the NON_SUPPORTED_SERVICE_TYPE registration response code is sent.
d)
If the MBMS client functions can be activated, then:
i)
the RegResponseCode is set to REGISTER_SUCCESS registration response code;
ii)
a message may be generated.
e)
Sends the response with the above parameters
3)
If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching Packet delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER or NON_SUPPORTED_SERVICE_TYPE then MBMS client is in IDLE state.

If the MBMS client receives the getVersion() API call as defined in clause 6.4.3.13, it shall return version 1.0.

6.4.2.4
MBMS Client Operation in REGISTERED state

For each registered MAA and the assigned parameters according to Table 6.4.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the MAA in _app[] using the service type serviceType and service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the MAA has interest.

For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service type and service classes registered by the MAA in serviceType and _serviceClass[] and which is identified as a MBMS Packet Delivery service according to the definition in TS 26.346 [5], clause 8, one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever a new USD is available:

-
For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.

-
If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

-
The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

-
If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.

-
The SDP metadata fragment referenced by either the r9:sessionDescription element referencing an SDP and conforming to TS 26.346 [5] is extracted by the MBMS client. The contained SDP is stored in the _SDP parameter. The _sdpURI parameter is generated at which location the SDP will be made available. The name of the network interface from which the Packet data is available is stored in the _interfaceName parameter
-
The _serviceBroadcastAvailability is continuously updated set it to BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service), if not, it is set to BROADCAST_UNAVAILABLE (if the UE is NOT in broadcast coverage of the service).
-
If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future.
If updates are provided and added to the _service[] parameter, the MBMS client should send a packetServiceListUpdate() callback as defined in clause 6.4.3.6.

When the getPacketServices() method is received as defined in clause 6.4.3.4, the MBMS client sets the parameters as follows:

-
If the _service[] list is empty, the list is empty

-
For each MBMS user service in the service[] list, one service record is generated as follows:

-
The value of the attribute _serviceId is assigned to serviceId.

-
The value of the attribute _serviceClass is assigned to serviceClass.

-
The value of _serviceLanguage is assigned to serviceLanguage.

-
For each record in the _serviceName[] one serviceNameList entry is generated and:
-
the name is set to the value _name,

-
the lang is set to the value _lang.
-
The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.

-
The _sdpURI is assigned to spdURI.

-
If at least one _sessionSchedule[] record is present then

-
The activeServicePeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[].

-
The activeServicePeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.

-
If no _sessionSchedule[] record is present:
-
The activeServicePeriodStartTime is set to 0.

-
The activeServicePeriodStopTime is set to 0.

When the setPacketServiceClassFilter() as defined in clause 6.4.3.5 is received, the MBMS client runs the following steps:

-
It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.

-
The MBMS client dis-associates the service classes previously associated with the MAA that are not included on this list.

-
The MBMS client associates the service classes not previously associated with the MAA that are newly included on this list.

-
The MBMS client issues a rtpServiceListUpdate() notification as defined in clause 6.4.3.6 to the MAA to notify of this effect.

When the startPacketService() method as defined in clause 6.4.3.7 is received with a parameter serviceID, the MBMS client runs the following steps:

-
The MBMS client checks for errors and if necessary, the packetServiceError() notification as defined in clause 6.4.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code PACKET_INVALID_SERVICE. Otherwise it may use the error code PACKET_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.

-
If the service with the serviceId parameter can be started:
-
The MBMS client uses the SDP in the _SDP parameter and the remaining associated metadata to offer a valid session to the packet client by providing a server in the MBMS client. Clause 7 provides different provides service specific interfaces.
-
The URL to the SDP that is exposed to the MAA for Packet consumption is stored in the internal variable _sdpURI. The SDP stored at this URI shall not be changed for a session.
-
The MBMS client sends a serviceStarted() notification as defined in clause 6.4.3.8 with the serviceId being passed along with the notification.
-
The MBMS client moves to ACTIVE state as defined in clause 6.4.2.5.
Whenever there has been a change to the parameters reported to the MAA in response to a getPacketServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the _sdpURI the MBMS client notifies MAA with packetServiceListUpdate() as defined in clause 6.4.3.6.

When the deregisterPacketApp() is received, all internal parameters for the MAA are cleared and the client moves to IDLE state.

6.4.2.5
MBMS Client Operation in ACTIVE state

The MBMS client carries out all actions as in the REGISTERED state.

The MBMS client continuously receives the packet data and makes it available as announced in the SDP. For different options depending on the service type, refer to clause 7. The URL to the SDP that is exposed to the MAA for Packet consumption is stored in the internal variable _sdpURI.
When the MBMS client receives a stopPacketService() request as defined in clause 6.4.3.9 that matches an active service, then

-
the MBMS client checks for errors and if necessary, the packetServiceError() notification as defined in clause 6.4.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code PACKET_INVALID_SERVICE. Otherwise it may use the error code PACKET_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.

-
the MBMS client stops providing the session at its internal server, i.e. at the location announced in the SDP referenced by the _sdpURI.

-
The MBMS client moves to REGISTERED state as defined in clause 6.4.2.4.

When the MBMS client receives a stopPacketService() request as defined in clause 6.4.3.9 that matches an active service, the MBMS client terminates the reception of the data of this delivery session and no longer makes it available at the indicated resources in the SDP. The MBMS client transitions to REGISTERED state
When the MBMS the internal parameter _serviceBroadcastAvailability transitions to BROADCAST_UNAVAILABLE, and no alternative delivery method is defined, or if the service is no longer available for other reasons (e.g. frequency conflict), then the service is stalled. In this case the MBMS client:

-
no longer makes available the resources in the announced locations by the _sdpURI and the references therein,

-
sends a serviceStalled() notification as defined in clause 6.4.3.11, along with one of the following reasons:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startPacketService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

-
Transitions to the STALLED state as defined in clause 6.4.2.6.

6.4.2.6
MBMS Client Operation in STALLED state

The MBMS client carries out all actions as in the REGISTERED state.

In this state the MBMS client continuously monitors if the service can be made available again.

Once the service gets available again, the MBMS client

-
The MBMS client receives the packet streams and makes them available as announced in the SDP. The URL to the SDP that is exposed to the MAA for Packet consumption is stored in the internal variable _sdpURI.

-
The MBMS client sends a serviceStarted() notification as defined in clause 6.4.3.8 with the serviceId being passed along with the notification.

-
The MBMS client moves to ACTIVE state as defined in clause 6.4.2.5.

6.4.3
Methods

6.4.3.1
Overview

Table 6.4-2 provides an overview over the methods defined for the MBMS Packet Delivery Service API. Different types are provided, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow is provided between the MAA (A) and the MBMS Client (C).

Table 6.4-2: Methods defined for MBMS Packet Delivery Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerPacketApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.4.3.2

	deregisterPacketApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.4.3.10

	startPacketService
	State change
	A -> C
	Starts Packet service
	6.4.3.7

	stopPacketService
	State change
	A -> C
	Stop Packet service
	6.4.3.9

	getPacketServices
	Status query
	C <-> A
	Get list of currently active services
	6.4.3.4

	getVersion
	Status query
	C <-> A
	Get the API version
	6.4.3.13

	setPacketServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on MBMS Packet Delivery services in which it is interested
	6.4.3.5

	registerPacketResponse
	Update to parameter list
	C -> A
	The response to the MAA Packet service register API
	6.4.3.3

	serviceStarted
	Notification
	C -> A
	Notification to MAA when the MBMS Packet Delivery service started
	6.4.3.8

	rtpServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for MBMS Packet Delivery services
	6.4.3.6

	rtpServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with the reception download of service
	6.4.3.12

	serviceStalled
	Notification
	C -> A
	Notification to MAA that MBMS Packet Delivery service failed
	6.4.3.11

6.4.3.2
Registration

6.4.3.2.1
Overview

This clause defines registerPacketApp() interface.

An MAA calls the registerPacketApp() interface to register with the MBMS Client to consume MBMS Packet Delivery services. The registerPacketApp() interface has two purposes:

-
It signals to the MBMS Client that an MAA is interested to consume MBMS Packet Delivery Services.

-
It allows the MAA to identify its callback listeners defined in the MBMS Packet Delivery service API for the MBMS Client to provide asynchronous notifications to the MAA on relevant events associated with Packet-over-MBMS.

Note: Since some application development frameworks do not support callback functions, an MAA for these frameworks will not provide callback listeners in the registerPacketApp() interface. Instead, the MAA will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.

Figure 6.4-2 shows the registration process.

[image: image31.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

B

M

S

C

r

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

r

e

g

i

s

t

e

r

P

a

c

k

e

t

R

e

s

p

o

n

s

e

(

)

P

e

r

i

o

d

i

c

S

e

r

v

i

c

e

D

i

s

c

o

v

e

r

y

(

b

a

s

e

d

o

n

c

o

n

f

i

g

u

r

a

t

i

o

n

p

a

r

a

m

e

t

e

r

)

g

e

t

P

a

c

k

e

t

S

e

r

v

i

c

e

s

(

)

d

e

r

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-2 MAA Registration sequence diagram

6.4.3.2.2
Parameters

The parameters for the registerPacketApp() API are:

-
ServiceType serviceType – provides the service type that the MAA wants to access. Different service types for packet streaming are defined in clause 4.3.
-
string appId – provides a unique ID for the MAA registering with the MBMS client, which uses this identity to maintain state information for a particular MAA. The uniqueness of the ID is in the context of any MAA that may possibly register with MBMS client. Uniqueness is typically provided on platform level.

-
any platformSpecificAppContext – a platform-specific context for the registering MAA that enables the MBMS client to get extra information about the MAA that may be need to enable the MAA to have access to MBMS services, e.g., to enable MAA authentication or to enable the MAA to communicate with the MBMS client via platform (e.g., HLOS) services.

-
sequence<string> serviceClassList – provides a comma-separated list of service classes which the MAA is interested to register. Each service class string can be any string or it may be empty.

-
ILTEPacketServiceCallback callBack – provides the MBMS client with the call back functions associated with MBMS Packet Delivery Service APIs for the registering MAA.

Note:
The callback element in the IDL description is optional and only included when the MAA development framework supports programmatic callback interfaces. If callbacks are not supported on a given MAA development framework, the same information content as defined on the callback structures is to be provided to the MAA via the notification method available with that development framework when the respective condition is met.

6.4.3.2.3
Pre-Conditions

The MAA has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The MAA is pre-configured with the set of service classes that allows it to consume the MBMS packet delivery services of the specified type associated with these service classes.

The MAA has access to a packet client that can consume the service type.

The MAA may use this method at launch or after a deregisterPacketApp() has been called.

The MBMS client is in IDLE state.

6.4.3.2.4
Usage of Method for MAA
The MAA uses the method registerPacketApp() to register with the MBMS Client to consume Packet Delivery services of a specific type using the serviceType parameter. Different service types are defined in clause 4.3.
The MAA provides its appId and, if applicable, some platform specific MAA context, platformSpecificAppContext.

The MAA provides the set of service classes which the MAA is interested to register.

6.4.3.2.5
Expected MBMS Client Actions

When this method is invoked, the MBMS registers the MAA, if possible. For more details refer to clause 6.4.2.3.
6.4.3.2.6
Post-Conditions

The MAA expects the registerPacketResponse() as defined in 6.4.3.3.

6.4.3.3
MBMS Packet Delivery Service Registration Response
6.4.3.3.1
Overview

This clause defines registerPacketResponse() call.

As illustrated in Figure 6.4-2, the MBMS client responds to an MAA call to the registerPacketApp() API with a registerPacketResponse() call back providing the result of the registration request.
6.4.3.3.2
Parameters

The parameters for the registerPacketResponse() API are:

-
EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

-
REGISTER_SUCCESS – indicates that the registration has been processed successfully and the MAA can proceed with other API interactions with the MBMS client for MBMS Packet Delivery Services.

-
FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the MBMS Packet Delivery Service API did not find an MBMS client available on the UE on which the MAA is running and no MBMS service will be available to the MAA.

-
MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.
-
NOT_SUPPORTED_SERVICE_TYPE – indicates that the service type requested in serviceType is not supported by the MBMS client.

-
string message – provides an associated text description of the error message. The message may be empty.
6.4.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerPacketApp() API as defined in clause 6.4.3.2.

6.4.3.3.4
Expected MBMS Client Actions

The MBMS client responds accordingly and depending on the response moves to one of the states: IDLE, NOT_AVAILABLE, or REGISTERED. For more details refer to clause 6.4.2.4.
6.4.3.3.5
Usage of Method for MAA
Once the MAA receives a the registerPacketResponse() with the RegResponseCode set to REGISTER_SUCCESS, the MAA can proceed with other API interactions with the MBMS client.

If the MBMS client is temporarily in NOT_AVAILABLE, if the registerPacketResponse() signaled a failure with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, the MAA may periodically recheck if the state of the MBMS client changes by retrying the registerPacketApp() API.

If the MBMS client is responding with MISSING_PARAMETERS, the MAA should fix the parameters and retry the registerPacketApp() API.
If the MBMS client is responding with NON_SUPPORTED_SERVICE_TYPE, the MAA may check if other service types can be used to possible access the services, for example if the MAA supports handling other service types.

6.4.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.
If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.
6.4.3.4
Getting information on available MBMS Packet Delivery Services
6.4.3.4.1
Overview

This clause defines getPacketServices() API call.

The registerPacketApp() interface returns the complete list of available MBMS Packet Delivery Services information. As illustrated in Figure 6.4-2, after a successful registration with the MBMS client, the MAA can use the getPacketServices() API to discover the available MBMS Packet Delivery Services associated with the service classes registered via the registerPacketApp().
6.4.3.4.2
Parameters

The getPacketServices() API returns a list describing the available MBMS Packet Delivery Services, where each service is described by the following output only parameters:

-
sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.

-
string name – offers a title for the user service on the language identified in the lang parameter.

-
string lang – identifies a natural language identifier per RFC 3066 [10].

-
string serviceClass – identifies the service class which is associated with the service.

-
string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.

-
string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC3066 [10].

-
EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.

-
The possible values are:

-
BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

-
BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

-
string sdpUri – provides an HTTP URL where the SDP for the MBMS Packet Delivery Service is hosted and available for media client access.

-
string interfaceName – provides the network interface name from which the started MBMS Packet Delivery Service can be received by the media clients.

-
EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active MBMS Packet Delivery Service start time, when data starts being broadcast over the air.

-
EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active MBMS Packet Delivery Service stop time, when Packet data stops being broadcasted over the air.
6.4.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state.
6.4.3.4.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client returns the Packet service parameters. For more details refer to clause 6.4.2.4.

6.4.3.4.5
Usage of Method for MAA
The MAA should use this call right after the registerPacketResponse() notification as defined in clause 6.4.3.3 is received or after the rtpServiceListUpdate() notification as defined in clause 6.4.3.6 is received.

The MAA should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the MBMS Packet Delivery service.

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the MAA.

The sdpURI should be used by the MAA to initiate playback by initiating a Packet client. The MAA should assume that the Packet Session can be consumed by the Packet client without any further interaction with the MAA. The interfaceName should be used by the Packet client to filter the data stream reception from a specific network interface.

The parameters activeServicePeriodStartTime and activeServicePeriodEndTime provides the MAA the ability to determine the current broadcast state for the service as follows:

-
If the current time is such that activeServicePeriodStartTime ≤ current time ≤ activeServicePeriodEndTime, Packet content is being broadcast for the service at the current time.

-
If the activeServicePeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

-
If the activeServicePeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

6.4.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The MAA uses the serviceId to identify the service in subsequent communication with the MBMS client.
6.4.3.5
Updating the registered service classes

6.4.3.5.1
Overview

This clause defines setPacketServiceClassFilter() call.

While an MAA is actively registered with the MBMS client to consume MBMS Packet Delivery services, the MAA can call the setPacketServiceClassFilter() API to update the list of service classes the MAA wants to be registered with, see figure 6.4.3.5.1-1.

[image: image32.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

r

e

g

i

s

t

e

r

P

a

c

k

e

t

R

e

s

p

o

n

s

e

(

)

s

e

t

P

a

c

k

e

t

S

e

r

v

i

c

e

C

l

a

s

s

F

i

l

e

r

(

)

p

a

c

k

e

t

S

e

r

v

i

c

e

L

i

s

t

U

p

d

a

t

e

(

)

g

e

t

P

a

c

k

e

t

S

e

r

v

i

c

e

s

(

)

d

e

r

e

g

i

s

t

e

r

P

a

c

k

e

t

A

p

p

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4.3.5.1-1: Sequence diagram for updating the registered service classes for an MAA
6.4.3.5.2
Parameters

The parameters for the setPacketServiceClassFilter() method are:

-
sequence<string> serviceClassList – see clause 6.4.3.2.2.

6.4.3.5.3
Pre-Conditions

The MAA is actively registered with the MBMS client to consume MBMS Packet Delivery services, and MBMS client is in REGISTERED state for the MAA.

6.4.3.5.4
Expected MBMS Client Actions

When this method is invoked, the MBMS client shall update the internal parameters and is expected to provide a packetServiceListUpdate() notification as defined in clause 6.4.3.6. For more details refer to clause 6.4.2.4.

6.4.3.5.5
Usage of Method for MAA
The MAA may invoke the setPacketServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The MAA should be aware that the updates are only active once an packetServiceListUpdate() notification is received that confirms the new service class filters.

6.4.3.5.6
Post-Conditions

The MBMS client issues an packetServiceListUpdate() notification as defined in clause 6.4.3.6.

6.4.3.6
Updating the Packet Service List
6.4.3.6.1
Overview

This clause defines packetServiceListUpdate() notification.

This notification is used by the MBMS client to inform the MAA about a successful API call setPacketServiceClassFilter() as shown in Figure 6.4-3 or other updates in Packet service list.

6.4.3.6.2
Parameters

None.

6.4.3.6.3
Pre-Conditions

The MBMS client is in REGISTERED state for the MAA. The MAA has issued a setPacketServiceClassFilter()API call.

6.3.3.6.4
Expected MBMS Client Actions

The MBMS client issues this notification as a response to a successful setPacketServiceClassFilter()API call or to the response to updates of the service list provided in the SDP. For more details see clause 6.4.2.4.

6.4.3.6.5
Usage of Method for MAA
The MAA is informed about the updates of the service class list and may issues a getPacketServices() API call as defined in clause 6.4.3.4 to obtain the updated service list.

6.4.3.6.6
Post-Conditions

The MAA has the latest service list. No state change is involved.

6.4.3.7
Start MBMS Packet Delivery Service
6.4.3.7.1
Overview

This clause defines startPacketService() API.

After the MBMS Packet Delivery Service registration, the MAA can make calls on the startPacketService() API for the MBMS client to start reception of content received over broadcast, as shown in Figure 6.4.3.7.1-1.

[image: image33.wmf]M

e

d

i

a

C

l

i

e

n

t

M

A

A

M

B

M

S

C

l

i

e

n

t

M

B

M

S

U

s

e

r

S

e

r

v

i

c

e

R

e

c

e

p

t

i

o

n

s

t

a

r

t

e

d

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

p

r

o

v

i

d

e

S

D

P

i

n

i

t

i

a

t

e

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

s

t

o

p

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

s

t

o

p

p

a

c

k

e

t

r

e

c

e

p

t

i

o

n

M

B

M

S

U

s

e

r

S

e

r

v

i

c

e

R

e

c

e

p

t

i

o

n

s

t

o

p

p

e

d

s

t

o

p

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4.3.7.1-1: MAA starts MBMS Packet Delivery services
6.4.3.7.2
Parameters

The parameters for the startPacketService() API are:

-
string serviceId – see clause 6.4.3.4.2.

6.4.3.7.3
Pre-Conditions

The MBMS client is in REGISTERED state.

The MAA has the latest service list, for example through the getPacketServices() API call as defined in clause 6.4.3.4.

6.4.3.7.4
Usage of Method for MAA
The MAA can make calls on the startPacketService() API for the MBMS client to start reception of Packet data over the MBMS system.
When the MAA is no longer interested in consuming the Packet Session, it should call the stopPacketService() API call as defined in clause 6.4.3.9. It should also inform the media client to stop packet reception.
6.4.3.7.5
MBMS Client Actions

When this method is invoked, the MBMS client starts the Packet service, if possible. For more details see clause 6.4.2.4.

6.4.3.7.6
Post-Conditions

The MAA expects a serviceStarted() notification as defined in clause 6.4.3.8 or an appropriate error message.

6.4.3.8
Notification that MBMS Packet Delivery Service has started
6.4.3.8.1
Overview

Once the MBMS client has successfully collected all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.
6.4.3.8.2
Parameters

The parameters for the serviceStarted() API are:

-
string serviceId – see definition in clause 6.4.3.2.2.

6.4.3.8.3
Pre-Conditions

The MAA issued a startPacketService() API call.

The MBMS client is in REGISTERED state for the serviceId.

6.4.3.8.4
Expected MBMS Client Actions

The MBMS client issues this notification if the service is started successful. For details see clause 6.4.2.4.

6.4.3.8.5
Usage of Method for MAA
Once the MAA receives the callback on the successful start of the service with the serviceId, the MAA may start the MBMS Packet Delivery service initiating a Packet Session at a Packet client by handing over the sdpURI received during the registration process for this service. The media client iniates the packet forwarding.
6.4.3.8.6
Post-Conditions

The Packet client can communicate with the MBMS client. The MBMS client makes available the MBMS Packet Delivery service based on the SDP referenced in by the sdpURI of the service.

6.4.3.9
Stop MBMS Packet Delivery Service
6.4.3.9.1
Overview

This clause defines stopPacketService() API.

As figure 6.4-4 illustrates, when an MAA that issued a startPacketService() for a service is no longer interested in consuming the Packet session for that service, it will call the stopPacketService() API call.
6.4.3.9.2
Parameters

The parameter for the stopPacketService() API is:

-
string serviceId – see definition in clause 6.4.3.2.2.

6.4.3.9.3
Pre-Conditions

The MBMS client is in ACTIVE state for this MAA.

6.4.3.9.4
Usage of Method for MAA
If an MAA is no longer interested in consuming the Packet service, it should call the stopPacketService() API call. Latest at the same time, the MAA should inform the Packet client about the termination of the service and the Packet client should no longer receive data that are referenced by the sdpURI.

6.4.3.9.5
MBMS Client Actions

The MBMS terminates the reception and no longer forwards the packets to the media client. For more details see clause 6.4.2.5.

6.4.3.9.6
Post-Conditions

The MBMS client is in REGISTERED state. The Packet Session referenced by the sdpURI can no longer be accessed as the referenced data will no longer be provided at the announced location in the SDP.

6.4.3.10
MBMS Packet Delivery Service De-registration
6.4.3.10.1
Overview

This clause defines deregisterPacketApp() API.

An MAA registers service classes with the MBMS client to request the start of streaming for MBMS Packet Delivery Services. The MAA that registered with the MBMS client via the registerPacketApp() API should invoke the deregisterPacketApp() before exiting. An implicit stopPacketService() call is performed for all MBMS Packet Delivery Services that have been started since the last registerPacketApp() call. If there are no MAA interested in an MBMS Packet Delivery Service, the MBMS client stops capturing data for this Service.

The MBMS client stops monitoring for Service Announcement updates when there are no MAAs registered. There are no parameters for the registerPacketApp() API.

6.4.3.10.2
Parameters

None.

6.4.3.10.3
Pre-Conditions

The MBMS client is in REGISTERED state for this MAA.

6.4.3.10.4
Usage of Method for MAA
MAA registered with the MBMS client via the registerPacketApp() API should invoke the deregisterPacketApp() before exiting.

6.4.3.10.5
MBMS Client Actions

The MBMS client no longer sends notifications and clears all context for the MAA.

6.4.3.10.6
Post-Conditions

The MAA is no longer registered with the MBMS client.

The MBMS client is in IDLE mode.

6.4.3.11
Notification that MBMS Packet Delivery Service has stalled
6.4.3.11.1
Overview

This clause the serviceStalled() notification.

The MBMS client enables consumption of a MBMS Packet Delivery service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. Other circumstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client will signal the MAA that the service is temporarily not available for playback by invoking the serviceStalled() API.

When broadcast reception of the service is re-established, the MBMS client will signal the MAA that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in Figure 6.4-5.

[image: image34.wmf]M

e

d

i

a

C

l

i

e

n

t

M

A

A

M

B

M

S

C

l

i

e

n

t

M

B

M

S

U

s

e

r

S

e

r

v

i

c

e

R

e

c

e

p

t

i

o

n

a

c

t

i

v

a

t

e

d

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

p

r

o

v

i

d

e

S

D

P

i

n

i

t

i

a

t

e

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

p

a

c

k

e

t

f

o

r

w

a

r

d

i

n

g

P

l

a

y

o

u

t

M

o

v

e

o

u

t

o

f

b

r

o

a

d

c

a

s

t

c

o

v

e

r

a

g

e

R

e

c

e

p

t

i

o

n

s

t

a

l

l

e

d

s

e

r

v

i

c

e

S

t

a

l

l

e

d

(

)

m

a

y

i

n

f

o

r

m

o

n

p

a

c

k

e

t

r

e

c

e

p

t

i

o

n

i

n

t

e

r

r

u

p

t

i

o

n

S

t

a

l

l

e

d

M

o

v

e

i

n

t

o

b

r

o

a

d

c

a

s

t

c

o

v

e

r

a

g

e

R

e

c

e

p

t

i

o

n

r

e

s

t

a

r

t

e

d

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)

m

a

y

i

n

f

o

r

m

o

n

p

a

c

k

e

t

r

e

c

e

p

t

i

o

n

r

e

a

c

t

i

v

a

t

i

o

n

P

l

a

y

o

u

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-5: Signaling that a MBMS Packet Delivery service stalled

6.4.3.11.2
Parameters

The parameter for the serviceStalled() API are:

-
string serviceId – identifies the MBMS Packet Delivery Service for which broadcast receptions have temporarily stalled.

-
StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

-
RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startPacketService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

-
END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.

-
OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service is not available via broadcast.

-
STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

6.4.3.11.3
Pre-Conditions

The MBMS client is in ACTIVE mode.

6.4.3.11.4
Expected MBMS Client Actions

The MBMS client provides a serviceStalled() notification in case it can no longer provide the referenced resources in the Packet Session provided with sdpURI. For more details refer to clause 6.4.2.5.

6.4.3.11.5
Usage of Method for MAA
The MAA should stop the Packet client playback on reception of the serviceStalled() notification. However, unless the MAA is no longer interested in the content, it should not issue a stopPacketService() call in order to allow the MBMS client from trying to collect Packet content once the download problem is resolved. The MAA may inform the user of the temporary service interruption.

If the media client maintains in STALLED state for too long, the MAA should stop the service by issuing a stopPacketService().

6.4.3.11.6
Post-Conditions

The MBMS client is in STALLED mode.

6.4.3.12
Notification of MBMS Packet Delivery Service errors
6.4.3.12.1
Overview

This clause defines the packetServiceError() notification.

As illustrated in Figure 6.4-5, the startPacketService() request from an MAA may not be served, so the MBMS client will send a failure indication via the packetServiceError() to signal the error code for the result of processing the MAA's startPacketService().

[image: image35.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

s

t

a

r

t

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

s

t

a

r

t

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

v

a

l

i

d

a

t

i

o

n

e

r

r

o

r

d

e

t

e

c

t

e

d

p

a

c

k

e

t

S

e

r

v

i

c

e

E

r

r

o

r

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-5: Signaling errors with the startPacketService() request from the Packet-over-MBMS

Figure 6.4-6 also illustrates that the packetServiceError() is used to signal the error code for the result of processing the MAA's a stopPacketService() request.

[image: image36.wmf]M

A

A

M

B

M

S

C

l

i

e

n

t

s

t

o

p

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

s

t

o

p

P

a

c

k

e

t

S

e

r

v

i

c

e

(

)

v

a

l

i

d

a

t

i

o

n

e

r

r

o

r

d

e

t

e

c

t

e

d

p

a

c

k

e

t

S

e

r

v

i

c

e

E

r

r

o

r

(

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

4

Figure 6.4-6: Signaling errors with the stopPacketService() request from the Packet-over-MBMS

6.4.3.12.2
Parameters

The parameters for the rtpServiceError() API are:

-
string serviceId – identifies the MBMS Packet Delivery Service on which the MBMS client failed.

-
PacketErrorCode errorCode – identifies the error code for the reason causing the startPacketService() or the stopPacketService() request for the serviceId to fail. The available error codes are:

-
Packet_INVALID_SERVICE – signals that serviceID defined on the startPacketService() or the stopPacketService() request is not currently defined or it is not associated with the service classes with the MAA is registered.

-
Packet_UNKNOWN_ERROR – signals an error condition not explicitly identified.

-
string errorMsg – may provide additional textual description of the error condition.

6.4.3.12.3
Pre-Conditions

The MBMS client has received a the startPacketService() or a stopPacketService() request.

6.4.3.12.4
Expected MBMS Client Actions

The MBMS client will send a failure indication via the packetServiceError() to signal the error code for the result of processing the MAA. For more details refer to clauses 6.4.2.4 and 6.4.2.5.
6.4.3.12.5
Usage of Method for MAA
If the MAA receives this notification, it should revalidate the capture call. The MAA should also update the service list by issuing a getPacketServices() as defined in clause 6.4.3.4.

6.4.3.12.6
Post-Conditions

No state change is applied.

6.4.3.13
Checking the version for MBMS Packet Delivery Service interface
6.4.3.13.1
Overview

This clause defines the getVersion() request function.

6.4.3.13.2
Parameters

The parameters for the getVersion()API call are:

-
string version – identifies the version of the MBMS clients API implementation.

6.4.3.13.3
Pre-Conditions

The MBMS client may be in any state.

6.4.3.13.4
Usage of Method for MAA
In order for the MAA to know the version of the MBMS Packet Delivery Service interface, the getVersion() API may be used. If the version number is not supported by the MAA, it should deregister and not use the API.

6.4.3.13.5
MBMS Client Actions

The getVersion() API returns the version of the implemented APIs of the MBMS client.

6.4.3.13.6
Post-Conditions

No state changes apply.
7
MBMS Client to Application Interfaces for Data

7.1
General
The MBMS client when providing a DASH Streaming Application User Services should implement the generic HTTP interface as defined in clause 7.3.

In this case, the MBMS client shall implement at least on of the following:

-
the functions of a DASH server as defined in clause 7.4.2, or

-
the functions of a DASH-aware Network Element (DANE) for SAND4M mode as defined inclause 7.4.3. .
The MBMS client may act as a proxy and may proxy all HTTP requests from the DASH client or may only proxy selected requests, such as MPD updates. The details of operation are implementation specific.

The requirements for the DASH client are documented in clause 7.4.4.

For additional usage guidelines refer to TS 26.346 [5], Annex K and in this specification refer to Annex E.

7.2
File Copy Interface

The MBMS client may copy files delivered by MBMS User Services to a local file storage that is controlled by the MBMS aware application. The application is responsible for the management of the storage.

7.3
HTTP Interface

The MBMS client may provide an HTTP server such that the MAA can access the files delivered over the MBMS User services by using regular HTTP Methods. The MBMS client may act as an HTTP cache for the resources delivered through the MBMS system.

The MBMS client offering delivered files and Media Segments through HTTP Interface should comply with a server as specified in RFC 2616 [15]. MBMS Clients providing resources through an HTTP interface should implement relevant HTTP server functionalities to support HTTP GET methods as required by the APIs.
MAAs communicating with the MBMS client over HTTP should comply with a client as specified in RFC 2616 [15]. MAAs should use the HTTP GET method or the HTTP partial GET method, as specified in RFC 2616 [15] to access files offered at HTTP-URLs.
MAAs communicating with the MBMS client over HTTP should support partial-file-accept requests and partial file responses as defined in TS 26.346 [5], clause 7.9.2.1.

Without excluding other response options, as a response to a partial-file-accept request using a regular HTTP GET request an MAA may typically receive one of the following responses:

1)
200 OK with Content-Type set to the Media Type of the requested object

2)
200 OK with the Content-Type set to application/3gpp-partial and the message format according to the definition in clause 7.9.2.2 of TS 26.346 [5].

3)
416 Requested Range Not Satisfiable with the additional information according to the definition in clause 7.9.2.2 of TS 26.346 [5].

4)
404 Not Found.
Case 1 is the regular response.

Guidelines for handling request responses according to case 4 from above are provided in clause A.7 of TS 26.247 [6].

Guidelines for handling request responses 2 and 3 from above are provided in clause A.9 of TS 26.247 [6].

7.4
DASH-Specific Interfaces

7.4.1
General
The MBMS client when providing a DASH Streaming Application User Services should implement the generic HTTP interface as defined in clause 7.3.

In this case, the MBMS client shall implement at least one of the following:

-
the functions of a DASH server as defined in clause 7.4.2, or

-
the functions of a DASH-aware Network Element (DANE) for SAND4M mode as defined inclause 7.4.3. .
The MBMS client may act as a proxy and may proxy all HTTP requests from the DASH client or may only proxy selected requests, such as MPD updates. The details of operation are implementation specific.

The requirements for the DASH client are documented in clause 7.4.4.

For additional usage guidelines refer to TS 26.346 [5], Annex K and in this specification refer to Annex E.
7.4.2
MBMS Client as DASH Server

7.4.2.1
General

If the MBMS client supports the DASH Server functionalities, the MBMS client shall support sufficient functionalities to provide a valid DASH Media Presentation as defined in TS26.247[7].

For this purpose, the MBMS client may rewrite the MPD to provide a valid service based on the data received in the DASH-over-MBMS service. Typical operations that the MBMS client may implement:

-
Ensure that the URLs of the DASH Resources in the MPD resolve to the location at which the MBMS client provides the resources delivered through the MBMS User Service,
-
Ensure that the timeshift buffer expressed in the MPD does not refer to non-available resources,
-
Ensure that the availability times of the DASH resources on the MBMS clients DASH Server are correctly documented in the MPD,
-
Ensure that MPD Updates are done sufficiently often, for example by setting the @minimumUpdatePeriod to 0 in order for the DASH client to revalidate the MPD prior to every Segment request.

Some specific functions are provided in the remainder of clause 7.4.2.

7.4.2.2
Time Synchronization

The MBMS client, if providing the content as a DASH server, should offer the Time Synchronization as defined in clause 11.5.2 of TS 26.247 [7].

7.4.2.3
Robustness

The MBMS client if providing the content as a DASH server may implement the Robustness Tools on the server as defined in clause 11.6 of TS 26.247 [7].
7.4.3
MBMS Client as DASH-Aware Network Element (DANE)
If the MBMS client acts as a DANE, it shall implement the DANE SAND4M functionalities as required in clause 13.10.2 of TS 26.247 [7].

If the MBMS client identifies that the DASH client ignores the SAND messages, it should use other means to provide the functionality for redirecting the client, e.g. the functions defined in clause 7.4.2.

7.4.4
DASH Client of MBMS-Aware Application
The DASH client of the MBMS aware application shall support general DASH client functionalities as required in TS 26.247 [7].

The DASH client of the MBMS aware application should support the Time Synchronization as defined in clause 11.5.3 of TS 26.247 [7].
The DASH client of the MBMS aware application should support the Robustness Tools on the client as defined in clause 11.5.3 of TS 26.247 [7].
The DASH client of the MBMS-aware application should support the the SAND4M functionalities in clause 13.10.3 of TS 26.247 [7].
7.5
RTP Streaming Delivery Method Interface

The MBMS Client should provide an interface such that the data delivered using the MBMS Streaming delivery method is provided as a packet stream that complies with a media format that can be decoded by the media receiver that is part of the MBMS client by offering a conforming SDP in the sdpURI. As a recommendation:

-
The MBMS Client implements the functions of the "Hypothetical FEC Decoder" as defined in clause 8.2.2.11 of TS 26.346 [5],

-
The MBMS Client provides the MAA with:

-
A SDP that describes the packet stream.
-
The network interface from which the data stream can be received. For that purpose, the MBMS Client may forward the packets locally, e.g. through a virtual network interface, or through the network to the client. In such an example, the MBMS client is expected to modify the SDP provided over in the User Service Description accordingly.

7.6
Packet Data Interface
The MBMS Client should provide an interface such that the data delivered using the MBMS Transparent delivery method can provide a packet stream that complies with the SDP provided in the value of the sdpURI.
The MBMS Client provides the application with:

-
A SDP that describes the data stream.

 - The network interface from which the data stream can be received. For that purpose, the MBMS Client may forward the packets locally, e.g. through a virtual network interface, or through the network to the client. In such example, the MBMS client is expected to modify the SDP accordingly to provide a session that conforms to the offered SDP.
7.7
HLS Specific interface

If the MBMS client supports the HLS Server functionalities, the MBMS client shall support sufficient functionalities to provide a valid HLS Media Presentation.

For this purpose, the MBMS client may rewrite the Master Playlist and the Media Playlist to provide a valid service based on the data received. An Example of operations that the MBMS client may implement is to ensure that the URLs of the HLS Resources in the Media Playlist or in the Master Playlist resolve to the location at which the MBMS client provides the resources delivered through the MBMS User Service. If the MBMS client has not received for any reason the resources, the MBMS Client may act as proxy to provide the resources or may perform an HTTP redirection (see Unicast Fall back in TS.26.346 Annex M [5]).

8
MBMS URLs: Definition and URL Handling

8.1
General

This clause defines different MBMS URLs and the associated URL handling.

The single resource MBMS URL form "mbms://" is defined in clause 8.2.

Note:
The specification does not define a URL for all Application User Services defined in clause 4.3, but only a subset.
8.2
Single Resource MBMS URL handling

8.2.1
Introduction

An MBMS URL identifies a resource that is made available over MBMS Download Delivery Service using the File Download Application User Service as defined in clause 4.2.3. It is therefore similar in meaning to other URL forms that deliver 'file' resources, such as "http:", "ftp:" and "file:".

MBMS URLs are processed by a hypothetical MBMS URL Handler as shown in Figure 8.2.1-1.
The position of the MBMS URL Handler, and its interfaces are illustrated by the logical model shown in Figure 8.2.1-1. In that figure, URL usage is shown as an alternative to an application written to use MBMS services using the MBMS-API (left side of the diagram, described elsewhere in the present document).

The MBMS URL handler is positioned within the logical model of a system that has library support for fetching resources (files) referred to by URLs. In the model an (unchanged) existing, or new, application supports URLs that address 'file' resources. That application uses a generic URL resolution library ('Generic URL Resolution' in the diagram) to return the identified resource when the application needs the resource identified by a URL.

The MBMS URL handler may use MBMS-API functions to communicate with the MBMS client.

The logical model is that the generic handler supports returning the resource given a URL of any type. That generic handler is supported by a set of protocol-specific handlers; by inspecting the scheme part of the URL (e.g. "http:") the generic handler in turn requests the resource of the appropriate protocol-specific handler. The request and response interfaces to the generic handler, and the protocol-specific modules are defined by the library (e.g. they may be object-oriented, function-based, or message-based). The present document defines the behaviour of the MBMS URL handler; however, its request interface is defined by the library and environment which it fits into. The MBMS protocol-specific handler decomposes the URL form, and, using the MBMS-APIs, initiates the acquisition of the MBMS User service by the MBMS client that permits access to the identified resource, and acquisition of the indicated resource from that service, and returns that resource. The behaviour of the MBMS URL handler is specified in this clause.

Note that this logical model may be optimized and collapsed as desired in real deployments (e.g. many web browsers do not use a general URL library but instead support key protocols with built-in code, and the MBMS function may also act as an MBMS URL handler).

[image: image37.emf]

FTP URL
handler

MBMS
Application (Existing) Application

(Existing) Generic URL
Resolution handler

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Figure 8.2.1-1: MBMS URL Handler

8.2.2
URL structure, definition and behaviour

The Single Resource MBMS URL is composed of a prefix, mid-part, and suffix.

The prefix is a URL that is the serviceId of the service on which the resource is available. The suffix contains a URI that is the identifier of the desired resource. The mid-part currently has no defined content.

When a content provider wishes to use MBMS URL forms to identify resources made available by them over MBMS, they shall use the prefix part of an MBMS URL as serviceId for the service. The creator of the serviceId URI shall be authorized by the 'authority' (see below) identified in that serviceId.

The prefix starts with the scheme-name "mbms://" followed by a double-slash "//", followed by an authority and an optional path, as defined for "http:" by RFC 7230 [14] with the restriction that the prefix shall not contain the character "&".

Note:
The "//" means that the MBMS scheme is hierarchical and that relative URLs are permitted, and that they are effectively composed against the suffix part. Relative URL composition is not in the scope of the present document; a relative URL is, of course, composed against its base, and if the final result is an MBMS URL as defined here, then that URL is presented to the handler.

The mid-part consists of zero or more &name=value pairs. There are no currently defined mid-part pairs; they shall not be present in URLs and shall be ignored if present.

The suffix is optional and consists of the string "&label=" followed by the URI which contains identifier of the desired resource (and optionally, as for all URIs, a query or fragment part). The suffix is terminated by the end of the URL.

(Note that the use of "&" used here is not part of a query or fragment, as there is no preceding "?" or "#". "&" is in the main body of the URL where it is a legal character.)

The formal ABNF, following the syntax of RFC 7230 (HTTP URLs) [14] and RFC 3986 (URLs) [11]:

mbms-URI = "mbms:" "//" authority path-abempty

*("&" mid-label "=" mid-value)

["&label=" resourceURI]
authority = <authority, see [RFC3986], Section 3.2>
path-abempty = <path-abempty, see [RFC3986], Section 3.3>
mid-label = ALPHA *(ALPHA / DIGIT)
mid-value = 1*uchar
 = unreserved / pct-encoded / ";" / "?" / ":" /

"@" / "=" / "+" / "$" / "," / "/"
unreserved = <unreserved, see [RFC3986], Section 2.3>
pct-encoded = <pct-encoded, see [RFC3986], Section 2.1>
resourceURI = <URI, see [RFC3986], Section 3>

The handler performs decomposition of the URI into the prefix, mid-part, and suffix.

If the URI passed to the handler lacks the path and suffix part (there is no "&label="), then the handler retrieves the DNS URI record as defined in section 8.2.2A.

If this operation succeeds in building a new URI that has a suffix, the handler returns a Redirect to this new URI; otherwise it returns an error.

Otherwise, the serviceId is set to the prefix (the substring of the URI before the first "&") and the resourceLabel is set to portion of the resourceURI preceding the fragment part, if any. The MBMS API is called to return the resource identified by resourceLabel from the service identified by serviceId.

The MBMS-API and the MBMS Client are responsible for:

1)
finding the service with the given serviceId among the available services; the serviceClass is empty. This is done by

a)
registering;
b)
asking for the available services;
c)
issuing a start capture.
2)
checking the availability time interval of the resource;

a)
provide the schedule as defined in.
3)
finding and returning to the MBMS URL Handler the resource on the given service;

a)
notify the MBMS URL handler by the notification if successful or notification if an error occurs.

The MBMS URL handler is responsible for:

1)
keeping the service open for some "keep-alive" time in the expectation of further calls for resources from the same service, by staying registered;

2)
caching resources received on the service;

3)
sharing that cache with other protocol handlers;

4)
returning the resource, or returning errors or redirects, translating the return value(s) from the MBMS APIs as appropriate.
8.2.2A
DNS URL RR Resolution

An MBMS URL that lacks the label suffix shall be resolved using an URI RR DNS query as defined in RFC 7553 [15]. The service name shall be “mbms” and the protocol shall be UDP. The DNS query shall be made to the FQDN of the MBMS URL using a query type “URI”. The query name shall be the FQDN prepended with “_mbms._udp”.

If found, the DNS response shall contain the new URL that shall match the service ID of the service that carries the resource with the requested URL. Otherwise, the DNS response shall have no DNS URI record. For mbms URLs that do not have a path part (other than "/"), the requested resource’s URL will correspond to the label part of the URL in the DNS response.
8.2.3
Examples

The following is an example of an MBMS URL that contains a label:
mbms://service1000.mbms.operator.com&label=http://www.example.com/videos/sample.mp4
-
the serviceId is mbms://service1000.mbms.operator.com;
-
the label of the desired resource is http://www.example.com/videos/sample.mp4.
An example of the same resource that does not have a label and a path part is as follows:
 mbms://www.example.com/

This MBMS URL is then resolved by using the DNS URI RR query.

In this example, “example.com” has a business arrangement with “operator.com” for hosting the service. An example DNS URI RR record may look as follows:

$ORIGIN www.example.com.
_mbms._udp IN URI 3600 1 "mbms://service1000.mbms.operator.com/videos/service.mpd&label=http://www.example.com/videos/sample.mp4"
After resolving the URL using a DNS URI RR query, the client is re-directed to the URL returned:mbms://service100.mbms.operator.com&label=http://www.example.com/videos/sample.mp4
It can then establish both the service name, and the label of the initial resource.
Annex A (informative):
Documentation Guidelines for APIs

A.1
Introduction Motivation
As the present document is primarily targeted at developers that use the MBMS function a few principle agreements were made.

1)
The specification should set good practices for future API definition in 3GPP

2)
The specification requires clear definitions of interface, function/element, messages, API, resource, etc.

3)
The interfaces should be documented in the following manner:

a)
Consistent graphical presentation

b)
IDL for interface and message description

c)
Doxygen for semantical description

d)
Example Use Cases and Message Flows

4)
The semantical description and messages flows include messages sent and received on each function as well as pre/post/error conditions.
5)
As IDL enables easy conversion to different languages, no program-language specific APIs (e.g. JSON, Java, or C) are necessary, but may in general not be prohibited. If IDL can provide a non-ambiguous translation to JSON, Java and C, then the documentation may be informative, otherwise it may be added to the normative specification as a reference able option.

Based on these considerations, some suggested documentation details are provided

A.2
Documentation Details

A.2.0
General

A graphical presentation of the interface is encouraged. Figure A.1 shows some examples using an informal notation. The existence of an interface can be implied even without using an explicit symbol for it. If a relationship symbol joins an element/function symbol and the relationship type involves an interaction—as opposed to, say, "is a subclass of," that implies that the interaction takes place through the element's interface.

[image: image38.png]Primary

Server
(@
i i Backup
Client 1 Client 2 Backup
(b)
KEY (informal notation) Element; 7 -
¢ J (Type Unspecified) ~ ﬂype'““‘u"“m“ ified)

QO intertace

Figure A.1: Example Figure for Interface documentation

A.2.1
IDL for Interface Specification

Interface Definition Language (IDL) [9] is a standard language for defining function and method interfaces. It supports common primitive data types. Some of the base data types supported by IDL are int, Boolean, byte, char, double, float, long, short, and void *. IDL also supports signed and unsigned qualifiers, enumerations and more.

IDL's data types and definitions are both language-neutral and platform-neutral. This enables the definition of a common interface that may be implemented by different modules or components irrespective of the language and platform. An IDL interface provides a description of the functionality that will be provided by an object. It provides all of the information needed to develop clients that use the interface.

While IDL is not a programming language, there are tools that map IDL to just about every major programming language.

Below is a sample IDL definition of "order"
interface order {
 float calculate_tax ([in] float taxable_amount);
 float calculate_total([in] item_list items);
 bool place_order([in,out] item_list items);
}

A.2.2
IDL as Data Format

IDL is also proposed as the data format for message exchange.
A.2.3
Doxygen for API Semantics

Doxygen is a cross-platform documentation system for C++, Java, C, and IDL, etc. It provides a mechanism to document code syntax and semantics. It allows tagging comments in code that will be used to generate nicely formatted output. Available tags enables capturing methods, parameters, pre and post conditions for calling methods as well as highlighting error condition and exceptions.

Doxygen can be used to generate on-line class browser (in HTML) and/or an off-line reference manual from a set of source files. Below is a sample of Doxygen comments for a function definition.

/** @name binary_search

 * @brief Search a array for a value using binary search.
 * @param[in] a Array of floats.
 * @param[in] n Number of elements of @a a to search.
 * @param[in] v Value to search for.
 * @return An index into array @a a or -1.
 *
 * @pre 0 <= n <= Size of the array @a a.
 * @pre For all i,j with 0 <= i < j < @a n, @a a[i] <= @a a[j].
 * @post (0 <= result < @a n and @a a[result] == @a v)
 * or (result == -1 and there is no i, 0 <= i < @a n, s.t. @a a[i] == @a v).
 */
int binary_search(const float* a, int n, float v)

A.2.4
Use Cases and Message Flows

Message flows (sequence diagrams) are an interaction diagram that shows the objects/modules participating in a particular interaction and the messages they exchange arranged in a time sequence.

[image: image39.emf]

Figure A.2: Example Figure for Sequence Diagram

Annex B (informative): Interface Definition Language for MBMS-APIs

B.1
General

This Annex collects the Interface Definition Language (IDL) description for MBMS-APIs.

B.2
IDL for File Delivery Application Service API

 #include "EmbmsCommonTypes.idl"
module FileDeliveryService

{

 //Forward Declaration
 interface ILTEFileDeliveryServiceCallback;

 /**
 * @name DownloadState
 * @brief List of the file download state
 */
 enum DownloadState

 {

 FD_IN_PROGRESS /**< File download is in progress */
 };

 /**
 * @name FdErrorCode
 * @brief List of the errors for File Delivery service
 */
 enum FdErrorCode

 {

 FD_INVALID_SERVICE, /**< Invalid service ID */
 FD_DUPLICATE_FILE_URI, /**< There is another pending capture request for the specified file URI. */
 FD_AMBIGUOUS_FILE_URI, /**< The specified file URI cannot identify a pending capture request. */

FD_STOP_FILE_URI_NOT_FOUND, /**< The file URI specified on a stopFdCapture does not match an outstanding startFdCapture() request. */
 FD_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name cacheControl
 * @brief List of the errors for File Delivery service
 */
 enum cacheControlMode

 {

 FD_NO_CACHE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_NO_CACHE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_MAX_STALE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_MAX_STALE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_EXPIRES /**< The application uses Cache directives to manage how long to retain files.
 When FD_EXPIRES is selected, indicates the file has expected expiry time.
 In that case cacheControlExpires value is the expiry time*/
 };

 /**
 * @name RegisterFdResponseNotification
 * @brief Fd app registration information
 */
 struct RegisterFdResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registration value as defined in RegResponseCode */
 string message; /**< Message described the result */
 unsigned long acceptedFdRegistrationValidityDuration; /**< Accepted registeration validity duration */
 };

 /**
 * @name FileInfo
 * @brief Downloaded file information
 */
 struct FileInfo

 {

 string fileUri; /**< File URI */
 string fileLocation; /**< The physical location of the file or HTTP URL where the file can be accessed */
 string contentType; /**< MIME type as described in FDT of the file */
 unsigned long availabilityDeadline; /**< The maximum time that embms client guarantees to keep the file in its storage */
 };

 /**
 * @name RegisterFdAppData
 * @brief File delivery app registration information
 */
 struct RegisterFdAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides a
 platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 StorageLocation locationPath; /**< Local storage location on the device where collected files are copied */

 unsigned long registrationValidityDuration; /**< The period of time in seconds that the eMBMS client honors
 the app registration and file capture requests
 after the app deregisters and exits.
 This enables the app to let the eMBMS client capture
 files in the background when the application is not currently registered.
 Default value of this option is 0 which means middleware clears
 any outstanding startFdCapture requests.* /
 };
 /**
 * @name StartFdCaptureData
 * @brief File delivery start capture information. It is used in StartFdCapture API
 */
 struct StartFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI for the file(s) to be captured.
 If empty, this implies capture all files. If an absolute URL,
 this implies only the capture of that particular file.
 If a Base URL, this implies the capture of all files that have that Base URL. */
 boolean disableFileCopy; /**< Disables copying of files to register locationPath */
 boolean captureOnce; /**< Capture the file only once and the bearer would be deactivated after file gets downloaded*/
 };

 /**
 * @name StopFdCaptureData
 * @brief File delivery stop capture information. It is used in StopFdCapture API
 */
 struct StopFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI. If empty, then it stops capture on all files.
 The path of the URI should contain the complete folder or file name. */
 };

 /**
 * @name FileList
 * @brief List of file URIs
 */
 struct FileList

 {

 sequence<string> fileUriList; /**< List of file URIs */
 };

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name FdServiceInfo
 * @brief File delivery service information
 */
 struct FdServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service broadcast availability */
 sequence<string> fileUriList; /**< List of file URIs */
 EmbmsCommonTypes::Date activeDownloadPeriodStartTime; /**< The current/next active file download service start time, when files start being broadcast over the air */
 EmbmsCommonTypes::Date activeDownloadPeriodEndTime; /**< The current/next active file download service end time, when files stop being broadcast over the air */
 };

 /**
 * @name FdServices
 * @brief List of FD service info objects
 */
 typedef sequence<FdServiceInfo> FdServices;

 /**
 * @name FdServiceClassList
 * @brief ServiceClass information that the app is interested in. It is for the SetFdServiceClassFilter API.
 */
 typedef sequence<string> FdServiceClassList;

 /**
 * @name ActiveFdService
 * @brief Information about active file capture
 */
 struct ActiveFdService

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 sequence< string > fileUri; /**< File URI list */
 };

 /**
 * @name ActiveFdServiceList
 * @brief List of File delivery service ID from FdServiceInfo
 * @see getFdActiveServices()
 */
 typedef sequence< ActiveFdService > ActiveFdServiceList;

 /**
 * @name StorageLocation
 * @brief Local storage location on the device where collected files are copied.
 * It is used in the SetStorageLocation and registerFdApp API.
 */
 typedef string StorageLocation;

 /**
 * @name FileAvailableNotification
 * @brief Information about the downloaded file.
 */
 struct FileAvailableNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 FileInfo downloadedFileInfo; /**< Downloaded file information */
 };

 /**
 * @name FdServiceErrorNotification
 * @brief File delivery service error information. It is used by the FdServiceErrorNotification API.
 */
 struct FdServiceErrorNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 FdErrorCode errorCode; /**< File delivery service error ID */
 string errorMsg; /**< error message */
 };

 /**
 * @name FileDownloadFailureNotification
 * @brief File download failure information.
 * @see FileDownloadFailureNotification()
 */
 struct FileDownloadFailureNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 };

 /**
 * @name StorageError
 * @brief Insufficient storage notification information
 * @see StorageError()
 */
 struct StorageErrorNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 StorageLocation storagePath; /**< Storage path that does not have sufficient storage to complete the file download */
 unsigned long storageNeeded; /**< Storage needed to complete the file download */
 };

 /**
 * @name InaccessibleLocationNotification
 * @brief Inaccessible storage notification information
 * @see InaccessibleLocation()
 */
 struct InaccessibleLocationNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string message; /**< Message with additional information */
 StorageLocation locationPath; /**< The path that is not accessible */
 };

 /**
 * @name FdDownloadStateInfo
 * @brief Information returned by getFdDownloadStateList().
 * @see getFdDownloadStateList()
 */
 struct FdDownloadStateInfo

 {

 string fileUri; /**< File URI */
 DownloadState state; /**< State of files from DownloadState. */
 };

 /**
 * @name FileDownloadStateInfoList
 * @brief List of FdDownloadStateInfo
 * @see getFdDownloadStateList()
 */
 typedef sequence<FdDownloadStateInfo> FileDownloadStateInfoList;

 /**
 * @name FileDownloadStateUpdateNotification
 * @brief File download state update notification information
 * @see fileDownloadStateUpdate()
 */
 struct FileDownloadStateUpdateNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 };

 /**
 * @name GetFdDownloadStateListData
 * @brief Information needed to call getFdDownloadStateList(). The returned list of getFdDownloadStateList() is filtered based on the options set in GetFdDownloadStateList.
 * @see getFdDownloadStateList()
 */
 struct GetFdDownloadStateListData

 {

 string serviceId; /**< Active file delivery service ID from FdServiceInfo. */
 };

 /**
 * @name AvailableFileList
 * @brief List of FileInfo
 * @see getFdAvailableFileList()
 */
 typedef sequence < FileInfo > AvailableFileList;

 /**
 * @name FileListAvailableNotification
 * @brief File List Available notification information
 * @see fileListAvailable()
 */
 struct FileListAvailableNotification

 {

 string serviceId; /**<File delivery service ID from FdServiceInfo. */
 };

 /**
 * @name addSAResponseNotification
 * @brief Information about the service announcement addition.
 */
 struct addSAResponseNotification
 {

 AddSAResponseCode responseCode; /**< Response code for the addSA */
 string message; /**< error message */
 };

 interface ILTEFileDeliveryService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current File delivery service interface implementation
 @return Interface Version
 **/
 string getVersion();

 /**
 @name registerFdApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo Information required for application registration
 @param[in] cb Callback listener
 @see RegisterFdAppData
 @see registerFdResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerFdApp(in RegisterFdAppData regInfo, in ILTEFileDeliveryServiceCallback callBack);

 /**
 @name deregisterFdApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls registerFdApp
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterFdApp();

 /**
 @name startFdCapture
 @brief Start download of files over file delivery service over broadcast
 @param StartFdCapture Struct includes parameters for StartFdCapture request
 @pre Application is registered for File Delivery service
 @see fileAvailable()
 @see StartFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startFdCapture(in StartFdCaptureData info);

 /**
 @name stopFdCapture
 @brief Stop download of files for the file Delivery service over broadcast
 @param stopFdCapture Struct includes parameters for stopFdCapture
 @pre Application is registered for File Delivery service
 @see StopFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopFdCapture(in StopFdCaptureData info);

 /**
 @name getFdActiveServices
 @brief Get list of currently active services
 @param[out] ActiveFdServiceList The list of services the app has
 @pre Application is registered for File delivery service
 @see ActiveFdServiceList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdActiveServices(out ActiveFdServiceList services);

 /**
 @name getFdAvailableFileList
 @brief Retrieves the list of files previously captured for the
 application.
 @param[in] File delivery service ID from FdServiceInfo
 @param[out] FileList List of files previously captured and filtered based on serviceId
 @pre Application is registered for File delivery service and received fileListAvailable() notification
 @see fileListAvailable()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdAvailableFileList(in string serviceId, out AvailableFileList files);

 /**
 @name getFdServices
 @brief Retrieves the list of File Delivery services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application
 @param[out] FDServices List of filtered File delivery services
 @pre Application is registered for File delivery service and received fdServiceListUpdate() notification
 @see fdServiceListUpdate()
 @see FdServices
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdServices(out FdServices services);

 /**
 @name getFdDownloadStateList
 @brief Retrieves the state of files pending download
 @param GetFileDownloadState Includes parameters for getFileDownloadState
 @pre Application is registered for File Delivery service and received fileDownloadStateUpdate() notification
 @see fileDownloadStateUpdate()
 @see GetFdDownloadStateListData
 @see FileDownloadStateInfoList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdDownloadStateList(in GetFdDownloadStateListData info, out FileDownloadStateInfoList fdStateList);

 /**
 @name setFdServiceClassFilter
 @brief Application sets a filter on file delivery services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with file delivery service
 @see SetFdServiceClassFilterData
 @see fdServiceListUpdate()
 @see getFdServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdServiceClassFilter(in FdServiceClassList serviceClassInfo);

 /**
 @name setFdStorageLocation
 @brief Sets the storage location to store the application downloaded files
 @param[in] StorageLocation Includes parameters for setStorageLocation request
 @pre Application is registered for File Delivery service
 @see StorageLocation
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdStorageLocation(in StorageLocation locationPath);
 /**
 @name addSA
 @brief provides the announcement of additional MBMS user services to the MBMS client
 @param saFileLocation location of the SA file

 @see addSAResponse
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode addSA(in string saFileLocation);

 };

 interface ILTEFileDeliveryServiceCallback

 {

 /**
 @name registerFdResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for register File delivery response
 @pre Application called registerFdApp
 @see RegisterFdResponseNotification
 @see registerFdApp()
 **/
 void registerFdResponse(in RegisterFdResponseNotification info);

 /**
 @name fileAvailable
 @brief Notification to application when a new file is downloaded per
 application capture request
 @param FileAvailableNotification Includes parameters for the downloaded file
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileAvailableNotification
 **/
 void fileAvailable(in FileAvailableNotification notification);

 /**
 @name fdServiceListUpdate
 @brief Notification to application on an update of the available for file delivery services.
 Update may be due to the received USD or the network configuration
 @pre Application is registered for file delivery service
 @post Call getFdServices()
 **/
 void fdServiceListUpdate();

 /**
 @name fdServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startFdServiceCapture
 @see FdServiceErrorNotification
 **/
 void fdServiceError(in FdServiceErrorNotification notification);

 /**
 @name fileDownloadFailure
 @brief Notification to application that download of a requested file
 failed
 @param FileDownloadFailureNotification Includes information about the failed file download
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileDownloadFailureNotification
 **/
 void fileDownloadFailure(in FileDownloadFailureNotification notification);

 /**
 @name storageError
 @brief Notification to application that the storage location set by the
 application does not have enough storage for the file download
 @param StorageError Includes parameters to specify the file and
 storage requirement
 @pre Application is registered for file delivery service and application called startFdCapture()
 @see StorageError
 **/
 void storageError(in StorageErrorNotification info);

 /**
 @name inaccessibleLocation
 @brief Notification to application that the storage location set by the
 application is not accessible by the eMBMS Client
 @param InaccessibleLocation Includes the inaccessible storage path
 @pre Application is registered for File delivery service
 @see InaccessibleLocation
 Application calls setStorageLocation
 **/
 void inaccessibleLocation(in InaccessibleLocationNotification info);

 /**
 @name fileDownloadStateUpdate
 @brief Notify application of a change in the state of pending file
 downloads
 @param FileDownloadStateUpdate Includes parameters for fileDownloadStateUpdate()
 @pre Application is registered for File delivery service
 @post call getFdDownloadStateList()
 @see FileDownloadStateUpdate
 **/
 void fileDownloadStateUpdate(in FileDownloadStateUpdateNotification info);

 /**
 @name fileListAvailable
 @brief Notify application when the list of downloaded files is available to retrieve
 @param[in] FileListAvailable Includes parameters for fileListAvailable
 @pre Application is registered for File Delivery service
 @post call getFdAvailableFileList()
 **/
 void fileListAvailable(in FileListAvailableNotification info);
 /**
 @name addSAResponse
 @brief The response to the add service announcement API.
 @param [in] Parameters for register File delivery response
 @pre Application called addSA
 @see AddSAResponseCode
 @see addSA()
 **/
 void addSAResponse(in AddSAResponseNotification info);

 };

};

module EmbmsCommonTypes

{

 //Common types
 typedef unsigned long long Date;

 /**
 * @name ResultCode
 * @brief The return value of the API
 */
 enum ResultCode

 {

 SUCCESS, /**< Success */
 REGISTRATION_IN_PROGRESS, /**< Failed due to registration in progress */
 NO_VALID_REGISTRATION, /**< Failed due to no valid registration */

 MISSING_PARAMETER, /**< A mandatory parameter is missing */ UNKNOWN_ERROR /**< Failed with unknown error */
 };

 /**
 * @name ServiceAvailabilityType
 * @brief Indicates service availability state
 */
 enum ServiceAvailabilityType

 {

 BROADCAST_AVAILABLE, /**< Service is available via broadcast */
 BROADCAST_UNAVAILABLE, /**< Service is unavailable via broadcast */
SERVICE_UNAVAILABLE /**< Service is unavailable */
 };

 /**
 * @name RegResponseCode
 * @brief Indicates app registration response
 */
 enum RegResponseCode

 {

 REGISTER_SUCCESS, /**< Registration was successful */
 FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE /**< Registration failed because LTE eMBMS is unavailable on device */
 };
 /**
 * @name AddSAResponseCode
 * @brief Indicates the response to the add service announcement API
 */
 enum addSAResponseCode

 {

 SUCCESS, /**< Success */
 SA_FILE_INVALID /**< SA file is not valid or not found */
 };

};

B.3
IDL for Media Streaming Service API

#include "EmbmsCommonTypes.idl"
module StreamingService

{

 //Forward Declaration
 interface ILTEStreamingServiceCallback;

 /**
 * @name StreamingErrorCode
 * @brief List of the errors for streaming service
 */
 enum StreamingErrorCode

 {

 STREAMING_INVALID_SERVICE, /**< Invalid service ID */
 STREAMING_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for streaming service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };

 /**
 * @name RegisterStreamingAppData
 * @brief Streaming app registration information
 */
 struct RegisterStreamingAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name StreamingServiceClassList
 * @brief ServiceClass information which the app is interested in. It is for setStreamingServiceClassFilter API.
 */
 typedef sequence<string> StreamingServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @ ServiceMimeType mimetype of the Manifest
 * @ ManifestURI Manifest URI used by VIDEO player n
 */
 struct ServiceFormat
 {

 string ServiceMimeType; /**< mimetype of the Manifest */
 string ManifestURI; /**< Manifest URI used by VIDEO player */
 };

 /**
 * @name StreamingServiceInfo
 * @brief Streaming service information
 */
 struct StreamingServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */

 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */
sequence<ServiceFormat> ServiceFormatList; /**< A list of possible format for the service */ EmbmsCommonTypes::Date activeServicePeriodStartTime; /**< The current/next active file download service start time, when files
 start being broadcast over the air */
 EmbmsCommonTypes::Date activeServicePeriodEndTime; /**< The current/next active file download service end time, when files
 stop being broadcast over the air */
 sequence<long> SAIList; /**< Servcie Area IDs based on current location of the device*/
 };

 /**
 * @name StreamingServices
 * @brief List of streaming service info objects
 */
 typedef sequence<StreamingServiceInfo> StreamingServices;

 /**
 * @name StartStreamingServiceData
 * @brief Start streaming service information. It is used by StartStreamingService API.
 */
 struct StartStreamingServiceData

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StopStreamingServiceData
 * @brief Stop streaming service information.
 * It is used by the StopStreamingService API.
 */
 struct StopStreamingServiceData

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief Streaming service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief Streaming service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StreamingServiceErrorNotification
 * @brief Streaming service error information. It is used by the StreamingServiceErrorNotification API.
 */
 struct StreamingServiceErrorNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 StreamingErrorCode errorCode; /**< Streaming service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief Streaming service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 StalledReasonCode reason; /**< Streaming service stalled reason ID */
 };

 /**
 * @name RegisterStreamingResponseNotification
 * @brief Streaming app registeration response information
 */
 struct RegisterStreamingResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTEStreamingService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current Streaming service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerStreamingApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterStreamingAppData
 @see registerStreamingResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerStreamingApp(in RegisterStreamingAppData regInfo, in ILTEStreamingServiceCallback callBack);

 /**
 @name deregisterStreamingApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterStreamingApp();

 /**
 @name startStreamingService
 @brief Start download of segments of streaming service over broadcast
 @param[in] StartStreamingService Parameters for starting the streaming services API
 @pre Application is registered for streaming service
 @see StartStreamingServiceData
 @see serviceStarted()
 @see streamingServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startStreamingService(in StartStreamingServiceData serviceInfo);

 /**
 @name stopStreamingService
 @brief Stop download of segments of Streaming service over broadcast
 @param[in] StopMedia Service Parameters for starting the streaming services API
 @pre Application is registered for Media service
 @see serviceStopped()
 @see StopStreamingServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopStreamingService(in StopStreamingServiceData serviceInfo);

 /**
 @name setStreamingServiceClassFilter
 @brief Application sets a filter on streaming services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with streaming service
 @see serviceUpdate()
 @see getStreamingServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setStreamingServiceClassFilter(in StreamingServiceClassList serviceClassList);

 /**
 @name getStreamingServices
 @brief Retrieves the list of streaming services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] StreamingServices List of filtered streaming services
 @pre Application is registered for streaming service and received streamingServiceListUpdate notification
 @see StreamingServices
 @see streamingServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getStreamingServices(out StreamingServices services);

 };

 interface ILTEStreamingServiceCallback

 {

 /**
 @name registerStreamingResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for registering a streaming response
 @pre Application called registerStreamingApp
 @see RegisterStreamingResponseNotification
 @see registerStreamingApp()
 **/
 void registerStreamingResponse(in RegisterStreamingResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that streaming service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that streaming service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for streaming service and called stopStreamingService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name streamingServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startStreamingService
 @see StreamingServiceErrorNotification
 **/
 void streamingServiceError(in StreamingServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for streaming service stalled notification
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name streamingServiceListUpdate
 @brief Notification to application on an update that is available for streaming services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for streaming service.
 @post call getStreamingServices()
 **/
 void streamingServiceListUpdate();

 };

};

B.4
IDL for MBMS RTP streaming delivery Service API

#include "EmbmsCommonTypes.idl"
module PacketService

{

 //Forward Declaration
 interface ILTEPacketServiceCallback;

 /**
 * @name PacketErrorCode
 * @brief List of the errors for Packet service
 */
 enum PacketErrorCode

 {

 PACKET_INVALID_SERVICE, /**< Invalid service ID */
 PACKET_UNKNOWN_ERROR /**< Unknown error */
 MISSING_PARAMETER

/**< parameter is missing */

NON_SUPPORTED_SERVICE_TYPE /**< non supported service type */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for Packet service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };
 /**
 * @name ServiceType
 * @brief List of service types
 */
 enum ServiceType
 {

 RTP /**< Service Type for RTP */
 TRANSPARENT /**< Service Type for TRANSPARENT */
 TRANSPARENT-ROM
 /**< Service Type for TRANSPARENT and ROM */
 };

 /**
 * @name RegisterPacketAppData
 * @brief Packet Application registration information
 */
 struct RegisterPacketAppData

 {

 string ServiceType; /** The requested service type)

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific Application context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name PacketServiceClassList
 * @brief ServiceClass information which the Application is interested in. It is for setPacketServiceClassFilter API.
 */
 typedef sequence<string> PacketServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name PacketServiceInfo
 * @brief Packet service information
 */
 struct PacketServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */
 string sdpUri; /**< SDP URI used by Packet player */

 string interfaceName; /**< The network interface name used by the Packet player to receive the data described in the SDP. */
 EmbmsCommonTypes::Date activeServicePeriodStartTime; /**< The current/next active Packet service start time, when Packet data
 starts being broadcast over the air */
 EmbmsCommonTypes::Date activeServicePeriodEndTime; /**< The current/next active Packet service end time, when Packet data
 stops being broadcast over the air */
 sequence<long> SAIList; /**< Service Area IDs based on current location of the device*/
 };

 /**
 * @name PacketServices
 * @brief List of Packet service info objects
 */
 typedef sequence<PacketServiceInfo> PacketServices;

 /**
 * @name StartPacketServiceData
 * @brief Start Packet service information. It is used by StartPacketService API.
 */
 struct StartPacketServiceData

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name StopPacketServiceData
 * @brief Stop Packet service information.
 * It is used by the StopPacketService API.
 */
 struct StopPacketServiceData

 {

 string serviceId; /**< Streaming service ID from PacketServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief Packet service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief Packet service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from PacketServiceInfo */
 };

 /**
 * @name PacketServiceErrorNotification
 * @brief Packet service error information. It is used by the PacketServiceErrorNotification API.
 */
 struct PacketServiceErrorNotification

 {

 string serviceId; /**< Packet service Id from PacketServiceInfo */
 PacketErrorCode errorCode; /**< Packet service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief Packet service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< Packet service ID from PacketServiceInfo */
 StalledReasonCode reason; /**< Packet service stalled reason ID */
 };

 /**
 * @name RegisterPacketResponseNotification
 * @brief Packet Application registeration response information
 */
 struct RegisterPacketResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTEPacketService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current Packet service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerPacketApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterPacketAppData
 @see registerPacketResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerPacketApp(in RegisterPacketAppData regInfo, in ILTEPacketServiceCallback callBack);

 /**
 @name deregisterPacketApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterPacketApp();

 /**
 @name startPacketService
 @brief Start receiving Packet data over broadcast
 @param[in] StartPacketService Parameters for starting the Packet services API
 @pre Application is registered for Packet service
 @see StartPacketServiceData
 @see serviceStarted()
 @see packetServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startPacketService(in StartPacketServiceData serviceInfo);

 /**
 @name stopPacketService
 @brief Stop receiving Packet data over broadcast
 @param[in] StopPacketService Parameters for stoping the Packet services API
 @pre Application is registered for Packet service
 @see serviceStopped()
 @see StopPacketServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopPacketService(in StopPacketServiceData serviceInfo);

 /**
 @name setPacketServiceClassFilter
 @brief Application sets a filter on Packet services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with Packet service
 @see serviceUpdate()
 @see getPacketServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setPacketServiceClassFilter(in PacketServiceClassList serviceClassList);

 /**
 @name getPacketServices
 @brief Retrieves the list of Packet services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] PacketServices List of filtered Packet services
 @pre Application is registered for Packet service and received packetServiceListUpdate notification
 @see PacketServices
 @see packetServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getPacketServices(out PacketServices services);

 };

 interface ILTEPacketServiceCallback

 {

 /**
 @name registerPacketResponse
 @brief The response to the application Packet service register API.
 @param Notification Parameters for registering a Packet response
 @pre Application called registerPacketApp
 @see RegisterPacketResponseNotification
 @see registerPacketApp()
 **/
 void registerPacketResponse(in RegisterPacketResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that Packet service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for Packet service and called startPacketService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that Packet service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for Packet service and called stopPacketService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name packetServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for Packet service and called startPacketService
 @see PacketServiceErrorNotification
 **/
 void packetServiceError(in PacketServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for Packet service stalled notification
 @pre Application is registered for Packet service and called startPacketService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name packetServiceListUpdate
 @brief Notification to application on an update that is available for Packet services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for Packet service.
 @post call getPacketServices()
 **/
 void packetServiceListUpdate();

 };

};

Annex C (informative): IANA registration for MBMS URLs

C.1
General

This Annex provides the MBMS URL registration information that is referenced from the IANA registry at http://www.iana.org/ and follows the template per RFC 7595 [13], clause 7.4.
C.2
IANA Registration for Single Resource MBMS URL

Scheme name:
-
mbms

Status:
-
Permanent

Applications/protocols that use this scheme name:
-
3GPP file delivery over multicast-broadcast as specified in 3GPP TS 26.346 "Multimedia Broadcast/Multicast Service (MBMS)" and 3GPP TS 26.347 "MBMS URLs and APIs"

Contact:

3GPP Specifications Manager

3gppContact@etsi.org

+33 (0)492944200

Change controller:
3GPP SA WG4

References:
-
3GPP TS 26.347 "MBMS URLs and APIs"
-
3GPP TS 26.346 "Multimedia Broadcast/Multicast Service (MBMS)"
-
both available at <http://www.3gpp.org/DynaReport/26-series.htm>

Security Considerations:
-
The security considerations of section 7 of RFC 3986 apply. Maliciously constructed or other erroneous URIs may cause the MBMS API to search for non-existent services. Currently this is defined to be a local search, and not to perform a network interaction, but if a terminal were to contact network servers in an attempt to retrieve the service description, then providing such a URI to many user-agents simultaneously could cause network or server overload.
Annex D (informative): Service Name and Transport Protocol Port Number Registration
The following information is used to register the MBMS service with IANA according to RFC 6335 [16]:

 +--------------------+-----------------------------+

 | Service Name | mbms |

 | Transport Protocol | UDP |

 | Assignee | 3GPP SA4 |

 | Contact | Imed Bouazizi |

 | Description | MBMS Delivery Service |

 | Reference | 3GPP TS 26.347 |

 | Port Number | Not defined |

 +--------------------+-----------------------------+
Annex E (informative): Implementation Guidelines for DASH over MBMS
E.1
General
This clause documents selected used cases and potential realizations for implementing DASH over MBMS, including hybrid services. The usage guidelines primarily focus on the information provided in the MBMS User Service Description and the application and usage of the information on the interface between the MBMS client and DASH client as shown in Figure E.1-1.

[image: image40.png]UE

MBMS-Aware
Application

[~ - ---Application Data-= =t =3

DASH Client

DASH

MBMS API

StreamingTs 26.247

MBMS Client meeeenanT526.346=mmnnt=P

Network

Application
and Content
Provider

MBMS
Management
System

|

A
ceccccadS26.247rcccccccctad

DASH Server

BMSC

Modem

[Jnicasts

[€——MBMS Broadcast bearers

h 4

eNode-B

Figure E.1-1: Relevant interfaces and functions for the discussed use cases
E.2
Hybrid Service Offering with Unicast Fallback

E.2.1
Description
A sportscaster distributes a DASH-over MBMS service using the HEVC 720p HD signal over MBMS broadcast as it is aware that most of the devices are able to decode this content. The sportscasters’ announcement track of the game in English is broadcast as well.
In addition the sportscaster delivers one or more program elements exclusively over the unicast bearer. As an example, an MBMS User Service comprising DASH-formatted streaming content for a live football game is broadcast in the Los Angeles metropolitan area, in which there is a significant Hispanic population. The sportscasters’ announcement track of the game in English is broadcast, whereas the Spanish version of the announcement track is solely delivered over unicast.
In addition, the broadcaster has access to the content also in HDR and offers the content using the newly defined HDR FullHD profile as defined in Rel-15 of TS26.116 over unicast, offered in the same DASH-formatted service offering.

At the same time, the sportscaster also enables unicast fallback if the UE is out service coverage. For this purpose, a unified MPD is offered that contains all components of the service and provides also resources for broadcast distribution and unicast fallback.

The sportscaster desires that devices use the broadcast offered Representations in the following cases:

1)
the client is in broadcast coverage and the user selects the HEVC 720p HD representation (coming over broadcast),

2)
the client is in broadcast coverage and the user selects the English language (coming over broadcast)

3)
the client is in broadcast coverage and the client is only capable to use HEVC 720p, but not the HDR FullHD profile.

E.2.2
Assumed MBMS User Service Description Signalling
In the User Service Description Signalling, the USDB contains the r12:appService element as part of the USD that contains the following information:

<r12:appService appServiceDescriptionURI="http://www.example.com/MPD2.mpd" mimeType="application/dash+xml;profiles=urn:3GPP:PSS:profile:DASH10">

</r12:appService>

In addition, the MBMS receiver has access to r12:broadcastAppService and r12:unicastAppService element as follows:

<r12:broadcastAppService>

<r12:basePattern>http://example.com/bc</r12:basePattern>

</r12:broadcastAppService>

<r12:unicastAppService>

<r12:basePattern>http://example.com/uc</r12:basePattern>

</r12:unicastAppService>
<r15:supplementaryUnicastAppService>

<r15:basePattern>http://example.com/suc</r15:basePattern>

</r15:supplemenaryUnicastAppService>
E.2.3
Assumed DASH MPD
It is assumed that the MPD referenced as http://www.example.com/MPD2.mpd in the User Service Description contains the following information:
<MPD

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

type="dynamic" minimumUpdatePeriod="PT10s"

timeShiftBufferDepth="PT600S"

minBufferTime="PT2S"

profiles="urn:3GPP:PSS:profile:DASH10"
publishTime="2014-10-17T17:17:05Z"

availabilityStartTime="2014-10-17T17:17:05Z">

<Location>http://www.example.com/MPD2.mpd</Location>
<Period id="1" start="PT0S">
<SegmentTemplate media="./$RepresentationID$/$Number$.m4s" initialization="$RepresentationID$-init.mp4"/>

 <!– Video 720p -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.1.2.L93.B0" startWithSAP="1" maxWidth="1280" maxHeight="720" frameRate="30" profile="urn:3GPP:video:op:h265-720p-HD">

<BaseURL> http://example.com/uc</BaseURL>

 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="v2048" bandwidth="2048000">

<BaseURL> http://example.com/bc</BaseURL>

</Representation>
 <Representation id="v1024" bandwidth="1024000"/>
 <Representation id="v512" bandwidth="512000"/>

 <Representation id="v128" bandwidth="128000"/>
 </AdaptationSet>
 <!– Video HDR -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.2.4.L113.B0" startWithSAP="1" maxWidth="1920" maxHeight="1080" frameRate="30" profile="urn:3GPP:video:op:h265-Full-HD-HDR">

<BaseURL> http://example.com/suc</BaseURL>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:MatrixCoefficients" value="9"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:TransferCharacteristics" value="16"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:ColourPrimaries" value="9"/>
 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="8M" bandwidth="8192000">

 <Representation id="6M" bandwidth="6144000"/>
 <Representation id="4M" bandwidth="4096000"/>

 <Representation id="2M" bandwidth="2048000"/>
 </AdaptationSet>

 <!– Audio English -->

 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="en">

<BaseURL> http://example.com/uc</BaseURL>
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

<BaseURL> http://example.com/bc</BaseURL>

</Representation>

 <Representation id="a64" bandwidth="64000">
 </AdaptationSet>
 <!– Audio Spanish -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="es">

<BaseURL> http://example.com/suc</BaseURL>
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

 <Representation id="a64" bandwidth="64000">
 </AdaptationSet>
 </Period>

</MPD>

E.2.4
MBMS Client acting as DASH Server
It is assumed now that the MBMS client acts as DASH Server. In this case the MBMS client offers the MPD at a localhost URL as http://localhost/MPD2.mpd. The MBMS client acts as a partial proxy, i.e. only the MPD is proxied through the MBMS client.

In broadcast coverage, the MBMS client of offers the MPD such that only broadcast related Base URLs and supplemental Base URLs are available. It also rewrites the URLs and makes sure that the update period is frequent in order to make the DASH client aware of potential changes. The changed information is highlighted in bold and strikethrough compared to the MPD above:

<MPD

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

type="dynamic" minimumUpdatePeriod="0"

timeShiftBufferDepth="PT600S"

minBufferTime="PT2S"

profiles="urn:3GPP:PSS:profile:DASH10"
publishTime="2014-10-17T17:17:05Z"

availabilityStartTime="2014-10-17T17:17:05Z">

<Location>http://localhost/MPD2.mpd</Location>

<Period id="1" start="PT0S">
<SegmentTemplate media="./$RepresentationID$/$Number$.m4s" initialization="$RepresentationID$-init.mp4"/>

 <!– Video 720p -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.1.2.L93.B0" startWithSAP="1" maxWidth="1280" maxHeight="720" frameRate="30" profile="urn:3GPP:video:op:h265-720p-HD">
 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="v2048" bandwidth="2048000">

<BaseURL>http://localhost</BaseURL>

</Representation>
 </AdaptationSet>
 <!– Video HDR -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.2.4.L113.B0" startWithSAP="1" maxWidth="1920" maxHeight="1080" frameRate="30" profile="urn:3GPP:video:op:h265-Full-HD-HDR">

<BaseURL> http://example.com/suc</BaseURL>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:MatrixCoefficients" value="9"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:TransferCharacteristics" value="16"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:ColourPrimaries" value="9"/>
 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="8M" bandwidth="8192000">

 <Representation id="6M" bandwidth="6144000"/>
 <Representation id="4M" bandwidth="4096000"/>

 <Representation id="2M" bandwidth="2048000"/>
 </AdaptationSet>

 <!– Audio English -->

 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="en">
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

<BaseURL>http://localhost</BaseURL>

</Representation>

 </AdaptationSet>
 <!– Audio Spanish -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="es">

<BaseURL>http://example.com/suc</BaseURL>
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

 <Representation id="a64" bandwidth="64000">
 </AdaptationSet>
 </Period>

</MPD>

Once the MBMS moves out of broadcast coverage the MPD is rewritten again as follows:

<MPD

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

type="dynamic" minimumUpdatePeriod="0"
timeShiftBufferDepth="PT600S"

minBufferTime="PT2S"

profiles="urn:3GPP:PSS:profile:DASH10"
publishTime="2014-10-17T17:17:05Z"

availabilityStartTime="2014-10-17T17:17:05Z">

<Location>http://localhost/MPD2.mpd</Location>
<Period id="1" start="PT0S">
<SegmentTemplate media="./$RepresentationID$/$Number$.m4s" initialization="$RepresentationID$-init.mp4"/>

 <!– Video 720p -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.1.2.L93.B0" startWithSAP="1" maxWidth="1280" maxHeight="720" frameRate="30" profile="urn:3GPP:video:op:h265-720p-HD">

<BaseURL> http://example.com/uc</BaseURL>

 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="v2048" bandwidth="2048000">

</Representation>
 <Representation id="v1024" bandwidth="1024000"/>
 <Representation id="v512" bandwidth="512000"/>

 <Representation id="v128" bandwidth="128000"/>
 </AdaptationSet>
 <!– Video HDR -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.2.4.L113.B0" startWithSAP="1" maxWidth="1920" maxHeight="1080" frameRate="30" profile="urn:3GPP:video:op:h265-Full-HD-HDR">

<BaseURL> http://example.com/suc</BaseURL>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:MatrixCoefficients" value="9"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:TransferCharacteristics" value="16"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:ColourPrimaries" value="9"/>
 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="8M" bandwidth="8192000">

 <Representation id="6M" bandwidth="6144000"/>
 <Representation id="4M" bandwidth="4096000"/>

 <Representation id="2M" bandwidth="2048000"/>
 </AdaptationSet>

 <!– Audio English -->

 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="en">

<BaseURL> http://example.com/uc</BaseURL>
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

</Representation>

 <Representation id="a64" bandwidth="64000">
 </AdaptationSet>
 <!– Audio Spanish -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="es">

<BaseURL> http://example.com/suc</BaseURL>
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

 <Representation id="a64" bandwidth="64000">
 </AdaptationSet>
 </Period>

</MPD>
E.2.5
MBMS Client acting as DANE
It is assumed now that the MBMS client acts as DANE. In this case the MBMS client offers the MPD at a localhost URL as http://localhost/MPD2.mpd. The MBMS client acts as a partial proxy, i.e. only the MPD is proxied through the MBMS client. The following MPD is provided, independent of the coverage situation.

<MPD

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"

type="dynamic" minimumUpdatePeriod="0"

timeShiftBufferDepth="PT600S"

minBufferTime="PT2S"

profiles="urn:3GPP:PSS:profile:DASH10"
publishTime="2014-10-17T17:17:05Z"

availabilityStartTime="2014-10-17T17:17:05Z">

<Location>http://localhost/MPD2.mpd</Location>

<Period id="1" start="PT0S">
<SegmentTemplate media="./$RepresentationID$/$Number$.m4s" initialization="$RepresentationID$-init.mp4"/>

 <!– Video 720p -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.1.2.L93.B0" startWithSAP="1" maxWidth="1280" maxHeight="720" frameRate="30" profile="urn:3GPP:video:op:h265-720p-HD">

<BaseURL> http://example.com/uc</BaseURL>

 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="v2048" bandwidth="2048000">

<BaseURL>http://localhost</BaseURL>

</Representation>
 <Representation id="v1024" bandwidth="1024000"/>
 <Representation id="v512" bandwidth="512000"/>

 <Representation id="v128" bandwidth="128000"/>
 </AdaptationSet>
 <!– Video HDR -->

 <AdaptationSet mimeType="video/mp4" codecs="hvc1.2.4.L113.B0" startWithSAP="1" maxWidth="1920" maxHeight="1080" frameRate="30" profile="urn:3GPP:video:op:h265-Full-HD-HDR">

<BaseURL> http://example.com/suc</BaseURL>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:MatrixCoefficients" value="9"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:TransferCharacteristics" value="16"/>

<EssentialDescriptor schemeIdUri="urn:mpeg:mpegB:cicp:ColourPrimaries" value="9"/>
 <SegmentTemplate timescale="30" duration="60"/>
 <Representation id="8M" bandwidth="8192000">

 <Representation id="6M" bandwidth="6144000"/>
 <Representation id="4M" bandwidth="4096000"/>

 <Representation id="2M" bandwidth="2048000"/>
 </AdaptationSet>

 <!– Audio English -->

 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="en">

<BaseURL> http://example.com/uc</BaseURL>
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

<BaseURL>http://localhost</BaseURL>

</Representation>

 <Representation id="a64" bandwidth="64000">
 </AdaptationSet>
 <!– Audio Spanish -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.2" segmentAlignment="true" startWithSAP="1" language="es">

<BaseURL> http://example.com/suc</BaseURL>
 <SegmentTemplate timescale="20" duration="40"/>

 <Representation id="a128" bandwidth="128000">

 <Representation id="a64" bandwidth="64000">
 </AdaptationSet>
 </Period>

</MPD>

Along with every MPD request, an HTTP-URL is offered in the HTTP header as follows SAND-header-field=MPEG-DASH-SAND:http://localhost/MBMS.sand
In broadcast coverage, the following SAND messages is provided.

<SAND>

<Status baseURL="http://localhost/">

<ResourceStatus status="cached"/>
 </Status>

<Status baseURL="http://example.com/uc">

<ResourceStatus status="unavailable"/>
 </Status>

<Status baseURL="http://example.com/suc">

<ResourceStatus status="available"/>
 </Status>

</SAND>
If the MBMS client is outside coverage, the following SAND messages is provided.

<SAND>

<Status baseURL="http://localhost/">

<ResourceStatus status="unavailable"/>
 </Status>

<Status baseURL="http://example.com/uc">

<ResourceStatus status="available"/>
 </Status>

<Status baseURL="http://example.com/suc">

<ResourceStatus status="available"/>
 </Status>

</SAND>
Annex F (informative):
Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Cat
	Subject/Comment
	New

	2016-12
	74
	SP-160771
	
	
	
	Presented to TSG SA#74 (for information)
	1.0.0

	2017-03
	75
	SP-170023
	
	
	
	Presented to TSG SA#74 (for approval)
	2.0.0

	2017-03
	75
	
	
	
	
	Version 14.0.0
	14.0.0

	2017-06
	76
	SP-170327
	0001
	3
	
	Service API for Transparent User Service
	14.1.0

	2017-06
	76
	SP-170319
	0002
	3
	
	TRAPI: Multiple Corrections
	14.1.0

	2017-09
	77
	SP-170601
	0003
	6
	
	Clarifications to DNS resolution in TRAPI
	14.2.0

	2018-06
	80
	SP-180272
	0004
	1
	
	Support for SAND for MBMS
	15.0.0

	2018-12
	82
	SP-180971
	0005
	1
	F
	Support for SAND4M - Correction of Missing Text
	15.1.0

	2019-03
	83
	SP-190035
	0006
	2
	F
	Changes Pertaining to Service Interactivity
	16.0.0

	2019-06
	84
	SP-190340
	0007
	1
	B
	New API providing the SA File
	16.1.0

	2020-03
	87-e
	SP-200039
	0008
	1
	B
	Support of HLS and hybrid HLS/DASH services
	16.2.0

_1554884696.bin

_1554885299.bin

_1621006665.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1554885342.bin

_1554885031.bin

_1554715079.bin

_1554884630.bin

_1554205232.vsd
Network

UE

MBMS Management System

